Professor Dr. Wolfgang Demtröder

Size: px
Start display at page:

Download "Professor Dr. Wolfgang Demtröder"

Transcription

1 Wolfgang Demtröder Laser Spectroscopy Basic Concepts and Instrumentation Third Edition With 710 Figures,16 Tables 93 Problems and Hints for Solution 13

2 Professor Dr. Wolfgang Demtröder Universität Kaiserslautern Fachbereich Physik Erwin-Schrödinger-Strasse Kaiserslautern,Germany Library of Congress Cataloging-in-Publication Data: Demtröder,W. Laser spectroscopy: basic concepts and instrumentation/ Wolfgang Demtröder. 3rd ed. p. cm. ISBN (alk. paper) 1. Laser spectroscopy. I. Title. QC 454.L3 D dc ISSN ISBN rd Edition Springer-Verlag Berlin Heidelberg New York ISBN X 2nd Edition Springer-Verlag Berlin Heidelberg New York This work is subject to copyright. All rights are reserved,whether the whole or part of the material is concerned,specifically the rights of translation,reprinting,reuse of illustrations,recitation,broadcasting,reproduction on microfilm or in any other way,and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,1965,in its current version,and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. Springer-Verlag Berlin Heidelberg New York a member of BertelsmannSpringer Science+Business Media GmbH Springer-Verlag Berlin Heidelberg 1981,1996,2003 Printed in Germany The use of general descriptive names,registered names,trademarks,etc. in this publication does not imply,even in the absence of a specific statement,that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typesetting: Data conversion by Fa. Le-TeX,Leipzig Cover design: design & production GmbH,Heidelberg Printed on acid-free paper SPIN /3141/ba

3 Contents 1. Introduction Absorption and Emission of Light Cavity Modes Thermal Radiation and Planck s Law Absorption, Induced, and Spontaneous Emission Basic Photometric Quantities Definitions Illumination of Extended Areas Polarization of Light Absorption and Emission Spectra Transition Probabilities Lifetimes, Spontaneous and Radiationless Transitions Semiclassical Description: Basic Equations Weak-Field Approximation Transition Probabilities with Broad-Band Excitation Phenomenological Inclusion of Decay Phenomena Interaction with Strong Fields Relations Between Transition Probabilities, Absorption Coefficient, and Line Strength Coherence Properties of Radiation Fields Temporal Coherence Spatial Coherence Coherence Volume The Coherence Function and the Degree of Coherence Coherence of Atomic Systems Density Matrix Coherent Excitation Relaxation of Coherently Excited Systems Problems Widths and Profiles of Spectral Lines Natural Linewidth Lorentzian Line Profile of the Emitted Radiation Relation Between Linewidth and Lifetime Natural Linewidth of Absorbing Transitions Doppler Width... 68

4 XII Contents 3.3 Collisional Broadening of Spectral Lines Phenomenological Description Relations Between Interaction Potential, Line Broadening, and Shifts Collisional Narrowing of Lines Transit-Time Broadening Homogeneous and Inhomogeneous Line Broadening Saturation and Power Broadening Saturation of Level Population by Optical Pumping Saturation Broadening of Homogeneous Line Profiles Power Broadening Spectral Line Profiles in Liquids and Solids Problems Spectroscopic Instrumentation Spectrographs and Monochromators Basic Properties Prism Spectrometer Grating Spectrometer Interferometers Basic Concepts Michelson Interferometer Mach Zehnder Interferometer Multiple-Beam Interference Plane Fabry Perot Interferometer Confocal Fabry Perot Interferometer Multilayer Dielectric Coatings Interference Filters Birefringent Interferometer Tunable Interferometers Comparison Between Spectrometers and Interferometers Spectral Resolving Power Light-Gathering Power Accurate Wavelength Measurements Precision and Accuracy of Wavelength Measurements Today s Wavemeters Detection of Light Thermal Detectors Photodiodes Photodiode Arrays Photoemissive Detectors Detection Techniques and Electronic Equipment Conclusions Problems

5 Contents 5. Lasers as Spectroscopic Light Sources Fundamentals of Lasers Basic Elements of a Laser Threshold Condition Rate Equations Laser Resonators Open Optical Resonators Spatial Field Distributions in Open Resonators Confocal Resonators General Spherical Resonators Diffraction Losses of Open Resonators Stable and Unstable Resonators Ring Resonators Frequency Spectrum of Passive Resonators Spectral Characteristics of Laser Emission Active Resonators and Laser Modes Gain Saturation Spatial Hole Burning Multimode Lasers and Gain Competition Mode Pulling Experimental Realization of Single-Mode Lasers Line Selection Suppression of Transverse Modes Selection of Single Longitudinal Modes Intensity Stabilization Wavelength Stabilization Controlled Wavelength Tuning of Single-Mode Lasers Continuous Tuning Techniques Wavelength Calibration Linewidths of Single-Mode Lasers Tunable Lasers Basic Concepts Semiconductor-Diode Lasers Tunable Solid-State Lasers Color-Center Lasers Dye Lasers Excimer Lasers Free-Electron Lasers Nonlinear Optical Mixing Techniques Physical Background Phase Matching Second-Harmonic Generation Quasi Phase Matching Sum-Frequency and Higher-Harmonic Generation X-Ray Lasers Difference-Frequency Spectrometer XIII

6 XIV Contents Optical Parametric Oscillator Tunable Raman Lasers Gaussian Beams Problems Doppler-Limited Absorption and Fluorescence Spectroscopy with Lasers Advantages of Lasers in Spectroscopy High-Sensitivity Methods of Absorption Spectroscopy Frequency Modulation Intracavity Absorption Cavity Ring-Down Spectroscopy (CRDS) Direct Determination of Absorbed Photons Fluorescence Excitation Spectroscopy Photoacoustic Spectroscopy Optothermal Spectroscopy Ionization Spectroscopy Basic Techniques Sensitivity of Ionization Spectroscopy Pulsed Versus CW Lasers for Photoionization Resonant Two-Photon Ionization Combined with Mass Spectrometry Thermionic Diode Optogalvanic Spectroscopy Velocity-Modulation Spectroscopy Laser Magnetic Resonance and Stark Spectroscopy Laser Magnetic Resonance Stark Spectroscopy Laser-Induced Fluorescence Molecular Spectroscopy by Laser-Induced Fluorescence Experimental Aspects of LIF LIF of Polyatomic Molecules Determination of Population Distributions by LIF Comparison Between the Different Methods Problems Nonlinear Spectroscopy Linear and Nonlinear Absorption Saturation of Inhomogeneous Line Profiles Hole Burning Lamb Dip Saturation Spectroscopy Experimental Schemes Cross-Over Signals Intracavity Saturation Spectroscopy Lamb-Dip Frequency Stabilization of Lasers

7 Contents 7.4 Polarization Spectroscopy Basic Principle Line Profiles of Polarization Signals Magnitude of Polarization Signals Sensitivity of Polarization Spectroscopy Advantages of Polarization Spectroscopy Multiphoton Spectroscopy Two-Photon Absorption Doppler-Free Multiphoton Spectroscopy Influence of Focusing on the Magnitude of Two-Photon Signals Examples of Doppler-Free Two-Photon Spectroscopy Multiphoton Spectroscopy Special Techniques of Nonlinear Spectroscopy Saturated Interference Spectroscopy Doppler-Free Laser-Induced Dichroism and Birefringence Heterodyne Polarization Spectroscopy Combination of Different Nonlinear Techniques Conclusion Problems Laser Raman Spectroscopy Basic Considerations Experimental Techniques of Linear Laser Raman Spectroscopy Nonlinear Raman Spectroscopy Stimulated Raman Scattering Coherent Anti-Stokes Raman Spectroscopy Resonant CARS and BOX CARS Hyper-Raman Effect Summary of Nonlinear Raman Spectroscopy Special Techniques Resonance Raman Effect Surface-Enhanced Raman Scattering Raman Microscopy Time-Resolved Raman Spectroscopy Applications of Laser Raman Spectroscopy Problems Laser Spectroscopy in Molecular Beams Reduction of Doppler Width Adiabatic Cooling in Supersonic Beams Formation and Spectroscopy of Clusters and Van der Waals Molecules in Cold Molecular Beams Nonlinear Spectroscopy in Molecular Beams XV

8 XVI Contents 9.5 Laser Spectroscopy in Fast Ion Beams Applications of FIBLAS Spectroscopy of Radioactive Elements Photofragmentation Spectroscopy of Molecular Ions Laser Photodetachment Spectroscopy Saturation Spectroscopy in Fast Beams Spectroscopy in Cold Ion Beams Combination of Molecular Beam Laser Spectroscopy and Mass Spectrometry Problems Optical Pumping and Double-Resonance Techniques Optical Pumping Optical RF Double-Resonance Technique Basic Considerations Laser RF Double-Resonance Spectroscopy in Molecular Beams Optical Microwave Double Resonance Optical Optical Double Resonance Simplification of Complex Absorption Spectra Stepwise Excitation and Spectroscopy of Rydberg States Stimulated Emission Pumping Special Detection Schemes of Double-Resonance Spectroscopy OODR-Polarization Spectroscopy Polarization Labeling Microwave-Optical Double-Resonance Polarization Spectroscopy Hole-Burning and Ion-Dip Double-Resonance Spectroscopy Triple-Resonance Spectroscopy Problems Time-Resolved Laser Spectroscopy Generation of Short Laser Pulses Time Profiles of Pulsed Lasers Q-Switched Lasers Cavity Dumping Mode Locking of Lasers Generation of Femtosecond Pulses Optical Pulse Compression Sub 10-fs Pulses with Chirped Laser Mirrors Fiber Lasers and Optical Solitons Shaping of Ultrashort Light Pulses Generation of High-Power Ultrashort Pulses

9 Contents XVII 11.2 Measurement of Ultrashort Pulses Streak Camera Optical Correlator for Measuring Ultrashort Pulses Lifetime Measurement with Lasers Phase-Shift Method Single-Pulse Excitation Delayed-Coincidence Technique Lifetime Measurements in Fast Beams Pump-and-Probe Technique Pump-and-Probe Spectroscopy of Collisional Relaxation in Liquids Electronic Relaxation in Semiconductors Femtosecond Transition State Dynamics Real-Time Observations of Molecular Vibrations Transient Grating Techniques Problems Coherent Spectroscopy Level-Crossing Spectroscopy Classical Model of the Hanle Effect Quantum-Mechanical Models Experimental Arrangements Examples Stimulated Level-Crossing Spectroscopy Quantum-Beat Spectroscopy Basic Principles Experimental Techniques Molecular Quantum-Beat Spectroscopy Excitation and Detection of Wave Packets in Atoms and Molecules Optical Pulse-Train Interference Spectroscopy Photon Echoes Optical Nutation and Free-Induction Decay Heterodyne Spectroscopy Correlation Spectroscopy Basic Considerations Correlation Spectroscopy of Light Scattered by Microparticles Homodyne Spectroscopy Heterodyne Correlation Spectroscopy Fluorescence Correlation Spectroscopy and Single Molecule Detection Problems

10 XVIII Contents 13. Laser Spectroscopy of Collision Processes High-Resolution Laser Spectroscopy of Collisional Line Broadening and Line Shifts Sub-Doppler Spectroscopy of Collision Processes Combination of Different Techniques Measurements of Inelastic Collision Cross Sections of Excited Atoms and Molecules Measurements of Absolute Quenching Cross Sections Collision-Induced Rovibronic Transitions in Excited States Collisional Transfer of Electronic Energy Energy Pooling in Collisions Between Excited Atoms Spectroscopy of Spin-Flip Transitions Spectroscopic Techniques for Measuring Collision-Induced Transitions in the Electronic Ground State of Molecules Time-Resolved Infrared Fluorescence Detection Time-Resolved Absorption and Double-Resonance Methods Collision Spectroscopy with Continuous-Wave Lasers Collisions Involving Molecules in High Vibrational States Spectroscopy of Reactive Collisions Spectroscopic Determination of Differential Collision Cross Sections in Crossed Molecular Beams Photon-Assisted Collisional Energy Transfer Photoassociation Spectroscopy of Colliding Atoms Problems New Developments in Laser Spectroscopy Optical Cooling and Trapping of Atoms Photon Recoil Measurement of Recoil Shift Optical Cooling by Photon Recoil Experimental Arrangements Threedimensional Cooling of Atoms; Optical Mollasses Cooling of Molecules Optical Trapping of Atoms Optical Cooling Limits Bose Einstein Condensation Evaporative Cooling Applications of Cooled Atoms and Molecules

11 Contents XIX 14.2 Spectroscopy of Single Ions Trapping of Ions Optical Sideband Cooling Direct Observations of Quantum Jumps Formation of Wigner Crystals in Ion Traps Laser Spectroscopy in Storage Rings Optical Ramsey Fringes Basic Considerations Two-Photon Ramsey Resonance Nonlinear Ramsey Fringes Using Three Separated Fields Observation of Recoil Doublets and Suppression of One Recoil Component Atom Interferometry Mach Zehnder Atom Interferometer Atom Laser The One-Atom Maser Spectral Resolution Within the Natural Linewidth Time-Gated Coherent Spectroscopy Coherence and Transit Narrowing Raman Spectroscopy with Subnatural Linewidth Absolute Optical Frequency Measurement and Optical Frequency Standards Microwave Optical Frequency Chains Frequency Comb from Femtosecond Laser Pulses Squeezing Amplitude and Phase Fluctuations of a Light Wave Experimental Realization of Squeezing Application of Squeezing to Gravitational Wave Detectors Applications of Laser Spectroscopy Applications in Chemistry Laser Spectroscopy in Analytical Chemistry Single-Molecule Detection Laser-Induced Chemical Reactions Coherent Control of Chemical Reactions Laser Femtosecond Chemistry Isotope Separation with Lasers Summary of Laser Chemistry Environmental Research with Lasers Absorption Measurements Atmospheric Measurements with LIDAR Spectroscopic Detection of Water Pollution Applications to Technical Problems Spectroscopy of Combustion Processes

12 XX Contents Applications of Laser Spectroscopy to Materials Science Measurements of Flow Velocities in Gases and Liquids Applications in Biology Energy Transfer in DNA Complexes Time-Resolved Measurements of Biological Processes Correlation Spectroscopy of Microbe Movements Laser Microscope Time-Resolved Spectroscopy of Biological Processes Medical Applications of Laser Spectroscopy Applications of Raman Spectroscopy in Medicine Heterodyne Measurements of Ear Drums Cancer Diagnostics and Therapy with the HPD Technique Laser Lithotripsy Laser-Induced Thermotherapy of Brain Cancer Fetal Oxygen Monitoring Concluding Remarks References Subject Index

13

Wolfgang Demtroder. Laser Spectroscopy. Basic Concepts and Instrumentation. Second Enlarged Edition With 644 Figures and 91 Problems.

Wolfgang Demtroder. Laser Spectroscopy. Basic Concepts and Instrumentation. Second Enlarged Edition With 644 Figures and 91 Problems. Wolfgang Demtroder Laser Spectroscopy Basic Concepts and Instrumentation Second Enlarged Edition With 644 Figures and 91 Problems Springer Contents 1. Introduction 1 2. Absorption and Emission of Light

More information

Springer-Verlag Berlin Heidelberg GmbH. Physics and Astronomy. Advanced Texts in Physics

Springer-Verlag Berlin Heidelberg GmbH. Physics and Astronomy. Advanced Texts in Physics Laser Spectroscopy Advanced Texts in Physics This program of advanced texts covers a broad spectrum of topics which are of current and emerging interest in physics. Each book provides a comprehensive and

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

Elements of Quantum Optics

Elements of Quantum Optics Pierre Meystre Murray Sargent III Elements of Quantum Optics Fourth Edition With 124 Figures fya Springer Contents 1 Classical Electromagnetic Fields 1 1.1 Maxwell's Equations in a Vacuum 2 1.2 Maxwell's

More information

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii ate LIST OF TOPICS Preface xiii Units and Notation xv List of Symbols xvii BASIC LASER PHYSICS Chapter 1 An Introduction to Lasers 1.1 What Is a Laser? 2 1.2 Atomic Energy Levels and Spontaneous Emission

More information

ATOMIC AND LASER SPECTROSCOPY

ATOMIC AND LASER SPECTROSCOPY ALAN CORNEY ATOMIC AND LASER SPECTROSCOPY CLARENDON PRESS OXFORD 1977 Contents 1. INTRODUCTION 1.1. Planck's radiation law. 1 1.2. The photoelectric effect 4 1.3. Early atomic spectroscopy 5 1.4. The postulates

More information

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford Laser Physics SIMON HOOKER and COLIN WEBB Department of Physics, University of Oxford OXFORD UNIVERSITY PRESS Contents 1 Introduction 1.1 The laser 1.2 Electromagnetic radiation in a closed cavity 1.2.1

More information

Lasers and Electro-optics

Lasers and Electro-optics Lasers and Electro-optics Second Edition CHRISTOPHER C. DAVIS University of Maryland III ^0 CAMBRIDGE UNIVERSITY PRESS Preface to the Second Edition page xv 1 Electromagnetic waves, light, and lasers 1

More information

Optics, Light and Lasers

Optics, Light and Lasers Dieter Meschede Optics, Light and Lasers The Practical Approach to Modern Aspects of Photonics and Laser Physics Second, Revised and Enlarged Edition BICENTENNIAL.... n 4 '':- t' 1 8 0 7 $W1LEY 2007 tri

More information

A few Experimental methods for optical spectroscopy Classical methods Modern methods. Remember class #1 Generating fast LASER pulses

A few Experimental methods for optical spectroscopy Classical methods Modern methods. Remember class #1 Generating fast LASER pulses A few Experimental methods for optical spectroscopy Classical methods Modern methods Shorter class Remember class #1 Generating fast LASER pulses, 2017 Uwe Burghaus, Fargo, ND, USA W. Demtröder, Laser

More information

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. Preface p. xiii Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. 4 Dual-Beam Holographic Technique p. 5

More information

Quantum optics. Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik. M. Suhail Zubairy Quaid-i-Azam University

Quantum optics. Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik. M. Suhail Zubairy Quaid-i-Azam University Quantum optics Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik M. Suhail Zubairy Quaid-i-Azam University 1 CAMBRIDGE UNIVERSITY PRESS Preface xix 1 Quantum theory of radiation

More information

PRINCIPLES OF NONLINEAR OPTICAL SPECTROSCOPY

PRINCIPLES OF NONLINEAR OPTICAL SPECTROSCOPY PRINCIPLES OF NONLINEAR OPTICAL SPECTROSCOPY Shaul Mukamel University of Rochester Rochester, New York New York Oxford OXFORD UNIVERSITY PRESS 1995 Contents 1. Introduction 3 Linear versus Nonlinear Spectroscopy

More information

Laser Detection Techniques

Laser Detection Techniques Laser Detection Techniques K.-H. Gericke Institute for Physical Chemistry University Braunschweig E 2 E 1 = hn, λ = c /n Lambert-Beer Law Transmittance of the sample:: T = I / I 0 T = e -snl = e -α, where

More information

Contents. Part I Fundamentals of Lasers 1 Introduction... 3

Contents. Part I Fundamentals of Lasers 1 Introduction... 3 Contents Part I Fundamentals of Lasers 1 Introduction... 3 2 Basic Optics... 9 2.1 Introduction...... 9 2.2 TheWaveEquation... 9 2.3 Linearly Polarized Waves.... 13 2.4 Circularly and Elliptically Polarized

More information

Wavelength Frequency Measurements

Wavelength Frequency Measurements Wavelength Frequency Measurements Frequency: - unit to be measured most accurately in physics - frequency counters + frequency combs (gear wheels) - clocks for time-frequency Wavelength: - no longer fashionable

More information

Modern Optical Spectroscopy

Modern Optical Spectroscopy Modern Optical Spectroscopy With Exercises and Examples from Biophysics and Biochemistry von William W Parson 1. Auflage Springer-Verlag Berlin Heidelberg 2006 Verlag C.H. Beck im Internet: www.beck.de

More information

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Section I Q1. Answer (i) (b) (ii) (d) (iii) (c) (iv) (c) (v) (a) (vi) (b) (vii) (b) (viii) (a) (ix)

More information

Part IV. Fundamentals of Laser Spectroscopy

Part IV. Fundamentals of Laser Spectroscopy IV 1 Part IV. Fundamentals of Laser Spectroscopy We have gone through the fundamentals of atomic spectroscopy and molecular spectroscopy, in which we emphasize the quantum physics and principles that govern

More information

! Fiber!Laser!Intracavity!Absorption! Spectroscopy!(FLICAS)!of!CO/CO2! mixture.!!! This experiment will expose you to tools and approaches, common in

! Fiber!Laser!Intracavity!Absorption! Spectroscopy!(FLICAS)!of!CO/CO2! mixture.!!! This experiment will expose you to tools and approaches, common in FiberLaserIntracavityAbsorption Spectroscopy(FLICAS)ofCO/CO2 mixture. This experiment will expose you to tools and approaches, common in modern laser spectroscopy. During the following weeks we will cover

More information

Laser-Based Measurements for Time and Frequency

Laser-Based Measurements for Time and Frequency Laser-Based Measurements for Time and Frequency Domain Applications A Handbook Pasquale Maddaloni Marco Bellini Paolo De Natale CRC Press Taylor Si Francis Croup Boca Raton London New York CRC Press is

More information

Topics in Applied Physics Volume 1. Founded by Helmut K. V. Lotsch

Topics in Applied Physics Volume 1. Founded by Helmut K. V. Lotsch Topics in Applied Physics Volume 1 Founded by Helmut K. V. Lotsch Dye Lasers Edited by F. P. Schafer With Contributions by K. H. Drexhage T. W. Hansch E. P. lppen F. P. Schafer C. V. Shank B. B. Snavely

More information

Survey on Laser Spectroscopic Techniques for Condensed Matter

Survey on Laser Spectroscopic Techniques for Condensed Matter Survey on Laser Spectroscopic Techniques for Condensed Matter Coherent Radiation Sources for Small Laboratories CW: Tunability: IR Visible Linewidth: 1 Hz Power: μw 10W Pulsed: Tunabality: THz Soft X-ray

More information

PRINCIPLES OF PHYSICAL OPTICS

PRINCIPLES OF PHYSICAL OPTICS PRINCIPLES OF PHYSICAL OPTICS C. A. Bennett University of North Carolina At Asheville WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS Preface 1 The Physics of Waves 1 1.1 Introduction

More information

Wolfgang Demtroder. Molecular Physics. Theoretical Principles and Experimental Methods WILEY- VCH. WILEY-VCH Verlag GmbH & Co.

Wolfgang Demtroder. Molecular Physics. Theoretical Principles and Experimental Methods WILEY- VCH. WILEY-VCH Verlag GmbH & Co. Wolfgang Demtroder Molecular Physics Theoretical Principles and Experimental Methods WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA v Preface xiii 1 Introduction 1 1.1 Short Historical Overview 2 1.2 Molecular

More information

Linear and nonlinear spectroscopy

Linear and nonlinear spectroscopy Linear and nonlinear spectroscopy We ve seen that we can determine molecular frequencies and dephasing rates (for electronic, vibrational, or spin degrees of freedom) from frequency-domain or timedomain

More information

Molecular spectroscopy

Molecular spectroscopy Molecular spectroscopy Origin of spectral lines = absorption, emission and scattering of a photon when the energy of a molecule changes: rad( ) M M * rad( ' ) ' v' 0 0 absorption( ) emission ( ) scattering

More information

Chapter9. Amplification of light. Lasers Part 2

Chapter9. Amplification of light. Lasers Part 2 Chapter9. Amplification of light. Lasers Part 06... Changhee Lee School of Electrical and Computer Engineering Seoul National Univ. chlee7@snu.ac.kr /9 9. Stimulated emission and thermal radiation The

More information

Demtröder Atoms, Molecules and Photons

Demtröder Atoms, Molecules and Photons Demtröder Atoms, Molecules and Photons GRADUATE TEXTS IN PHYSICS Graduate Texts in Physics publishes core learning/teaching material for graduate- and advanced-level undergraduate courses on topics of

More information

Diode Lasers and Photonic Integrated Circuits

Diode Lasers and Photonic Integrated Circuits Diode Lasers and Photonic Integrated Circuits L. A. COLDREN S. W. CORZINE University of California Santa Barbara, California A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. NEW YORK / CHICHESTER

More information

UV-VIS Spectroscopy and Its Applications

UV-VIS Spectroscopy and Its Applications SPRINGER LABORATORY Heinz-Helmut Perkampus UV-VIS Spectroscopy and Its Applications Translated by H. Charlotte Grinter and Dr. T. L. Threlfall With 78 Figures and 21 Tables Springer -Ver lag Berlin Heidelberg

More information

Advanced Spectroscopy Laboratory

Advanced Spectroscopy Laboratory Advanced Spectroscopy Laboratory - Raman Spectroscopy - Emission Spectroscopy - Absorption Spectroscopy - Raman Microscopy - Hyperspectral Imaging Spectroscopy FERGIELAB TM Raman Spectroscopy Absorption

More information

Abstract... I. Acknowledgements... III. Table of Content... V. List of Tables... VIII. List of Figures... IX

Abstract... I. Acknowledgements... III. Table of Content... V. List of Tables... VIII. List of Figures... IX Abstract... I Acknowledgements... III Table of Content... V List of Tables... VIII List of Figures... IX Chapter One IR-VUV Photoionization Spectroscopy 1.1 Introduction... 1 1.2 Vacuum-Ultraviolet-Ionization

More information

Transmission Electron Microscopy

Transmission Electron Microscopy L. Reimer H. Kohl Transmission Electron Microscopy Physics of Image Formation Fifth Edition el Springer Contents 1 Introduction... 1 1.1 Transmission Electron Microscopy... 1 1.1.1 Conventional Transmission

More information

Modern optics Lasers

Modern optics Lasers Chapter 13 Phys 322 Lecture 36 Modern optics Lasers Reminder: Please complete the online course evaluation Last lecture: Review discussion (no quiz) LASER = Light Amplification by Stimulated Emission of

More information

Introduction to Modern Quantum Optics

Introduction to Modern Quantum Optics Introduction to Modern Quantum Optics Jin-Sheng Peng Gao-Xiang Li Huazhong Normal University, China Vfe World Scientific» Singapore* * NewJerseyL Jersey* London* Hong Kong IX CONTENTS Preface PART I. Theory

More information

Where are the Fringes? (in a real system) Div. of Amplitude - Wedged Plates. Fringe Localisation Double Slit. Fringe Localisation Grating

Where are the Fringes? (in a real system) Div. of Amplitude - Wedged Plates. Fringe Localisation Double Slit. Fringe Localisation Grating Where are the Fringes? (in a real system) Fringe Localisation Double Slit spatial modulation transverse fringes? everywhere or well localised? affected by source properties: coherence, extension Plane

More information

F. Elohim Becerra Chavez

F. Elohim Becerra Chavez F. Elohim Becerra Chavez Email:fbecerra@unm.edu Office: P&A 19 Phone: 505 277-2673 Lectures: Monday and Wednesday, 5:30-6:45 pm P&A Room 184. Textbook: Many good ones (see webpage) Lectures follow order

More information

F.G. Major. The Quantum Beat. The Physical Principles of Atomic Clocks. With 230 Illustrations. Springer

F.G. Major. The Quantum Beat. The Physical Principles of Atomic Clocks. With 230 Illustrations. Springer F.G. Major The Quantum Beat The Physical Principles of Atomic Clocks With 230 Illustrations Springer Contents Preface Chapter 1. Celestial and Mechanical Clocks 1 1.1 Cyclic Events in Nature 1 1.2 The

More information

A Guide to Experiments in Quantum Optics

A Guide to Experiments in Quantum Optics Hans-A. Bachor and Timothy C. Ralph A Guide to Experiments in Quantum Optics Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag CmbH Co. KGaA Contents Preface 1 Introduction 1.1 Historical

More information

PROBLEMS IN LASER PHYSICS

PROBLEMS IN LASER PHYSICS PROBLEMS IN LASER PHYSICS PROBLEMS IN LASER PHYSICS G. Cerullo, s. Longhi, M. Nisoli, s. Stagira, and o. Svelto Politecnico di Milano Milano, ltaly SPRINGER SCIENCE+BUSINESS MEDIA, LLC Library of Congress

More information

Distributed feedback semiconductor lasers

Distributed feedback semiconductor lasers Distributed feedback semiconductor lasers John Carroll, James Whiteaway & Dick Plumb The Institution of Electrical Engineers SPIE Optical Engineering Press 1 Preface Acknowledgments Principal abbreviations

More information

Vibrational Spectroscopy of Molecules on Surfaces

Vibrational Spectroscopy of Molecules on Surfaces Vibrational Spectroscopy of Molecules on Surfaces Edited by John T. Yates, Jr. University of Pittsburgh Pittsburgh, Pennsylvania and Theodore E. Madey National Bureau of Standards Gaithersburg, Maryland

More information

Figure 1 Relaxation processes within an excited state or the ground state.

Figure 1 Relaxation processes within an excited state or the ground state. Excited State Processes and Application to Lasers The technology of the laser (Light Amplified by Stimulated Emission of Radiation) was developed in the early 1960s. The technology is based on an understanding

More information

Nonlinear Optics. Second Editio n. Robert W. Boyd

Nonlinear Optics. Second Editio n. Robert W. Boyd Nonlinear Optics Second Editio n Robert W. Boyd Preface to the Second Edition Preface to the First Edition xiii xv 1. The Nonlinear Optical Susceptibility 1 1.1. Introduction to Nonlinear Optics 1 1.2.

More information

Answers to questions on exam in laser-based combustion diagnostics on March 10, 2006

Answers to questions on exam in laser-based combustion diagnostics on March 10, 2006 Answers to questions on exam in laser-based combustion diagnostics on March 10, 2006 1. Examples of advantages and disadvantages with laser-based combustion diagnostic techniques: + Nonintrusive + High

More information

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath Time resolved optical spectroscopy methods for organic photovoltaics Enrico Da Como Department of Physics, University of Bath Outline Introduction Why do we need time resolved spectroscopy in OPV? Short

More information

requency generation spectroscopy Rahul N

requency generation spectroscopy Rahul N requency generation spectroscopy Rahul N 2-11-2013 Sum frequency generation spectroscopy Sum frequency generation spectroscopy (SFG) is a technique used to analyze surfaces and interfaces. SFG was first

More information

Highenergy Nuclear Optics of Polarized Particles

Highenergy Nuclear Optics of Polarized Particles Highenergy Nuclear Optics of Polarized Particles Vladimir G. Baryshevsky Research Institute for Nuclear Problems Belarusian State University 1> World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI

More information

Rotational states and rotational transitions of molecules. Microwave spectroscopic methods

Rotational states and rotational transitions of molecules. Microwave spectroscopic methods Rotational states and rotational transitions of molecules Microwave spectroscopic methods Consequences of the BO approximation Within the BO approximation, the Schrödinger equation can be solved using

More information

Lecture 10. Lidar Effective Cross-Section vs. Convolution

Lecture 10. Lidar Effective Cross-Section vs. Convolution Lecture 10. Lidar Effective Cross-Section vs. Convolution q Introduction q Convolution in Lineshape Determination -- Voigt Lineshape (Lorentzian Gaussian) q Effective Cross Section for Single Isotope --

More information

Optical Characterization of Solids

Optical Characterization of Solids D. Dragoman M. Dragoman Optical Characterization of Solids With 184 Figures Springer 1. Elementary Excitations in Solids 1 1.1 Energy Band Structure in Crystalline Materials 2 1.2 k p Method 11 1.3 Numerical

More information

Rb, which had been compressed to a density of 1013

Rb, which had been compressed to a density of 1013 Modern Physics Study Questions for the Spring 2018 Departmental Exam December 3, 2017 1. An electron is initially at rest in a uniform electric field E in the negative y direction and a uniform magnetic

More information

Comments to Atkins: Physical chemistry, 7th edition.

Comments to Atkins: Physical chemistry, 7th edition. Comments to Atkins: Physical chemistry, 7th edition. Chapter 16: p. 483, Eq. (16.1). The definition that the wave number is the inverse of the wave length should be used. That is much smarter. p. 483-484.

More information

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations CONTENTS Preface Acknowledgements Symbols Abbreviations 1 INTRODUCTION 1.1 Scope of pulse EPR 1.2 A short history of pulse EPR 1.3 Examples of Applications 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon

More information

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment Harald Ibach Hans Lüth SOLID-STATE PHYSICS An Introduction to Theory and Experiment With 230 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents

More information

THE OBSERVATION AND ANALYSIS OF STELLAR PHOTOSPHERES

THE OBSERVATION AND ANALYSIS OF STELLAR PHOTOSPHERES THE OBSERVATION AND ANALYSIS OF STELLAR PHOTOSPHERES DAVID F. GRAY University of Western Ontario, London, Ontario, Canada CAMBRIDGE UNIVERSITY PRESS Contents Preface to the first edition Preface to the

More information

Principles of Lasers FIFTH EDITION

Principles of Lasers FIFTH EDITION Principles of Lasers FIFTH EDITION Principles of Lasers FIFTH EDITION Orazio Svelto Polytechnic Institute of Milan and National Research Council Milan, Italy Translated from Italian and edited by David

More information

X-Rays From Laser Plasmas

X-Rays From Laser Plasmas X-Rays From Laser Plasmas Generation and Applications I. C. E. TURCU CLRC Rutherford Appleton Laboratory, UK and J. B. DANCE JOHN WILEY & SONS Chichester New York Weinheim Brisbane Singapore Toronto Contents

More information

List of Publications Yury Kronn, Ph. D.

List of Publications Yury Kronn, Ph. D. List of Publications Yury Kronn, Ph. D. 1. Electromagnetic Waves in Systems with Dispersion and Variable Parameters*. Soviet Journal of Radiophysics v.3, p.818 (1960) 2. Generator in Decimetre Wavelength

More information

The Plasma Phase. Chapter 1. An experiment - measure and understand transport processes in a plasma. Chapter 2. An introduction to plasma physics

The Plasma Phase. Chapter 1. An experiment - measure and understand transport processes in a plasma. Chapter 2. An introduction to plasma physics The Plasma Phase Chapter 1. An experiment - measure and understand transport processes in a plasma Three important vugraphs What we have just talked about The diagnostics Chapter 2. An introduction to

More information

Optical Spectroscopy of Advanced Materials

Optical Spectroscopy of Advanced Materials Phys 590B Condensed Matter Physics: Experimental Methods Optical Spectroscopy of Advanced Materials Basic optics, nonlinear and ultrafast optics Jigang Wang Department of Physics, Iowa State University

More information

Lecture cycle: Spectroscopy and Optics

Lecture cycle: Spectroscopy and Optics Lecture cycle: Spectroscopy and Optics Thu. 13:00-15:00 / Room 1.003 15.11.2017 (Staudinger) Mischa Bonn Light-matter interaction overview I 30.11.2017 Mischa Bonn Light-matter interaction overview II

More information

CHAPTER 3 RESULTS AND DISCUSSION

CHAPTER 3 RESULTS AND DISCUSSION CHAPTER 3 RESULTS AND DISCUSSION 3.1 CHAPTER OUTLINE This chapter presents the data obtained from the investigation of each of the following possible explanations: (1) Experimental artifacts. (2) Direct

More information

Chemistry Instrumental Analysis Lecture 5. Chem 4631

Chemistry Instrumental Analysis Lecture 5. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 5 Light Amplification by Stimulated Emission of Radiation High Intensities Narrow Bandwidths Coherent Outputs Applications CD/DVD Readers Fiber Optics Spectroscopy

More information

Multi-cycle THz pulse generation in poled lithium niobate crystals

Multi-cycle THz pulse generation in poled lithium niobate crystals Laser Focus World April 2005 issue (pp. 67-72). Multi-cycle THz pulse generation in poled lithium niobate crystals Yun-Shik Lee and Theodore B. Norris Yun-Shik Lee is an assistant professor of physics

More information

Günter Zschornack Handbook of X-Ray Data

Günter Zschornack Handbook of X-Ray Data Günter Zschornack Handbook of X-Ray Data Günter Zschornack Handbook of X-Ray Data With 113 Figures and 161 Tables 123 Ass.-Prof. Dr. rer. nat. habil. Günter Zschornack Technische Universität Dresden Institut

More information

Contents Classical and Quantum Interference and Coherence Quantum Interference in Atomic Systems: Mathematical Formalism

Contents Classical and Quantum Interference and Coherence Quantum Interference in Atomic Systems: Mathematical Formalism 1 Classical and Quantum Interference and Coherence... 1 1.1 ClassicalInterferenceandOpticalInterferometers... 2 1.1.1 Young sdoubleslitinterferometer... 2 1.1.2 First-OrderCoherence... 4 1.1.3 WelcherWegProblem...

More information

Application of IR Raman Spectroscopy

Application of IR Raman Spectroscopy Application of IR Raman Spectroscopy 3 IR regions Structure and Functional Group Absorption IR Reflection IR Photoacoustic IR IR Emission Micro 10-1 Mid-IR Mid-IR absorption Samples Placed in cell (salt)

More information

Fourier Transform Infrared. Spectrometry

Fourier Transform Infrared. Spectrometry Fourier Transform Infrared. Spectrometry Second Editio n PETER R. GRIFFITH S JAMES A. de HASETH PREFACE x v CHAPTER 1 INTRODUCTION TO VIBRATIONAL SPECTROSCOPY 1 1.1. Introduction 1 1.2. Molecular Vibrations

More information

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era Peter van der Straten Universiteit Utrecht, The Netherlands and Harold Metcalf State University of New York, Stony Brook This

More information

Laserphysik. Prof. Yong Lei & Dr. Yang Xu. Fachgebiet Angewandte Nanophysik, Institut für Physik

Laserphysik. Prof. Yong Lei & Dr. Yang Xu. Fachgebiet Angewandte Nanophysik, Institut für Physik Laserphysik Prof. Yong Lei & Dr. Yang Xu Fachgebiet Angewandte Nanophysik, Institut für Physik Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de Office: Heisenbergbau V 202, Unterpörlitzer Straße

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Important announcements Homework #1 is due. Homework #2 is assigned, due

More information

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS Jin Zhong Zhang University of California, Santa Cruz, USA TECHNISCHE INFORMATIONSBIBLIOTHEK Y World Scientific NEW JERSEY. t'on.don SINGAPORE «'BEIJING

More information

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA Luminescence Spectroscopy of Semiconductors IVAN PELANT Institute ofphysics, v.v.i. Academy ofsciences of the Czech Republic, Prague JAN VALENTA Department of Chemical Physics and Optics Charles University,

More information

Engineering Medical Optics BME136/251 Winter 2017

Engineering Medical Optics BME136/251 Winter 2017 Engineering Medical Optics BME136/251 Winter 2017 Monday/Wednesday 2:00-3:20 p.m. Beckman Laser Institute Library, MSTB 214 (lab) Teaching Assistants (Office hours: Every Tuesday at 2pm outside of the

More information

Diagnósticos em Plasmas

Diagnósticos em Plasmas Tecnologia a Plasma para o Processamento de Materiais Diagnósticos em Plasmas Diagnósticos Ópticos João Santos Sousa, nº50901 Semestre Inverno 2004/2005 21 de Janeiro de 2005, 9h-10h, sala F8 Contents

More information

Springer Berlin Heidelberg New York Barcelona Budapest Hong Kong London Milan Paris Santa Clara Singapore Tokyo

Springer Berlin Heidelberg New York Barcelona Budapest Hong Kong London Milan Paris Santa Clara Singapore Tokyo Springer Berlin Heidelberg New York Barcelona Budapest Hong Kong London Milan Paris Santa Clara Singapore Tokyo J. M. RUeger Electronic Distance Measurement An Introduction Fourth Edition With 56 Figures

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. p. 10-0 10..

More information

Spectroscopy. Practical Handbook of. J. W. Robinson, Ph.D., D.Sc, F.R.C.S. Department of Chemistry Louisiana State University Baton Rouge, Louisiana

Spectroscopy. Practical Handbook of. J. W. Robinson, Ph.D., D.Sc, F.R.C.S. Department of Chemistry Louisiana State University Baton Rouge, Louisiana Practical Handbook of Spectroscopy Edited by J. W. Robinson, Ph.D., D.Sc, F.R.C.S. Department of Chemistry Louisiana State University Baton Rouge, Louisiana CRC Press Boca Raton Ann Arbor Boston TABLE

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements HW #5 due today April 11 th class will be at 2PM instead of

More information

Chemistry 524--Final Exam--Keiderling May 4, :30 -?? pm SES

Chemistry 524--Final Exam--Keiderling May 4, :30 -?? pm SES Chemistry 524--Final Exam--Keiderling May 4, 2011 3:30 -?? pm -- 4286 SES Please answer all questions in the answer book provided. Calculators, rulers, pens and pencils are permitted. No open books or

More information

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful Main Requirements of the Laser Optical Resonator Cavity Laser Gain Medium of 2, 3 or 4 level types in the Cavity Sufficient means of Excitation (called pumping) eg. light, current, chemical reaction Population

More information

Applications of Nonlinear Fiber Optics. Second Edition

Applications of Nonlinear Fiber Optics. Second Edition Applications of Nonlinear Fiber Optics Second Edition Applications of Nonlinear Fiber Optics Second Edition GOVIND P. AGRAWAL The Institute of Optics University of Rochester Rochester, New York AMSTERDAM

More information

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Richard Miles and Arthur Dogariu Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Workshop on Oxygen Plasma Kinetics Sept 20, 2016 Financial support: ONR and MetroLaser

More information

Phys 2310 Fri. Dec. 12, 2014 Today s Topics. Begin Chapter 13: Lasers Reading for Next Time

Phys 2310 Fri. Dec. 12, 2014 Today s Topics. Begin Chapter 13: Lasers Reading for Next Time Phys 2310 Fri. Dec. 12, 2014 Today s Topics Begin Chapter 13: Lasers Reading for Next Time 1 Reading this Week By Fri.: Ch. 13 (13.1, 13.3) Lasers, Holography 2 Homework this Week No Homework this chapter.

More information

Multidimensional femtosecond coherence spectroscopy for study of the carrier dynamics in photonics materials

Multidimensional femtosecond coherence spectroscopy for study of the carrier dynamics in photonics materials International Workshop on Photonics and Applications. Hanoi, Vietnam. April 5-8,24 Multidimensional femtosecond coherence spectroscopy for study of the carrier dynamics in photonics materials Lap Van Dao,

More information

MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont

MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont McGRAW-HILL, INC. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico Milan Montreal New Delhi

More information

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008 Precision Interferometry with a Bose-Einstein Condensate Cass Sackett Research Talk 17 October 2008 Outline Atom interferometry Bose condensates Our interferometer One application What is atom interferometry?

More information

Optics, Optoelectronics and Photonics

Optics, Optoelectronics and Photonics Optics, Optoelectronics and Photonics Engineering Principles and Applications Alan Billings Emeritus Professor, University of Western Australia New York London Toronto Sydney Tokyo Singapore v Contents

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

DIODE LASER SPECTROSCOPY

DIODE LASER SPECTROSCOPY DIODE LASER SPECTROSCOPY Spectroscopy, and Much More, Using Modern Optics Observe Doppler-Free Spectroscopy of Rubidium Gas Michelson Interferometer Used to Calibrate Laser Sweep Observe Resonant Faraday

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept.

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept. Spectrum of Electromagnetic Radiation Electromagnetic radiation is light. Different energy light interacts with different motions in molecules. CHEM*344 Chemical Instrumentation Topic 7 Spectrometry Radiofrequency

More information

Lasers & Holography. Ulrich Heintz Brown University. 4/5/2016 Ulrich Heintz - PHYS 1560 Lecture 10 1

Lasers & Holography. Ulrich Heintz Brown University. 4/5/2016 Ulrich Heintz - PHYS 1560 Lecture 10 1 Lasers & Holography Ulrich Heintz Brown University 4/5/2016 Ulrich Heintz - PHYS 1560 Lecture 10 1 Lecture schedule Date Topic Thu, Jan 28 Introductory meeting Tue, Feb 2 Safety training Thu, Feb 4 Lab

More information

Stimulated Emission Devices: LASERS

Stimulated Emission Devices: LASERS Stimulated Emission Devices: LASERS 1. Stimulated Emission and Photon Amplification E 2 E 2 E 2 hυ hυ hυ In hυ Out hυ E 1 E 1 E 1 (a) Absorption (b) Spontaneous emission (c) Stimulated emission The Principle

More information

A tutorial on meta-materials and THz technology

A tutorial on meta-materials and THz technology p.1/49 A tutorial on meta-materials and THz technology Thomas Feurer thomas.feurer@iap.unibe.ch Institute of Applied Physics Sidlerstr. 5, 3012 Bern Switzerland p.2/49 Outline Meta-materials Super-lenses

More information

Lecture 11. Classification of Lidar by Topics

Lecture 11. Classification of Lidar by Topics Lecture 11. Classification of Lidar by Topics Effective cross section for resonance fluorescence Various lidar classifications What are topical lidars and why? Temperature techniques Wind techniques Aerosol

More information

Ultraviolet-Visible and Infrared Spectrophotometry

Ultraviolet-Visible and Infrared Spectrophotometry Ultraviolet-Visible and Infrared Spectrophotometry Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451

More information

What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light

What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light amplification) Optical Resonator Cavity (greatly increase

More information