Electronic structure of energy materials measured by synchrotron radia5on

Size: px
Start display at page:

Download "Electronic structure of energy materials measured by synchrotron radia5on"

Transcription

1 Electronic structure of energy materials Outline Electronic structure of energy materials measured by synchrotron radia5on Eamon McDermo,, M.Sc Candidate Solids4Fun Hearing - 18 June 2012 Outline Experimental techniques The Beamteam / Synchrotron Radia5on / X- ray Spectroscopies Photocatalyst materials Intro / GaN:ZnO / poly(triazine imide) (PTI) Other experiments Li XANES / CdZnTe XANES/XRF/Laue XRD / Novel Ferrocene XANES

2 Electronic structure of energy materials The Beamteam The Beamteam The materials research group in condensed mauer at the University of Saskatchewan, Canada We use synchrotron radia5on to study electronic structure of novel materials Biomaterials, high TC superconductors, energy materials, spintronic materials and other transi5on metal compounds

3 Electronic structure of energy materials The Beamteam The Beamteam

4 Electronic structure of energy materials Synchrotron Radiation Synchrotron Radia5on An RF cavity is synchronized with the orbit of electrons travelling around a booster ring, accelera5ng the beam to rela5vis5c speeds (CLS: 2.9 GeV, c) The beam is steered through magnets, releasing broadband radia5on Radia5on is coherent, polarized, highly tunable and extremely brilliant ( photons per second on a sub- mm spot a5er monochromater) Compact rings such as Advanced Light Source and Canadian Light Source are bright at soa X- Ray wavelengths (under 2000 ev)

5 Electronic structure of energy materials Synchrotron Radiation Synchrotron Radia5on Brilliance allows samples to be targeted with highly monochroma5c X- ray beams Rowland circle geometry discards flux in exchange for energy resolu5on For example, a good emission measurements can end up with < 5000 counts per second on a CCD Emission spectrometer configura5on Typical spherical gra5ng monochromator configura5on

6 Electronic structure of energy materials X-ray Spectroscopies X- ray Spectroscopies X- rays can be used to probe the occupied and unoccupied states that bound a semiconductor band gap Energy Vacuum Level Conduc5on Band Valence Band Core level

7 Electronic structure of energy materials X-ray Spectroscopies XPS X- rays can be used to probe the occupied and unoccupied states that bound a semiconductor band gap X- ray Photoelectron Spectroscopy (XPS) Energy e - out Vacuum Level Conduc5on Band Valence Band hνin Core level

8 Electronic structure of energy materials X-ray Spectroscopies XANES X- rays can be used to probe the occupied and unoccupied states that bound a semiconductor band gap X- ray Photoelectron Spectroscopy (XPS) X- ray Near Edge Absorp5on Spectroscopy (XANES) Energy hνin hν or e - out I(Ein) Vacuum Level Ein Conduc5on Band Valence Band Core level

9 Electronic structure of energy materials X-ray Spectroscopies XES X- rays can be used to probe the occupied and unoccupied states that bound a semiconductor band gap X- ray Photoelectron Spectroscopy (XPS) X- ray Near Edge Absorp5on Spectroscopy (XANES) X- ray Emission Spectroscopy (XES) Energy hνin hνout Vacuum Level Conduc5on Band Valence Band Eout I(Eout) Core level

10 Electronic structure of energy materials X-ray Spectroscopies X- ray Spectroscopies Selec5on rules: Δl ± 1 in dipole approxima5on: s p d Spectroscopic intensi5es scale with final state density of states (DOS) according to Fermi s golden rule: I(E) Σ <Ψi A(r) p Ψf> ² δ(e- Ef) Monochroma5c X- ray spectroscopy therefore probes DOS subject to broadening (core- hole life5me, equipment, etc) Final state rule: XANES and XPS are perturbed by a core hole XES probes ground state DOS (very few techniques do!)

11 Electronic structure of energy materials Photocatalyst Materials Photocatalyst Materials My interest is photocataly5c materials Vacuum Level Not true catalysts, but produce photocurrent in order to drive redox reac5ons Water splirng: requires 1.23 ev split + over- poten5al 4.44 ev 1.23 ev 2 ev Conduc5on Band 2H + H2 2O 2- O2 Valence Band Solar spectrum is centred at 2.5 ev, aim below this

12 Electronic structure of energy materials GaN:ZnO GaN:ZnO ZnO has a conduc5on band posi5on that can photo- reduce H + as part of a water- splirng reac5on Combining ZnO with GaN (both wurtzite structures) has been shown to decrease material s band gap from ~3.3 ev to between ev Is a new material phase forming with a reduced band gap? Proposed GaZn oxynitride superlarce structure

13 Electronic structure of energy materials GaN:ZnO GaN:ZnO Energy XES and XANES reproduce the observed band gap However XES is surprisingly featureless for a quaternary system valence band Valence Band Conduc5on Band Vacuum Level Measurements most closely resemble pure GaN and ZnO with shiaed bands

14 Electronic structure of energy materials GaN:ZnO GaN:ZnO E. J. McDermott, E. Z. Kurmaev, T. D. Boyko, L. D. Finkelstein, R. J. Green, K. Maeda, K. Domen, and A. Moewes, Structural and Band Gap Investigation of GaN:ZnO Heterojunction Solid Solution Photocatalyst Probed by Soft X-ray Spectroscopy, Journal of Physical Chemistry C, 116 (14), , (2012).

15 Electronic structure of energy materials PTI poly(triazine- imide) - PTI Planar carbon- nitride turns out to also photo- split water. A non metal catalyst. 2.7 ev band gap. Working on a related material with apparent lower band gap (PTI) Difficult material problem: Wang, X., Maeda, K., et al.. Nature materials, 8(1), (2009) Tiny sample of material (< 1g) XRD gives C- N structure Li posi5ons all equally probable No H informa5on low reflec5vity defeats UV/Vis reflectance Inequivalent N sites contribu5ng to deconvolute in XES

16 Electronic structure of energy materials PTI poly(triazine- imide) - PTI

17 Electronic structure of energy materials Other Experiments Other Experiments... Cu/Zn defect in CdZnTe single crystal Redlen technologies, Canada Comparison of Li absorp5on data (XAS vs XRS) LBNL & Stanford SLAC, USA K 1s XAS of strained ferrocene monomers in solu5on U of Saskatchewan, Canada

18 Electronic structure of energy materials Fin Acknowledgements / Ques5ons Prof. Alex Moewes and the rest of the Beam Team PTI collabora5on - Eva Wirnhier, Dr. Wolfgang Schnick (Ludwig- Maximilians- Universität, München) GaN:ZnO collabora5on - Dr. Ernst Kurmaev (Russian Academy of Sciences - Ins5tute of Metal Physics), Dr. Kazuhiko Maeda, Dr. Kazunari Domen (U. of Tokyo) FUNding - NSERC, the Canada Research Chair program and the U. of Saskatchewan Graduate Teaching Fellowship program Compu5ng Resources - Westgrid and Compute Canada Facili5es - Advanced Light Source, Canadian Light Source

19 Electronic structure of energy materials Bonus video Photocatalysis in Ac5on

Inelastic soft x-ray scattering, fluorescence and elastic radiation

Inelastic soft x-ray scattering, fluorescence and elastic radiation Inelastic soft x-ray scattering, fluorescence and elastic radiation What happens to the emission (or fluorescence) when the energy of the exciting photons changes? The emission spectra (can) change. One

More information

Core-Level spectroscopy. Experiments and first-principles calculations. Tomoyuki Yamamoto. Waseda University, Japan

Core-Level spectroscopy. Experiments and first-principles calculations. Tomoyuki Yamamoto. Waseda University, Japan Core-Level spectroscopy Experiments and first-principles calculations Tomoyuki Yamamoto Waseda University, Japan 22 nd WIEN2k workshop Jun. 26 th, 2015@Singapore Outline What is core-level spectroscopy

More information

Soft X-Ray Spectroscopy with synchrotron radiation: A powerful tool for Materials Research

Soft X-Ray Spectroscopy with synchrotron radiation: A powerful tool for Materials Research Soft X-Ray Spectroscopy with synchrotron radiation: A powerful tool for Materials Research Alexander Moewes moewes@usask.ca University of Saskatchewan Department of Physics and Engineering Physics Engineering

More information

Core Level Spectroscopies

Core Level Spectroscopies Core Level Spectroscopies Spectroscopies involving core levels are element-sensitive, and that makes them very useful for understanding chemical bonding, as well as for the study of complex materials.

More information

Probing Matter: Diffraction, Spectroscopy and Photoemission

Probing Matter: Diffraction, Spectroscopy and Photoemission Probing Matter: Diffraction, Spectroscopy and Photoemission Anders Nilsson Stanford Synchrotron Radiation Laboratory Why X-rays? VUV? What can we hope to learn? 1 Photon Interaction Incident photon interacts

More information

X-ray Absorption Spectroscopy. Kishan K. Sinha Department of Physics and Astronomy University of Nebraska-Lincoln

X-ray Absorption Spectroscopy. Kishan K. Sinha Department of Physics and Astronomy University of Nebraska-Lincoln X-ray Absorption Spectroscopy Kishan K. Sinha Department of Physics and Astronomy University of Nebraska-Lincoln Interaction of X-rays with matter Incident X-ray beam Fluorescent X-rays (XRF) Scattered

More information

X-Ray Spectroscopy at LCLS

X-Ray Spectroscopy at LCLS LCLS proposal preparation workshop for experiments at XPP, June 21, 2008, SLAC, Menlo Park, CA ħω ħω e - X-Ray Spectroscopy at LCLS Uwe Bergmann SSRL Stanford Linear Accelerator Center bergmann@slac.stanford.edu

More information

Photon Interaction. Spectroscopy

Photon Interaction. Spectroscopy Photon Interaction Incident photon interacts with electrons Core and Valence Cross Sections Photon is Adsorbed Elastic Scattered Inelastic Scattered Electron is Emitted Excitated Dexcitated Stöhr, NEXAPS

More information

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies.

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. PY482 Lecture. February 28 th, 2013 Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. Kevin E. Smith Department of Physics Department of Chemistry Division

More information

How Does It All Work? A Summary of the IDEAS Beamline at the Canadian Light Source

How Does It All Work? A Summary of the IDEAS Beamline at the Canadian Light Source How Does It All Work? A Summary of the IDEAS Beamline at the Canadian Light Source What Makes Up The Canadian Light Source? 4. Storage Ring 5. Synchrotron Light 6. Beamline 1. Electron Gun 2. Linear Accelerator

More information

Advanced Photon-In Photon-Out Hard X-ray Spectroscopy

Advanced Photon-In Photon-Out Hard X-ray Spectroscopy FLS 2010, ICFA Beam Dynamics Workshop, SLAC, Menlo Park, CA, March 2, 2010 ħω ħω e - Advanced Photon-In Photon-Out Hard X-ray Spectroscopy Uwe Bergmann Linac Coherent Light Source SLAC National Accelerator

More information

Two-dimensional lattice

Two-dimensional lattice 1 Two-dimensional lattice a 1 *, k x k x = 0, k y = 0 X M a 2, y a 1, x Γ X a 2 *, k y k x = 0.5 a 1 *, k y = 0 k x = 0, k y = 0.5 a 2 * Γ k x = 0.5 a 1 *, k y = 0.5 a 2 * X X M k x = 0.25 a 1 *, k y =

More information

Investigation of Ti2AlC and TiC by soft x-ray emission spectroscopy

Investigation of Ti2AlC and TiC by soft x-ray emission spectroscopy Investigation of Ti2AlC and TiC by soft x-ray emission spectroscopy Martin Magnuson Linköping University Post Print N.B.: When citing this work, cite the original article. Original Publication: Martin

More information

Two-dimensional lattice

Two-dimensional lattice Two-dimensional lattice a 1 *, k x k x =0,k y =0 X M a 2, y Γ X a 2 *, k y a 1, x Reciprocal lattice Γ k x = 0.5 a 1 *, k y =0 k x = 0, k y = 0.5 a 2 * k x =0.5a 1 *, k y =0.5a 2 * X X M k x = 0.25 a 1

More information

X-Ray Photoelectron Spectroscopy (XPS)

X-Ray Photoelectron Spectroscopy (XPS) X-Ray Photoelectron Spectroscopy (XPS) Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Fulmer 261A Electron Spectroscopy for Chemical Analysis (ESCA) The basic principle of the photoelectric effect

More information

Electron Spectroscopy

Electron Spectroscopy Electron Spectroscopy Photoelectron spectroscopy is based upon a single photon in/electron out process. The energy of a photon is given by the Einstein relation : E = h ν where h - Planck constant ( 6.62

More information

X-ray Spectroscopy Theory Lectures

X-ray Spectroscopy Theory Lectures TIMES Lecture Series SIMES-SLAC-Stanford Winter, 2017 X-ray Spectroscopy Theory Lectures J. J. Rehr I. Introduction to the Theory of X-ray spectra II. Real-space Green's function Theory and FEFF III. Inelastic

More information

Lecture 5. X-ray Photoemission Spectroscopy (XPS)

Lecture 5. X-ray Photoemission Spectroscopy (XPS) Lecture 5 X-ray Photoemission Spectroscopy (XPS) 5. Photoemission Spectroscopy (XPS) 5. Principles 5.2 Interpretation 5.3 Instrumentation 5.4 XPS vs UV Photoelectron Spectroscopy (UPS) 5.5 Auger Electron

More information

Review of Optical Properties of Materials

Review of Optical Properties of Materials Review of Optical Properties of Materials Review of optics Absorption in semiconductors: qualitative discussion Derivation of Optical Absorption Coefficient in Direct Semiconductors Photons When dealing

More information

Angle-Resolved Two-Photon Photoemission of Mott Insulator

Angle-Resolved Two-Photon Photoemission of Mott Insulator Angle-Resolved Two-Photon Photoemission of Mott Insulator Takami Tohyama Institute for Materials Research (IMR) Tohoku University, Sendai Collaborators IMR: H. Onodera, K. Tsutsui, S. Maekawa H. Onodera

More information

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK Soft X-ray Physics Overview of research in Prof. Tonner s group Introduction to synchrotron radiation physics Photoemission spectroscopy: band-mapping and photoelectron diffraction Magnetic spectroscopy

More information

PHOTOCATALYTIC DEGRADATION STUDIES OF POLYANILINE BASED ZnO-Al 2 O 3 NANOCOMPOSITE

PHOTOCATALYTIC DEGRADATION STUDIES OF POLYANILINE BASED ZnO-Al 2 O 3 NANOCOMPOSITE PHOTOCATALYTIC DEGRADATION STUDIES OF POLYANILINE BASED ZnO-Al 2 O 3 NANOCOMPOSITE Baiju V 1, Dedhila Devadathan 2, Biju R 3, Raveendran R 4 Nanoscience Research Laboratory, Department of Physics, Sree

More information

Near-surface regions of chalcopyrite (CuFeS 2 ) studied using XPS, HAXPES, XANES and DFT

Near-surface regions of chalcopyrite (CuFeS 2 ) studied using XPS, HAXPES, XANES and DFT 2016 International Conference Synchrotron and Free electron laser Radiation: generation and application, Novosibirsk Near-surface regions of chalcopyrite (CuFeS 2 ) studied using XPS, HAXPES, XANES and

More information

LASER. Light Amplification by Stimulated Emission of Radiation

LASER. Light Amplification by Stimulated Emission of Radiation LASER Light Amplification by Stimulated Emission of Radiation Laser Fundamentals The light emitted from a laser is monochromatic, that is, it is of one color/wavelength. In contrast, ordinary white light

More information

Film Characterization Tutorial G.J. Mankey, 01/23/04. Center for Materials for Information Technology an NSF Materials Science and Engineering Center

Film Characterization Tutorial G.J. Mankey, 01/23/04. Center for Materials for Information Technology an NSF Materials Science and Engineering Center Film Characterization Tutorial G.J. Mankey, 01/23/04 Theory vs. Experiment A theory is something nobody believes, except the person who made it. An experiment is something everybody believes, except the

More information

JABLONSKI DIAGRAM 2/15/16

JABLONSKI DIAGRAM 2/15/16 INDICATE THE EXCITED AND GROUND SINGLET AND TRIPLET STATES. INDICATE THE FOLLOWING TRANSITIONS: ABSORPTION, FLUORESCENCE, PHOSPHORESCENCE, NONRADIATIVE DECAY, INTERNAL CONVERSION AND INTERSYSTEM CROSSING.

More information

Resonant Inelastic X-ray Scattering on elementary excitations

Resonant Inelastic X-ray Scattering on elementary excitations Resonant Inelastic X-ray Scattering on elementary excitations Jeroen van den Brink Ament, van Veenendaal, Devereaux, Hill & JvdB Rev. Mod. Phys. 83, 705 (2011) Autumn School in Correlated Electrons Jülich

More information

Laser-driven undulator source

Laser-driven undulator source Laser-driven undulator source Matthias Fuchs, R. Weingartner, A.Maier, B. Zeitler, S. Becker, D. Habs and F. Grüner Ludwig-Maximilians-Universität München A.Popp, Zs. Major, J. Osterhoff, R. Hörlein, G.

More information

Characteristic features and societyaccountability. Synchrotron Radiation Facility. (Tohoku Ring: SLiT-J)

Characteristic features and societyaccountability. Synchrotron Radiation Facility. (Tohoku Ring: SLiT-J) Characteristic features and societyaccountability of a new plan for the Tohoku Synchrotron Radiation Facility (Tohoku Ring: SLiT-J) Synchrotron Light in Tohoku,Japan January, 2014 Tohoku synchrotron radiation

More information

X-Ray Emission Spectrometer Design with Single-Shot. Pump-Probe and Resonant Excitation Capabilities. Katherine Spoth

X-Ray Emission Spectrometer Design with Single-Shot. Pump-Probe and Resonant Excitation Capabilities. Katherine Spoth X-Ray Emission Spectrometer Design with Single-Shot Pump-Probe and Resonant Excitation Capabilities Katherine Spoth Office of Science, Science Undergraduate Laboratory Internship (SULI) State University

More information

Needle cathodes for high-brightness beams. Chase Boulware Jonathan Jarvis Heather Andrews Charlie Brau

Needle cathodes for high-brightness beams. Chase Boulware Jonathan Jarvis Heather Andrews Charlie Brau Needle cathodes for high-brightness beams Chase Boulware Jonathan Jarvis Heather Andrews Charlie Brau Outline of the talk What is brightness? Definition Sources Why is brightness important? Light sources

More information

3. Synchrotrons. Synchrotron Basics

3. Synchrotrons. Synchrotron Basics 1 3. Synchrotrons Synchrotron Basics What you will learn about 2 Overview of a Synchrotron Source Losing & Replenishing Electrons Storage Ring and Magnetic Lattice Synchrotron Radiation Flux, Brilliance

More information

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960 Introduction to X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a widely used technique to investigate

More information

PHOTOELECTRON SPECTROSCOPY IN AIR (PESA)

PHOTOELECTRON SPECTROSCOPY IN AIR (PESA) PHOTOELECTRON SPECTROSCOPY IN AIR (PESA) LEADERS IN GAS DETECTION Since 1977 Model AC-3 Features: Atmospheric pressure operation (unique in the world) Estimate work function, ionization potential, density

More information

PLS-II s STXM and its application activities

PLS-II s STXM and its application activities 1 PLS-II s STXM and its application activities Hyun-Joon Shin Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Korea shj001@postech.ac.kr Two accelerators for x-rays...

More information

X-Ray Photoelectron Spectroscopy (XPS)

X-Ray Photoelectron Spectroscopy (XPS) X-Ray Photoelectron Spectroscopy (XPS) Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Electron Spectroscopy for Chemical Analysis (ESCA) The basic principle of the photoelectric effect was enunciated

More information

Engineering - CLS Day. Thomas Ellis Director of Research Canadian Light Source

Engineering - CLS Day. Thomas Ellis Director of Research Canadian Light Source Engineering - CLS Day Thomas Ellis Director of Research Canadian Light Source E-gun & Linear Accelerator 250 MeV Canadian Light Source Transfer Line & Booster Ring Commissioned Storage Ring 2.9 GeV 200

More information

Energy Spectroscopy. Ex.: Fe/MgO

Energy Spectroscopy. Ex.: Fe/MgO Energy Spectroscopy Spectroscopy gives access to the electronic properties (and thus chemistry, magnetism,..) of the investigated system with thickness dependence Ex.: Fe/MgO Fe O Mg Control of the oxidation

More information

Light Source I. Takashi TANAKA (RIKEN SPring-8 Center) Cheiron 2012: Light Source I

Light Source I. Takashi TANAKA (RIKEN SPring-8 Center) Cheiron 2012: Light Source I Light Source I Takashi TANAKA (RIKEN SPring-8 Center) Light Source I Light Source II CONTENTS Introduction Fundamentals of Light and SR Overview of SR Light Source Characteristics of SR (1) Characteristics

More information

SLS Symposium on X-Ray Instrumentation

SLS Symposium on X-Ray Instrumentation SLS Symposium on X-Ray Instrumentation Tuesday, December 7, 2010 10:00 to 12:15, WBGB/019 10:00 The optics layout of the PEARL beamline P. Oberta, U. Flechsig and M. Muntwiler 10:30 Instrumentation for

More information

An Adventure in Marrying Laser Arts and Accelerator Technologies

An Adventure in Marrying Laser Arts and Accelerator Technologies An Adventure in Marrying Laser Arts and Accelerator Technologies Dao Xiang Beam Physics Dept, SLAC, Stanford University Feb-28-2012 An example sample Probe (electron) Pump (laser) Typical pump-probe experiment

More information

Synchrotron radiation: A charged particle constrained to move in curved path experiences a centripetal acceleration. Due to it, the particle radiates

Synchrotron radiation: A charged particle constrained to move in curved path experiences a centripetal acceleration. Due to it, the particle radiates Synchrotron radiation: A charged particle constrained to move in curved path experiences a centripetal acceleration. Due to it, the particle radiates energy according to Maxwell equations. A non-relativistic

More information

Quantum Condensed Matter Physics Lecture 12

Quantum Condensed Matter Physics Lecture 12 Quantum Condensed Matter Physics Lecture 12 David Ritchie QCMP Lent/Easter 2016 http://www.sp.phy.cam.ac.uk/drp2/home 12.1 QCMP Course Contents 1. Classical models for electrons in solids 2. Sommerfeld

More information

Ultrafast Single-Shot X-Ray Emission Spectrometer Design. Katherine Spoth

Ultrafast Single-Shot X-Ray Emission Spectrometer Design. Katherine Spoth Ultrafast Single-Shot X-Ray Emission Spectrometer Design Katherine Spoth O ce of Science, Science Undergraduate Laboratory Internship (SULI) State University of New York at Bu alo SLAC National Accelerator

More information

2. X-ray Sources 2.1 Electron Impact X-ray Sources - Types of X-ray Source - Bremsstrahlung Emission - Characteristic Emission

2. X-ray Sources 2.1 Electron Impact X-ray Sources - Types of X-ray Source - Bremsstrahlung Emission - Characteristic Emission . X-ray Sources.1 Electron Impact X-ray Sources - Types of X-ray Source - Bremsstrahlung Emission - Characteristic Emission. Synchrotron Radiation Sources - Introduction - Characteristics of Bending Magnet

More information

Supplementary Information

Supplementary Information Supplementary Information In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants Hefeng Cheng, Baibiao Huang*, Peng Wang, Zeyan Wang, Zaizhu

More information

X-ray Photoelectron Spectroscopy (XPS)

X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS) As part of the course Characterization of Catalysts and Surfaces Prof. Dr. Markus Ammann Paul Scherrer Institut markus.ammann@psi.ch Resource for further reading:

More information

X-ray photoelectron spectroscopy - An introduction

X-ray photoelectron spectroscopy - An introduction X-ray photoelectron spectroscopy - An introduction Spyros Diplas spyros.diplas@sintef.no spyros.diplas@smn.uio.no SINTEF Materials & Chemistry, Materials Physics -Oslo & Centre of Materials Science and

More information

Advanced Lab Course. X-Ray Photoelectron Spectroscopy 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT Qualitative analysis Chemical Shifts 7

Advanced Lab Course. X-Ray Photoelectron Spectroscopy 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT Qualitative analysis Chemical Shifts 7 Advanced Lab Course X-Ray Photoelectron Spectroscopy M210 As of: 2015-04-01 Aim: Chemical analysis of surfaces. Content 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT 3 3.1 Qualitative analysis 6 3.2 Chemical

More information

Bonds in molecules are formed by the interactions between electrons.

Bonds in molecules are formed by the interactions between electrons. CHEM 2060 Lecture 6: Electrostatic Interactions L6-1 PART TWO: Electrostatic Interactions In the first section of this course, we were more concerned with structural aspects of molecules. In this section

More information

Angle-resolved photoemission spectroscopy (ARPES) Overview-Physics 250, UC Davis Inna Vishik

Angle-resolved photoemission spectroscopy (ARPES) Overview-Physics 250, UC Davis Inna Vishik Angle-resolved photoemission spectroscopy (ARPES) Overview-Physics 250, UC Davis Inna Vishik Outline Review: momentum space and why we want to go there Looking at data: simple metal Formalism: 3 step model

More information

LASER. Light Amplification by Stimulated Emission of Radiation

LASER. Light Amplification by Stimulated Emission of Radiation LASER Light Amplification by Stimulated Emission of Radiation Energy Level, Definitions The valence band is the highest filled band The conduction band is the next higher empty band The energy gap has

More information

Methods of surface analysis

Methods of surface analysis Methods of surface analysis Nanomaterials characterisation I RNDr. Věra Vodičková, PhD. Surface of solid matter: last monoatomic layer + absorbed monolayer physical properties are effected (crystal lattice

More information

X- ray Photoelectron Spectroscopy and its application in phase- switching device study

X- ray Photoelectron Spectroscopy and its application in phase- switching device study X- ray Photoelectron Spectroscopy and its application in phase- switching device study Xinyuan Wang A53073806 I. Background X- ray photoelectron spectroscopy is of great importance in modern chemical and

More information

PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS Vol. II - Synchrotron Radiation - Malcolm J. Cooper

PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS Vol. II - Synchrotron Radiation - Malcolm J. Cooper SYNCHROTRON RADIATION Malcolm J. Cooper University of Warwick, Coventry, UK Keywords: Accelerator, storage ring, X-rays, insertion devices, X-ray optics, diffraction, crystallography, X-ray spectroscopy,

More information

Energy Spectroscopy. Excitation by means of a probe

Energy Spectroscopy. Excitation by means of a probe Energy Spectroscopy Excitation by means of a probe Energy spectral analysis of the in coming particles -> XAS or Energy spectral analysis of the out coming particles Different probes are possible: Auger

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Conductance Measurements The conductance measurements were performed at the University of Aarhus. The Ag/Si surface was prepared using well-established procedures [1, 2]. After

More information

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE Copyright(C)JCPDS-International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Vol.46 74 ISSN 1097-0002 LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE K. Chouffani 1, D. Wells

More information

Lecture 5-8 Instrumentation

Lecture 5-8 Instrumentation Lecture 5-8 Instrumentation Requirements 1. Vacuum Mean Free Path Contamination Sticking probability UHV Materials Strength Stability Permeation Design considerations Pumping speed Virtual leaks Leaking

More information

High-Resolution Soft X-Ray Spectral Analysis in the CK Region of Titanium Carbide Using the DV-X Molecular Orbital Method

High-Resolution Soft X-Ray Spectral Analysis in the CK Region of Titanium Carbide Using the DV-X Molecular Orbital Method High-Resolution Soft X-Ray Spectral Analysis in the CK Region of Titanium Carbide Using the DV-X Molecular Orbital Method KENTA SHIMOMURA, 1 YASUJI MURAMATSU, 1 JONATHAN D. DENLINGER, 2 ERIC M. GULLIKSON

More information

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division First propositions of a lattice for the future upgrade of SOLEIL A. Nadji On behalf of the Accelerators and Engineering Division 1 SOLEIL : A 3 rd generation synchrotron light source 29 beamlines operational

More information

X-Rays, Electrons and Lithography: Fundamental Processes in Molecular Radiation Chemistry

X-Rays, Electrons and Lithography: Fundamental Processes in Molecular Radiation Chemistry X-Rays, Electrons and Lithography: Fundamental Processes in Molecular Radiation Chemistry D. Frank Ogletree Molecular Foundry, Berkeley Lab Berkeley CA USA Our Berkeley Lab Team EUV Lithography and Pattern

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 2: UPS

MS482 Materials Characterization ( 재료분석 ) Lecture Note 2: UPS 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 2: UPS Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

Name: (a) What core levels are responsible for the three photoelectron peaks in Fig. 1?

Name: (a) What core levels are responsible for the three photoelectron peaks in Fig. 1? Physics 243A--Surface Physics of Materials: Spectroscopy Final Examination December 16, 2014 (3 problems, 100 points total, open book, open notes and handouts) Name: [1] (50 points), including Figures

More information

Synchrotron radiation: A charged particle constrained to move in curved path experiences a centripetal acceleration. Due to this acceleration, the

Synchrotron radiation: A charged particle constrained to move in curved path experiences a centripetal acceleration. Due to this acceleration, the Synchrotron radiation: A charged particle constrained to move in curved path experiences a centripetal acceleration. Due to this acceleration, the particle radiates energy according to Maxwell equations.

More information

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 19 Chapter 12 There are three major techniques used for elemental analysis: Optical spectrometry Mass spectrometry X-ray spectrometry X-ray Techniques include:

More information

A Thesis Submitted to the College of. Graduate Studies and Research. In Partial Fulfillment of the Requirements. For the Degree of Master of Science

A Thesis Submitted to the College of. Graduate Studies and Research. In Partial Fulfillment of the Requirements. For the Degree of Master of Science SPECTROSCOPIC ANALYSIS OF SELECTED SILICON CERAMICS A Thesis Submitted to the College of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Master of Science in

More information

Interested in exploring science or math teaching as a career?

Interested in exploring science or math teaching as a career? Interested in exploring science or math teaching as a career? Start with Step 1: EDUC 2020 (1 credit) Real experience teaching real kids! No commitment to continue with education courses Registration priority

More information

RDCH 702 Lecture 8: Accelerators and Isotope Production

RDCH 702 Lecture 8: Accelerators and Isotope Production RDCH 702 Lecture 8: Accelerators and Isotope Production Particle generation Accelerator Direct Voltage Linear Cyclotrons Synchrotrons Photons * XAFS * Photonuclear Heavy Ions Neutrons sources Fission products

More information

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu X-ray Photoelectron Spectroscopy Introduction Qualitative analysis Quantitative analysis Charging compensation Small area analysis and XPS imaging

More information

Highly Efficient Planar Perovskite Solar Cells through Band Alignment Engineering

Highly Efficient Planar Perovskite Solar Cells through Band Alignment Engineering Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2015 Highly Efficient Planar Perovskite Solar Cells through Band Alignment Engineering

More information

Introduction of XPS Absolute binding energies of core states Applications to silicone Outlook

Introduction of XPS Absolute binding energies of core states Applications to silicone Outlook Core level binding energies in solids from first-principles Introduction of XPS Absolute binding energies of core states Applications to silicone Outlook TO and C.-C. Lee, Phys. Rev. Lett. 118, 026401

More information

Novel materials and nanostructures for advanced optoelectronics

Novel materials and nanostructures for advanced optoelectronics Novel materials and nanostructures for advanced optoelectronics Q. Zhuang, P. Carrington, M. Hayne, A Krier Physics Department, Lancaster University, UK u Brief introduction to Outline Lancaster University

More information

Spectroscopy of Nanostructures. Angle-resolved Photoemission (ARPES, UPS)

Spectroscopy of Nanostructures. Angle-resolved Photoemission (ARPES, UPS) Spectroscopy of Nanostructures Angle-resolved Photoemission (ARPES, UPS) Measures all quantum numbers of an electron in a solid. E, k x,y, z, point group, spin E kin, ϑ,ϕ, hν, polarization, spin Electron

More information

X-ray Absorption Spectroscopy Eric Peterson 9/2/2010

X-ray Absorption Spectroscopy Eric Peterson 9/2/2010 X-ray Absorption Spectroscopy Eric Peterson 9/2/2010 Outline Generation/Absorption of X-rays History Synchrotron Light Sources Data reduction/analysis Examples Crystallite size from Coordination Number

More information

Introduction of XPS Absolute binding energies of core states Applications to silicene

Introduction of XPS Absolute binding energies of core states Applications to silicene Core level binding energies in solids from first-principles Introduction of XPS Absolute binding energies of core states Applications to silicene arxiv:1607.05544 arxiv:1610.03131 Taisuke Ozaki and Chi-Cheng

More information

Q. Shen 1,2) and T. Toyoda 1,2)

Q. Shen 1,2) and T. Toyoda 1,2) Photosensitization of nanostructured TiO 2 electrodes with CdSe quntum dots: effects of microstructure in substrates Q. Shen 1,2) and T. Toyoda 1,2) Department of Applied Physics and Chemistry 1), and

More information

Lecture 23 X-Ray & UV Techniques

Lecture 23 X-Ray & UV Techniques Lecture 23 X-Ray & UV Techniques Schroder: Chapter 11.3 1/50 Announcements Homework 6/6: Will be online on later today. Due Wednesday June 6th at 10:00am. I will return it at the final exam (14 th June).

More information

Lecture 2: Transfer theory. Credit: Kees Dullemond

Lecture 2: Transfer theory. Credit: Kees Dullemond Lecture 2: Transfer theory Credit: Kees Dullemond What is radia:ve transfer? Radia:ve transfer is the physical phenomenon of energy transfer in the form of electromagne:c radia:on The propaga:on of radia:on

More information

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration SPARCLAB Source For Plasma Accelerators and Radiation Compton with Laser And Beam On behalf of SPARCLAB collaboration EMITTANCE X X X X X X X X 2 BRIGHTNESS (electrons) B n 2I nx ny A m 2 rad 2 The current

More information

Synchrotron Methods in Nanomaterials Research

Synchrotron Methods in Nanomaterials Research Synchrotron Methods in Nanomaterials Research Marcel MiGLiERiNi Slovak University of Technology in Bratislava and Centre for Nanomaterials Research, Olomouc marcel.miglierini@stuba.sk www.nuc.elf.stuba.sk/bruno

More information

QUESTIONS AND ANSWERS

QUESTIONS AND ANSWERS QUESTIONS AND ANSWERS (1) For a ground - state neutral atom with 13 protons, describe (a) Which element this is (b) The quantum numbers, n, and l of the inner two core electrons (c) The stationary state

More information

Nanotechnology and Solar Energy. Solar Electricity Photovoltaics. Fuel from the Sun Photosynthesis Biofuels Split Water Fuel Cells

Nanotechnology and Solar Energy. Solar Electricity Photovoltaics. Fuel from the Sun Photosynthesis Biofuels Split Water Fuel Cells Nanotechnology and Solar Energy Solar Electricity Photovoltaics Fuel from the Sun Photosynthesis Biofuels Split Water Fuel Cells Solar cell A photon from the Sun generates an electron-hole pair in a semiconductor.

More information

EXAFS Study of Amorphous Selenium

EXAFS Study of Amorphous Selenium EXAFS Study of Amorphous Selenium A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the degree of Master of Science in the Department of

More information

FUNDAMENTAL PARAMETER METHOD FOR THE LOW ENERGY REGION INCLUDING CASCADE EFFECT AND PHOTOELECTRON EXCITATION

FUNDAMENTAL PARAMETER METHOD FOR THE LOW ENERGY REGION INCLUDING CASCADE EFFECT AND PHOTOELECTRON EXCITATION Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume 45. 511 FUNDAMENTAL PARAMETER METHOD FOR THE LOW ENERGY REGION INCLUDING CASCADE EFFECT AND PHOTOELECTRON

More information

X-Ray Emission Spectroscopy

X-Ray Emission Spectroscopy X-Ray Emission Spectroscopy Axel Knop-Gericke knop@fhi-berlin.mpg.de Core Level Spectroscopy Anders Nilsson. Journal of Electron Spectroscopy and Related Phenomena 126 (2002) 3-42 Creation of core holes

More information

High Flux Solar Simulator and Solar Photo-Thermal Reactor: Characterization and Design

High Flux Solar Simulator and Solar Photo-Thermal Reactor: Characterization and Design High Flux Solar Simulator and Solar Photo-Thermal Reactor: Characterization and Design Saroj Bhatta, Dassou Nagassou, and Juan Pablo Trelles Department of Mechanical Engineering and Energy Engineering

More information

Instrumentelle Analytik in den Geowissenschaften (PI)

Instrumentelle Analytik in den Geowissenschaften (PI) 280061 VU MA-ERD-2 Instrumentelle Analytik in den Geowissenschaften (PI) Handoutmaterial zum Vorlesungsteil Spektroskopie Bei Fragen bitte zu kontaktieren: Prof. Lutz Nasdala, Institut für Mineralogie

More information

PEEM and XPEEM: methodology and applications for dynamic processes

PEEM and XPEEM: methodology and applications for dynamic processes PEEM and XPEEM: methodology and applications for dynamic processes PEEM methods and General considerations Chemical imaging Magnetic imaging XMCD/XMLD Examples Dynamic studies PEEM and XPEEM methods 1

More information

Appearance Potential Spectroscopy

Appearance Potential Spectroscopy Appearance Potential Spectroscopy Submitted by Sajanlal P. R CY06D009 Sreeprasad T. S CY06D008 Dept. of Chemistry IIT MADRAS February 2006 1 Contents Page number 1. Introduction 3 2. Theory of APS 3 3.

More information

An Introduction to XAFS

An Introduction to XAFS An Introduction to XAFS Matthew Newville Center for Advanced Radiation Sources The University of Chicago 21-July-2018 Slides for this talk: https://tinyurl.com/larch2018 https://millenia.cars.aps.anl.gov/gsecars/data/larch/2018workshop

More information

Chapter 1 X-ray Absorption Fine Structure (EXAFS)

Chapter 1 X-ray Absorption Fine Structure (EXAFS) 1 Chapter 1 X-ray Absorption Fine Structure (EXAFS) 1.1 What is EXAFS? X-ray absorption fine structure (EXAFS, XAFS) is an oscillatory modulation in the X-ray absorption coefficient on the high-energy

More information

A facility for Femtosecond Soft X-Ray Imaging on the Nanoscale

A facility for Femtosecond Soft X-Ray Imaging on the Nanoscale A facility for Femtosecond Soft X-Ray Imaging on the Nanoscale Jan Lüning Outline Scientific motivation: Random magnetization processes Technique: Lensless imaging by Fourier Transform holography Feasibility:

More information

Chapter 5. Semiconductor Laser

Chapter 5. Semiconductor Laser Chapter 5 Semiconductor Laser 5.0 Introduction Laser is an acronym for light amplification by stimulated emission of radiation. Albert Einstein in 1917 showed that the process of stimulated emission must

More information

Investigations on warm dense plasma with PHELIX facility

Investigations on warm dense plasma with PHELIX facility 2 nd EMMI Workshop on Plasma Physics with Intense Laser and Heavy Ion Beams, May 14-15, Moscow Investigations on warm dense plasma with PHELIX facility S.A. Pikuz Jr., I.Yu. Skobelev, A.Ya. Faenov, T.A.

More information

Comments to Atkins: Physical chemistry, 7th edition.

Comments to Atkins: Physical chemistry, 7th edition. Comments to Atkins: Physical chemistry, 7th edition. Chapter 16: p. 483, Eq. (16.1). The definition that the wave number is the inverse of the wave length should be used. That is much smarter. p. 483-484.

More information

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Free-electron laser SACLA and its basic Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Light and Its Wavelength, Sizes of Material Virus Mosquito Protein Bacteria Atom

More information

Data Acquisition. What choices need to be made?

Data Acquisition. What choices need to be made? 1 Specimen type and preparation Radiation source Wavelength Instrument geometry Detector type Instrument setup Scan parameters 2 Specimen type and preparation Slide mount Front loading cavity Back loading

More information

Dept. of Physics, MIT Manipal 1

Dept. of Physics, MIT Manipal 1 Chapter 1: Optics 1. In the phenomenon of interference, there is A Annihilation of light energy B Addition of energy C Redistribution energy D Creation of energy 2. Interference fringes are obtained using

More information

Coherent THz Pulses: Source and Science at the NSLS

Coherent THz Pulses: Source and Science at the NSLS Coherent THz Pulses: Source and Science at the NSLS H. Loos, B. Sheehy, D. Arena, J.B. Murphy, X.-J. Wang and G. L. Carr Brookhaven National Laboratory carr@bnl.gov http://www.nsls.bnl.gov http://infrared.nsls.bnl.gov

More information