Data Acquisition. What choices need to be made?

Size: px
Start display at page:

Download "Data Acquisition. What choices need to be made?"

Transcription

1 1

2 Specimen type and preparation Radiation source Wavelength Instrument geometry Detector type Instrument setup Scan parameters 2

3 Specimen type and preparation Slide mount Front loading cavity Back loading cavity Side drifting cavity Low backgrd plate Several spherical particle techniques 3

4 Specimen type and preparation Slide mount Front loading cavity Back loading cavity Side drifting cavity Low backgrd plate Several spherical particle techniques Preferred orientation is worst prep problem 4

5 Preferred orientation 5

6 Preferred orientation 6

7 Specimen type and preparation Slide mount Front loading cavity Back loading cavity Side drifting cavity Low backgrd plate Several spherical particle techniques Low angle problem - fixed divergence slit: X specimen 7

8 Specimen type and preparation To get good particle statistics, generally want size < 10 µ Poorly ground sample: 8

9 Specimen type and preparation Slide mount Front loading cavity Back loading cavity Side drifting cavity Low backgrd plate Several spherical particle techniques Neutron diffraction requires larger specimens 9

10 Radiation sources Lab x-rays Rotating anode x-rays Synchrotron x-rays Constant wavelength neutrons TOF neutrons 10

11 X-rays vs neutrons X-rays - atomic scatt power (ƒ) decreases w/ 2Θ Neutrons - atom scatt cross sections constant w/ 2Θ 11

12 X-rays vs neutrons X-rays - low atomic no. ƒs very small Neutrons - little variation of atom scatt cross sections w/ atomic no. 12

13 X-rays vs neutrons X-rays - low atomic no. ƒs very small Neutrons - little variation of atom scatt cross sections w/ atomic no. magnetic spin use for magnetic structure detn 13

14 X-rays vs neutrons X-rays - usually α 1 -α 2 doublet used (not w/ synchrotron x-rays) 14

15 X-rays vs neutrons 15

16 Radiation sources Lab x-rays relatively low intensity Rotating anode x-rays much higher intensity 16

17 Radiation sources Lab x-rays relatively low intensity Rotating anode x-rays much higher intensity Synchrotron x-rays extremely high intensity monochromatic continuously variable wavelength very tiny beam 17

18 Radiation sources Lab x-rays relatively low intensity Rotating anode x-rays much higher intensity Synchrotron x-rays extremely high intensity monochromatic very high resolution continuously variable wavelength very tiny beam 18

19 Radiation sources Reactor neutrons continuous wavelength distribution monochromator req'd 19

20 Radiation sources Reactor neutrons continuous wavelength distribution monochromator req'd generally low flux, low resolution 20

21 Radiation sources Spallation source (pulsed) time-of-flight (TOF) energy (wavelength) analysis used 21

22 Radiation sources Spallation source (pulsed) time-of-flight (TOF) energy (wavelength) analysis used very high flux, high resolution 22

23 Radiation sources Spallation source (pulsed) time-of-flight (TOF) energy (wavelength) analysis used very high flux, high resolution 23

24 Wavelength Shorter wavelengths more Bragg peaks more peak overlap 24

25 Wavelength Shorter wavelengths more Bragg peaks more peak overlap (keep in mind peak broadening due to sample and/or no. phases present) 25

26 Wavelength Shorter wavelengths more Bragg peaks more peak overlap (keep in mind peak broadening due to sample and/or no. phases present) X-rays most atom types have very strong absorption of characteristic wavelengths 26

27 Instrument geometry Choices: a. conventional Bragg-Brentano diffractometer (includes Θ-Θ) b. Guinier camera or diffractometer c. diffractometer w/ curved PSD d. TOF neutron instrument e. 4-circle diffractometer 27

28 Instrument geometry Choices: a. conventional Bragg-Brentano diffractometer (includes Θ-Θ) b. Guinier camera or diffractometer c. diffractometer w/ curved PSD d. TOF neutron instrument e. 4-circle diffractometer Generally want good resolution & high intensity can be obtained w/ all but (c) above, & (a) w/reactor neutrons (CW) 28

29 Instrument geometry Choices: a. conventional Bragg-Brentano diffractometer (includes Θ-Θ) b. Guinier camera or diffractometer c. diffractometer w/ curved PSD d. TOF neutron instrument e. 4-circle diffractometer Generally want good resolution & high intensity can be obtained w/ all but (c) above, & (a) w/reactor neutrons (CW) Instrument geometry affects instrument file 29

30 Detector type Conventional scintillation or proportional counter energy resolution not high usually need monochromator 30

31 Detector type Conventional scintillation or proportional counter energy resolution not high usually need monochromator Also common solid state detector very high energy resolution monochromator not needed 31

32 Detector type Conventional scintillation or proportional counter energy resolution not high usually need monochromator Also common solid state detector very high energy resolution monochromator not needed Neutrons He counter 32

33 Detector type Conventional scintillation or proportional counter energy resolution not high usually need monochromator Also common solid state detector very high energy resolution monochromator not needed Neutrons He counter What about image plates? poor resolution, hi bkgrd 33

34 Instrument setup Divergence and receiving slit sizes 34

35 Instrument setup Divergence and receiving slit sizes Theta-compensating divergence slit keeps irradiated area constant, But changes intensity distribution vs 2Θ 35

36 Instrument setup Divergence and receiving slit sizes 36

37 Instrument setup Divergence and receiving slit sizes 37

38 Instrument setup Divergence and receiving slit sizes Use of monochromator changes polarization correction in LP factor Integrated intensities of Bragg reflections: I hkl = scale factor x mult factor hkl x LP Θ x absorb factor Θ x pref orient factor hkl x extinction factor hkl x F hkl 2 38

39 Scan setup Scan range no. of reflections want >5 x no. parameters refined wavelength dependent low angle reflections may not be useful due to specimen configuration larger inherent instrumental errors extinction effects 39

40 Scan setup Step size sample dependent - peak widths need 5 observations across top of peak usually Θ 40

41 Scan setup Step size sample dependent - peak widths need 5 observations across top of peak usually Θ Count time longer times > higher intensities > greater precision at some point, little improvement in refinement process for longer count times 41

42 Specimen type and preparation Radiation source Wavelength Instrument geometry Detector type Instrument setup Scan parameters Choose according to objective(s) of experiment 42

Diffractometer. Geometry Optics Detectors

Diffractometer. Geometry Optics Detectors Diffractometer Geometry Optics Detectors Diffractometers Debye Scherrer Camera V.K. Pecharsky and P.Y. Zavalij Fundamentals of Powder Diffraction and Structural Characterization of Materials. Diffractometers

More information

Swanning about in Reciprocal Space. Kenneth, what is the wavevector?

Swanning about in Reciprocal Space. Kenneth, what is the wavevector? Swanning about in Reciprocal Space or, Kenneth, what is the wavevector? Stanford Synchrotron Radiation Laboratory Principles The relationship between the reciprocal lattice vector and the wave vector is

More information

Neutron Instruments I & II. Ken Andersen ESS Instruments Division

Neutron Instruments I & II. Ken Andersen ESS Instruments Division Neutron Instruments I & II ESS Instruments Division Neutron Instruments I & II Overview of source characteristics Bragg s Law Elastic scattering: diffractometers Continuous sources Pulsed sources Inelastic

More information

X-rays. X-ray Radiography - absorption is a function of Z and density. X-ray crystallography. X-ray spectrometry

X-rays. X-ray Radiography - absorption is a function of Z and density. X-ray crystallography. X-ray spectrometry X-rays Wilhelm K. Roentgen (1845-1923) NP in Physics 1901 X-ray Radiography - absorption is a function of Z and density X-ray crystallography X-ray spectrometry X-rays Cu K α E = 8.05 kev λ = 1.541 Å Interaction

More information

Structure Report for J. Reibenspies

Structure Report for J. Reibenspies X-ray Diffraction Laboratory Center for Chemical Characterization and Analysis Department of Chemistry Texas A & M University Structure Report for J. Reibenspies Project Name: Sucrose Date: January 29,

More information

ANALYSIS OF LOW MASS ABSORPTION MATERIALS USING GLANCING INCIDENCE X-RAY DIFFRACTION

ANALYSIS OF LOW MASS ABSORPTION MATERIALS USING GLANCING INCIDENCE X-RAY DIFFRACTION 173 ANALYSIS OF LOW MASS ABSORPTION MATERIALS USING GLANCING INCIDENCE X-RAY DIFFRACTION N. A. Raftery, L. K. Bekessy, and J. Bowpitt Faculty of Science, Queensland University of Technology, GPO Box 2434,

More information

SAXS and SANS facilities and experimental practice. Clement Blanchet

SAXS and SANS facilities and experimental practice. Clement Blanchet SAXS and SANS facilities and experimental practice Clement Blanchet SAS experiment Detector X-ray or neutron Beam Sample 2 s Buffer X-rays Roengten, 1895 Electromagnetic wave The electromagnetic spectrum

More information

GEANT4 simulation of the 10 B-based Jalousie detector for neutron diffractometers

GEANT4 simulation of the 10 B-based Jalousie detector for neutron diffractometers GEANT4 simulation of the 10 B-based Jalousie detector for neutron diffractometers Irina Stefanescu 1, R. Hall-Wilton 1, G. Kemmerling 2, M. Klein 3, C.J. Schmidt 3,4, W. Schweika 1,2 1 European Spallation

More information

THE IMPORTANCE OF THE SPECIMEN DISPLACEMENT CORRECTION IN RIETVELD PATTERN FITTING WITH SYMMETRIC REFLECTION-OPTICS DIFFRACTION DATA

THE IMPORTANCE OF THE SPECIMEN DISPLACEMENT CORRECTION IN RIETVELD PATTERN FITTING WITH SYMMETRIC REFLECTION-OPTICS DIFFRACTION DATA Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 96 THE IMPORTANCE OF THE SPECIMEN DISPLACEMENT CORRECTION IN RIETVELD PATTERN FITTING WITH SYMMETRIC REFLECTION-OPTICS

More information

Delft in Europe. Neutron & Positrons Oyster & the World

Delft in Europe. Neutron & Positrons Oyster & the World Delft in Europe Neutron & Positrons Oyster & the World where are we? Oyster - HOR Neutrons and Positrons European Spallation Source where are we? Oyster - HOR Neutrons and Positrons European Spallation

More information

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 19 Chapter 12 There are three major techniques used for elemental analysis: Optical spectrometry Mass spectrometry X-ray spectrometry X-ray Techniques include:

More information

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy Topic 2b: X-ray Fluorescence Spectrometry Text: Chapter 12 Rouessac (1 week) 4.0 X-ray Fluorescence Download, read and understand EPA method 6010C ICP-OES Winter 2009 Page 1 Atomic X-ray Spectrometry Fundamental

More information

Introduction to Quantitative Analysis

Introduction to Quantitative Analysis ntroduction to Quantitative Analysis Qualitative: D phases by comparison with standard patterns. Estimate of proportions of phases by comparing peak intensities attributed to the identified phases with

More information

X-ray diffraction geometry

X-ray diffraction geometry X-ray diffraction geometry Setting controls sample orientation in the diffraction plane. most important for single-crystal diffraction For any poly- (or nano-) crystalline specimen, we usually set: 1 X-ray

More information

School on Pulsed Neutrons: Characterization of Materials October Neurton Sources & Scattering Techniques (1-2)

School on Pulsed Neutrons: Characterization of Materials October Neurton Sources & Scattering Techniques (1-2) 1866-6 School on Pulsed Neutrons: Characterization of Materials 15-26 October 2007 Neurton Sources & Scattering Techniques (1-2) Guenter Bauer Forschungzentrum Julich GmbH Julich Germany The Abdus Salam

More information

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection R. Kreuger, C. W. E. van Eijk, Member, IEEE, F. A. F. Fraga, M. M. Fraga, S. T. G. Fetal, R. W. Hollander, Member, IEEE, L. M.

More information

Röntgenpraktikum. M. Oehzelt. (based on the diploma thesis of T. Haber [1])

Röntgenpraktikum. M. Oehzelt. (based on the diploma thesis of T. Haber [1]) Röntgenpraktikum M. Oehzelt (based on the diploma thesis of T. Haber [1]) October 21, 2004 Contents 1 Fundamentals 2 1.1 X-Ray Radiation......................... 2 1.1.1 Bremsstrahlung......................

More information

Precision neutron flux measurement with a neutron beam monitor

Precision neutron flux measurement with a neutron beam monitor Journal of Physics: Conference Series OPEN ACCESS Precision neutron flux measurement with a neutron beam monitor To cite this article: T Ino et al 2014 J. Phys.: Conf. Ser. 528 012039 View the article

More information

X-ray, Neutron and e-beam scattering

X-ray, Neutron and e-beam scattering X-ray, Neutron and e-beam scattering Introduction Why scattering? Diffraction basics Neutrons and x-rays Techniques Direct and reciprocal space Single crystals Powders CaFe 2 As 2 an example What is the

More information

Neutron Diffraction: a general overview

Neutron Diffraction: a general overview RUG1 Neutron Diffraction: a general overview Graeme Blake Zernike Institute for Advanced Materials University of Groningen Outline Elastic scattering of neutrons from matter Comparison of neutron and X-ray

More information

High-Resolution Neutron Diffraction Monochromators for Neutron Diffractometry

High-Resolution Neutron Diffraction Monochromators for Neutron Diffractometry High-Resolution Neutron Diffraction Monochromators for Neutron Diffractometry Pavol Mikula, Nuclear Physics Institute ASCR 25 68 Řež near Prague, Czech Republic NMI3-Meeting, Barcelona, 21 Motivation Backscattering

More information

Good Vibrations Studying phonons with momentum resolved spectroscopy. D.J. Voneshen 20/6/2018

Good Vibrations Studying phonons with momentum resolved spectroscopy. D.J. Voneshen 20/6/2018 Good Vibrations Studying phonons with momentum resolved spectroscopy D.J. Voneshen 20/6/2018 Overview What probe to use? Types of instruments. Single crystals example Powder example Thing I didn t talk

More information

This paper should be understood as an extended version of a talk given at the

This paper should be understood as an extended version of a talk given at the This paper should be understood as an extended version of a talk given at the Abstract: 1 st JINA workshop at Gull Lake, 2002. Recent experimental developments at LANL (Los Alamos, NM, USA) and CERN (Geneva,

More information

Small Angle Neutron Scattering in Different Fields of Research. Henrich Frielinghaus

Small Angle Neutron Scattering in Different Fields of Research. Henrich Frielinghaus Small Angle Neutron Scattering in Different Fields of Research Henrich Frielinghaus Jülich Centre for Neutron Science Forschungszentrum Jülich GmbH Lichtenbergstrasse 1 85747 Garching (München) h.frielinghaus@fz-juelich.de

More information

Neutron facilities and generation. Rob McQueeney, Ames Laboratory and Iowa State University

Neutron facilities and generation. Rob McQueeney, Ames Laboratory and Iowa State University Neutron facilities and generation Rob McQueeney, Ames Laboratory and Iowa State University September 12, 2018 19-Sep-18 Physics 502 2 Neutrons compared to other probes of matter Bulk probe Interacts with

More information

Neutron emission asymmetries from linearly polarized γ rays on nat Cd, nat Sn, and 181 Ta

Neutron emission asymmetries from linearly polarized γ rays on nat Cd, nat Sn, and 181 Ta Neutron emission asymmetries from linearly polarized γ rays on nat Cd, nat Sn, and 8 Ta Clarke Smith, Gerald Feldman, and the HIγS Collaboration George Triangle C. Smith, G. Feldman (GWU) Washington University

More information

Chapter 2. X-ray X. Diffraction and Reciprocal Lattice. Scattering from Lattices

Chapter 2. X-ray X. Diffraction and Reciprocal Lattice. Scattering from Lattices Chapter. X-ray X Diffraction and Reciprocal Lattice Diffraction of waves by crystals Reciprocal Lattice Diffraction of X-rays Powder diffraction Single crystal X-ray diffraction Scattering from Lattices

More information

Physics 30: Chapter 5 Exam Wave Nature of Light

Physics 30: Chapter 5 Exam Wave Nature of Light Physics 30: Chapter 5 Exam Wave Nature of Light Name: Date: Mark: /33 Numeric Response. Place your answers to the numeric response questions, with units, in the blanks at the side of the page. (1 mark

More information

HOW TO ANALYZE SYNCHROTRON DATA

HOW TO ANALYZE SYNCHROTRON DATA HOW TO ANALYZE SYNCHROTRON DATA 1 SYNCHROTRON APPLICATIONS - WHAT Diffraction data are collected on diffractometer lines at the world s synchrotron sources. Most synchrotrons have one or more user facilities

More information

arxiv: v3 [nucl-ex] 18 May 2018

arxiv: v3 [nucl-ex] 18 May 2018 Observation of Pendellösung Fringes by Using Pulsed Neutrons Shigeyasu Itoh, Masaya Nakaji, Yuya Uchida, Masaaki Kitaguchi, and Hirohiko M. Shimizu Department of Physics, Nagoya University Furo-cho, Chikusa-ku,

More information

Introduction to Triple Axis Neutron Spectroscopy

Introduction to Triple Axis Neutron Spectroscopy Introduction to Triple Axis Neutron Spectroscopy Bruce D Gaulin McMaster University The triple axis spectrometer Constant-Q and constant E Practical concerns Resolution and Spurions Neutron interactions

More information

Lesson 2 Diffractometers & Phase Identification

Lesson 2 Diffractometers & Phase Identification Lesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation, Bettlach, Switzerland February 11 14, 2013, Riga, Latvia Repetition: Generation of X-rays Kα 1 Target (Cu, Mo, Fe, Co,...)

More information

Determination of the high- pressure phases (II and IV ) ) of. techniques

Determination of the high- pressure phases (II and IV ) ) of. techniques Determination of the high- pressure phases (II and IV ) ) of CuGeO 3 using single-crystal techniques Lauren A. Borkowski, 1,2 Barbara Lavina, 1,2 Przemyslaw Dera, 2 and Hanns-Peter Liermann 3 1 High Pressure

More information

X-ray Diffraction. Diffraction. X-ray Generation. X-ray Generation. X-ray Generation. X-ray Spectrum from Tube

X-ray Diffraction. Diffraction. X-ray Generation. X-ray Generation. X-ray Generation. X-ray Spectrum from Tube X-ray Diffraction Mineral identification Mode analysis Structure Studies X-ray Generation X-ray tube (sealed) Pure metal target (Cu) Electrons remover inner-shell electrons from target. Other electrons

More information

Neutron Physics. The De Broglie relation for matter is: h mv (1) λ =

Neutron Physics. The De Broglie relation for matter is: h mv (1) λ = Neutron Physics Emily P. Wang MIT Department of Physics (Dated: November 11, 2004) Thermal neutrons in a beam emerging from the MIT research reactor were used to study the Maxwell-Boltzmann distribution,

More information

SSRL XAS Beam Lines Soft X-ray

SSRL XAS Beam Lines Soft X-ray SSRL SMB Summer School July 20, 2010 SSRL XAS Beam Lines Soft X-ray Thomas Rabedeau SSRL Beam Line Development Objective/Scope Objective - develop a better understanding of the capabilities and limitations

More information

Detekce a spektrometrie neutronů. neutron detection and spectroscopy

Detekce a spektrometrie neutronů. neutron detection and spectroscopy Detekce a spektrometrie neutronů neutron detection and spectroscopy 1. Slow neutrons 2. Fast neutrons 1 1. Slow neutrons neutron kinetic energy E a) charged particles are produced, protons, α particle,

More information

Changing and challenging times for service crystallography. Electronic Supplementary Information

Changing and challenging times for service crystallography. Electronic Supplementary Information Changing and challenging times for service crystallography Simon J Coles,* a and Philip A Gale* a Electronic Supplementary Information Instrument descriptions and experimental protocols The following firstly

More information

Supporting Information

Supporting Information Supporting Information Three-dimensional frameworks of cubic (NH 4 ) 5 Ga 4 SbS 10, (NH 4 ) 4 Ga 4 SbS 9 (OH) H 2 O, and (NH 4 ) 3 Ga 4 SbS 9 (OH 2 ) 2H 2 O. Joshua L. Mertz, Nan Ding, and Mercouri G.

More information

& SUN ZhiJia 1;2. Abstract

& SUN ZhiJia 1;2. Abstract Study on the imaging ability of the 2D neutron detector based on MWPC TIAN LiChao 1;2;3*, CHEN YuanBo 1;2, TANG Bin 1;2,ZHOU JianRong 1;2,QI HuiRong 1;2, LIU RongGuang 1;2, ZHANG Jian 1;2, YANG GuiAn 1;2,

More information

Modeling of Li-Ion-Batteries to Optimize the Results Gained by Neutron Imaging

Modeling of Li-Ion-Batteries to Optimize the Results Gained by Neutron Imaging Modeling of Li-Ion-Batteries to Optimize the Results Gained by Neutron Imaging M.J. Mühlbauer Dr. A. Senyshyn, Dr. O. Dolotko, Prof. H. Ehrenberg SFB 595 Electrical Fatigue in Functional Materials Contact:

More information

Data Collection. Overview. Methods. Counter Methods. Crystal Quality with -Scans

Data Collection. Overview. Methods. Counter Methods. Crystal Quality with -Scans Data Collection Overview with a unit cell, possible space group and computer reference frame (orientation matrix); the location of diffracted x-rays can be calculated (h k l) and intercepted by something

More information

Determination of the boron content in polyethylene samples using the reactor Orphée

Determination of the boron content in polyethylene samples using the reactor Orphée Determination of the boron content in polyethylene samples using the reactor Orphée F. Gunsing, A. Menelle CEA Saclay, F-91191 Gif-sur-Yvette, France O. Aberle European Organization for Nuclear Research

More information

Andrew D. Kent. 1 Introduction. p 1

Andrew D. Kent. 1 Introduction. p 1 Compton Effect Andrew D. Kent Introduction One of the most important experiments in the early days of quantum mechanics (93) studied the interaction between light and matter; it determined the change in

More information

General Overview of Gas Filled Detectors

General Overview of Gas Filled Detectors GAS-FILLED DETECTOR General Overview of Gas Filled Detectors Gas-Filled Detectors Ion chamber Proportional counter G-M (Geiger-Miller) counter Diagram of a Generic Gas-Filled Detector A Anode High-voltage

More information

Supporting Information s for

Supporting Information s for Supporting Information s for # Self-assembling of DNA-templated Au Nanoparticles into Nanowires and their enhanced SERS and Catalytic Applications Subrata Kundu* and M. Jayachandran Electrochemical Materials

More information

Neutron Monochromators. Zahra Yamani Canadian Neutron Beam Centre, Chalk River, Canada

Neutron Monochromators. Zahra Yamani Canadian Neutron Beam Centre, Chalk River, Canada Neutron Monochromators Zahra Yamani Canadian Neutron Beam Centre, Chalk River, Canada Neutron Scattering Facilities NIST Centre for Neutron Research Canadian Neutron Beam Centre, Chalk River Labs Triple-Axis

More information

A RICH Photon Detector Module with G-APDs

A RICH Photon Detector Module with G-APDs A RICH Photon Detector Module with G-APDs S. Korpar a,b, H. Chagani b, R. Dolenec b, P. Križan b,c, R. Pestotnik b, A. Stanovnik b,c a University of Maribor, b J. Stefan Institute, c University of Ljubljana

More information

A neutron polariser based on magnetically remanent Fe/Si supermirrors

A neutron polariser based on magnetically remanent Fe/Si supermirrors Jochen Stahn Laboratorium für Neutronenstreuung ETH Zürich & Paul Scherrer Institut A neutron polariser based on magnetically remanent Fe/Si supermirrors ILL, Grenoble 8. 0. 2006 neutron optics group PSI:

More information

Atomic and nuclear physics

Atomic and nuclear physics Atomic and nuclear physics X-ray physics Attenuation of x-rays LEYBOLD Physics Leaflets P6.3.2.2 Investigating the wavelength dependency of the coefficient of attenuation Objects of the experiment To measure

More information

X-ray diffraction is a non-invasive method for determining many types of

X-ray diffraction is a non-invasive method for determining many types of Chapter X-ray Diffraction.1 Introduction X-ray diffraction is a non-invasive method for determining many types of structural features in both crystalline and amorphous materials. In the case of single

More information

LAB 01 X-RAY EMISSION & ABSORPTION

LAB 01 X-RAY EMISSION & ABSORPTION LAB 0 X-RAY EMISSION & ABSORPTION REPORT BY: TEAM MEMBER NAME: Ashley Tsai LAB SECTION No. 05 GROUP 2 EXPERIMENT DATE: Feb., 204 SUBMISSION DATE: Feb. 8, 204 Page of 3 ABSTRACT The goal of this experiment

More information

Powder Indexing of Difficult Cells using the Indexing Options within Topas. ACA, Orlando, May 28, 2005

Powder Indexing of Difficult Cells using the Indexing Options within Topas. ACA, Orlando, May 28, 2005 Powder Indexing of Difficult Cells using the Indexing Options within Topas ACA, Orlando, May 28, 2005 Thanks to Alen Coehlo and Arnt Kern for writing and fostering Topas, and for endless help in using

More information

Observation of ferroelectric domains in bismuth ferrite using coherent diffraction techniques

Observation of ferroelectric domains in bismuth ferrite using coherent diffraction techniques Observation of ferroelectric domains in bismuth ferrite using coherent diffraction techniques James Vale October 25, 2011 Abstract Multiferroic materials have significant potential for both the scientific

More information

Focusing Optics. From x-ray telescopes to Compact Neutron Sources. Focus. Boris Khaykovich David Moncton Nuclear Reactor Laboratory, MIT

Focusing Optics. From x-ray telescopes to Compact Neutron Sources. Focus. Boris Khaykovich David Moncton Nuclear Reactor Laboratory, MIT Focusing Optics for Neutrons: From x-ray telescopes to Compact Neutron Sources Focus Boris Khaykovich David Moncton Nuclear Reactor Laboratory, MIT Mikhail Gubarev Marshall Space Flight Center, NASA Jeffrey

More information

IMPROVING THE ACCURACY OF RIETVELD-DERIVED LATTICE PARAMETERS BY AN ORDER OF MAGNITUDE

IMPROVING THE ACCURACY OF RIETVELD-DERIVED LATTICE PARAMETERS BY AN ORDER OF MAGNITUDE Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume 45. 158 IMPROVING THE ACCURACY OF RIETVELD-DERIVED LATTICE PARAMETERS BY AN ORDER OF MAGNITUDE B. H.

More information

Transmission Electron Microscopy and Diffractometry of Materials

Transmission Electron Microscopy and Diffractometry of Materials Brent Fultz James Howe Transmission Electron Microscopy and Diffractometry of Materials Fourth Edition ~Springer 1 1 Diffraction and the X-Ray Powder Diffractometer 1 1.1 Diffraction... 1 1.1.1 Introduction

More information

Data collection Strategy. Apurva Mehta

Data collection Strategy. Apurva Mehta Data collection Strategy Apurva Mehta Outline Before.. Resolution, Aberrations and detectors During.. What is the scientific question? How will probing the structure help? Is there an alternative method?

More information

AMOR the time-of-flight neutron reflectometer at SINQ/PSI

AMOR the time-of-flight neutron reflectometer at SINQ/PSI PRAMANA c Indian Academy of Sciences Vol. 63, No. 1 journal of July 2004 physics pp. 57 63 AMOR the time-of-flight neutron reflectometer at SINQ/PSI MUKUL GUPTA 1, T GUTBERLET 1, J STAHN 1, P KELLER 1

More information

Laser Optics-II. ME 677: Laser Material Processing Instructor: Ramesh Singh 1

Laser Optics-II. ME 677: Laser Material Processing Instructor: Ramesh Singh 1 Laser Optics-II 1 Outline Absorption Modes Irradiance Reflectivity/Absorption Absorption coefficient will vary with the same effects as the reflectivity For opaque materials: reflectivity = 1 - absorptivity

More information

Beamline Practice at BL02B2 (Powder diffraction)

Beamline Practice at BL02B2 (Powder diffraction) Beamline Practice at BL02B2 (Powder diffraction) Rietveld Refinement using Synchrotron X-ray Powder Diffraction Data Shogo Kawaguchi, Bagautdin Bagautdinov, and Kunihisa Sugimoto (JASRI) 1. Introduction

More information

Experiment objectives: measure the ratio of Planck s constant to the electron charge h/e using the photoelectric effect.

Experiment objectives: measure the ratio of Planck s constant to the electron charge h/e using the photoelectric effect. Chapter 1 Photoelectric Effect Experiment objectives: measure the ratio of Planck s constant to the electron charge h/e using the photoelectric effect. History The photoelectric effect and its understanding

More information

Laboratory Manual 1.0.6

Laboratory Manual 1.0.6 Laboratory Manual 1.0.6 Background What is X-ray Diffraction? X-rays scatter off of electrons, in a process of absorption and re-admission. Diffraction is the accumulative result of the x-ray scattering

More information

2. Determine the excess charge on the outer surface of the outer sphere (a distance c from the center of the system).

2. Determine the excess charge on the outer surface of the outer sphere (a distance c from the center of the system). Use the following to answer question 1. Two point charges, A and B, lie along a line separated by a distance L. The point x is the midpoint of their separation. 1. Which combination of charges will yield

More information

The Spectrophotometer and Atomic Spectra of Hydrogen Physics 246

The Spectrophotometer and Atomic Spectra of Hydrogen Physics 246 The Spectrophotometer and Atomic Spectra of Hydrogen Physics 46 Introduction: When heated sufficiently, most elements emit light. With a spectrometer, the emitted light can be broken down into its various

More information

J-PARC and the prospective neutron sciences

J-PARC and the prospective neutron sciences PRAMANA c Indian Academy of Sciences Vol. 71, No. 4 journal of October 2008 physics pp. 629 638 J-PARC and the prospective neutron sciences MASATOSHI ARAI J-PARC Center, Japan Atomic Energy Agency, Tokai,

More information

POLYCAPILLARY OPTICS BASED NEUTRON FOCUSING FOR SMALL SAMPLE NEUTRON CRYSTALLOGRAPHY

POLYCAPILLARY OPTICS BASED NEUTRON FOCUSING FOR SMALL SAMPLE NEUTRON CRYSTALLOGRAPHY Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume 45. 306 POLYCAPILLARY OPTICS BASED NEUTRON FOCUSING FOR SMALL SAMPLE NEUTRON CRYSTALLOGRAPHY W.M. Gibson

More information

Physics 126 Practice Exam #4 Professor Siegel

Physics 126 Practice Exam #4 Professor Siegel Physics 126 Practice Exam #4 Professor Siegel Name: Lab Day: 1. Light is usually thought of as wave-like in nature and electrons as particle-like. In which one of the following instances does light behave

More information

RIETVELD REFINEMENT WITH XRD AND ND: ANALYSIS OF METASTABLE QANDILITE-LIKE STRUCTURES

RIETVELD REFINEMENT WITH XRD AND ND: ANALYSIS OF METASTABLE QANDILITE-LIKE STRUCTURES Copyright JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume 47. 261 RIETVELD REFINEMENT WITH XRD AND ND: ANALYSIS OF METASTABLE QANDILITE-LIKE STRUCTURES G. Kimmel

More information

TEP Examination of the structure of NaCl monocrystals with different orientations

TEP Examination of the structure of NaCl monocrystals with different orientations Examination of the structure of NaCl TEP Related topics Characteristic X-radiation, energy levels, crystal structures, reciprocal lattices, Miller indices, atomic form factor, structure factor, and Bragg

More information

Beamline practice at BL01B1 (XAFS) In-situ XAFS measurement of catalyst samples

Beamline practice at BL01B1 (XAFS) In-situ XAFS measurement of catalyst samples Beamline practice at BL01B1 (XAFS) In-situ XAFS measurement of catalyst samples ver. 2015/09/18 T. Ina, K. Kato, T. Uruga (JASRI), P. Fons (AIST/JASRI) 1. Introduction The bending magnet beamline, BL01B1,

More information

Neutron and x-ray spectroscopy

Neutron and x-ray spectroscopy Neutron and x-ray spectroscopy B. Keimer Max-Planck-Institute for Solid State Research outline 1. self-contained introduction neutron scattering and spectroscopy x-ray scattering and spectroscopy 2. application

More information

Which of the following can be used to calculate the resistive force acting on the brick? D (Total for Question = 1 mark)

Which of the following can be used to calculate the resistive force acting on the brick? D (Total for Question = 1 mark) 1 A brick of mass 5.0 kg falls through water with an acceleration of 0.90 m s 2. Which of the following can be used to calculate the resistive force acting on the brick? A 5.0 (0.90 9.81) B 5.0 (0.90 +

More information

Basics of XRD part III

Basics of XRD part III Basics of XRD part III Dr. Peter G. Weidler Institute of Functional Interfaces IFG 1 10/31/17 KIT The Research University of the Helmholtz Association Name of Institute, Faculty, Department www.kit.edu

More information

MEASUREMENT OF TEMPORAL RESOLUTION AND DETECTION EFFICIENCY OF X-RAY STREAK CAMERA BY SINGLE PHOTON IMAGES

MEASUREMENT OF TEMPORAL RESOLUTION AND DETECTION EFFICIENCY OF X-RAY STREAK CAMERA BY SINGLE PHOTON IMAGES Proceedings of IBIC212, Tsukuba, Japan MEASUREMENT OF TEMPORAL RESOLUTION AND DETECTION EFFICIENCY OF X-RAY STREAK CAMERA BY SINGLE PHOTON IMAGES A. Mochihashi, M. Masaki, S. Takano, K. Tamura, H. Ohkuma,

More information

SOLID STATE 9. Determination of Crystal Structures

SOLID STATE 9. Determination of Crystal Structures SOLID STATE 9 Determination of Crystal Structures In the diffraction experiment, we measure intensities as a function of d hkl. Intensities are the sum of the x-rays scattered by all the atoms in a crystal.

More information

Determination of Absolute Neutron Fluence to sub-0.1% uncertainty (and better)

Determination of Absolute Neutron Fluence to sub-0.1% uncertainty (and better) Determination of Absolute Neutron Fluence to sub-0.1% uncertainty (and better) Andrew Yue University of Maryland / NIST for the Alpha-Gamma Collaboration NIST-ILL-Sussex neutron lifetime experiments Neutron

More information

X-Ray Photoelectron Spectroscopy (XPS)

X-Ray Photoelectron Spectroscopy (XPS) X-Ray Photoelectron Spectroscopy (XPS) Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Fulmer 261A Electron Spectroscopy for Chemical Analysis (ESCA) The basic principle of the photoelectric effect

More information

V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber

V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber CYRIC Annual Report 2001 V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber Kawata N. Baba M. Kato M.*, Miura T.**, and Yamadera A.***, Cyclotron and Radioisotope Center, Tohoku

More information

Scattering Lecture. February 24, 2014

Scattering Lecture. February 24, 2014 Scattering Lecture February 24, 2014 Structure Determination by Scattering Waves of radiation scattered by different objects interfere to give rise to an observable pattern! The wavelength needs to close

More information

Measurments with Michelson interferometers

Measurments with Michelson interferometers Please do not remove this manual from from the lab. It is available at www.cm.ph.bham.ac.uk/y2lab Optics Measurments with Michelson interferometers Objectives In this experiment you will: Understand the

More information

X-Ray Photoelectron Spectroscopy (XPS)

X-Ray Photoelectron Spectroscopy (XPS) X-Ray Photoelectron Spectroscopy (XPS) Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Electron Spectroscopy for Chemical Analysis (ESCA) The basic principle of the photoelectric effect was enunciated

More information

X-ray absorption. 4. Prove that / = f(z 3.12 ) applies.

X-ray absorption. 4. Prove that / = f(z 3.12 ) applies. Related topics Bremsstrahlung, characteristic radiation, Bragg scattering, law of absorption, mass absorption coefficient, absorption edge, half-value thickness, photoelectric effect, Compton scattering,

More information

Absorption of X-rays

Absorption of X-rays Absorption of X-rays TEP Related topics Bremsstrahlung, characteristic X-radiation, Bragg scattering, law of absorption, mass absorption coefficient, absorption edges, half-value thickness, photoelectric

More information

PHYS 4 CONCEPT PACKET Complete

PHYS 4 CONCEPT PACKET Complete PHYS 4 CONCEPT PACKET Complete Written by Jeremy Robinson, Head Instructor Find Out More +Private Instruction +Review Sessions WWW.GRADEPEAK.COM Need Help? Online Private Instruction Anytime, Anywhere

More information

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY Regents' Professor enzeritus Arizona State University 1995 ELSEVIER Amsterdam Lausanne New York Oxford Shannon Tokyo CONTENTS Preface to the first

More information

Experiment O-2. The Michelson Interferometer

Experiment O-2. The Michelson Interferometer Experiment O-2 The Michelson Interferometer The Michelson interferometer is one of the best known and historically important interferometers. It is a very accurate length-measuring device and has been

More information

Development of Scintillator Detectors at J-PARC/MLF

Development of Scintillator Detectors at J-PARC/MLF Development of Scintillator Detectors at J-PARC/MLF J-PARC, JAEA Kazuhiko Soyama Basic Energy Sciences Neutron & Photon Detector Workshop August 1-3, 2012 Holiday Inn Gaithersburg, USA Contents 1. J-PARC,

More information

X-Ray Emission and Absorption

X-Ray Emission and Absorption X-Ray Emission and Absorption Author: Mike Nill Alex Bryant February 6, 20 Abstract X-rays were produced by two bench-top diffractometers using a copper target. Various nickel filters were placed in front

More information

Light Source I. Takashi TANAKA (RIKEN SPring-8 Center) Cheiron 2012: Light Source I

Light Source I. Takashi TANAKA (RIKEN SPring-8 Center) Cheiron 2012: Light Source I Light Source I Takashi TANAKA (RIKEN SPring-8 Center) Light Source I Light Source II CONTENTS Introduction Fundamentals of Light and SR Overview of SR Light Source Characteristics of SR (1) Characteristics

More information

How Does It All Work? A Summary of the IDEAS Beamline at the Canadian Light Source

How Does It All Work? A Summary of the IDEAS Beamline at the Canadian Light Source How Does It All Work? A Summary of the IDEAS Beamline at the Canadian Light Source What Makes Up The Canadian Light Source? 4. Storage Ring 5. Synchrotron Light 6. Beamline 1. Electron Gun 2. Linear Accelerator

More information

Joe Parker for the Cosmic Ray γ Group Kyoto University

Joe Parker for the Cosmic Ray γ Group Kyoto University Joe Parker for the Cosmic Ray γ Group Kyoto University Cosmic Ray Group NID Project Team @ 京大 K. Hattori, C. Ida, S. Iwaki, S. Kabuki, H. Kubo, S. Kurosawa, K. Miuchi, H. Nishimura, J. D. Parker, T. Sawano,

More information

Atomic and nuclear physics

Atomic and nuclear physics Atomic and nuclear physics X-ray physics Attenuation of x-rays LD Physics Leaflets P6.3.2.1 Investigating the attenuation of x-rays as a function of the absorber material and absorber thickness Objects

More information

J. Am. Chem. Soc., 1998, 120(7), , DOI: /ja972816e

J. Am. Chem. Soc., 1998, 120(7), , DOI: /ja972816e J. Am. Chem. Soc., 1998, 120(7), 1430-1433, DOI:10.1021/ja972816e Terms & Conditions Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical

More information

Rajesh Prasad Department of Applied Mechanics Indian Institute of Technology New Delhi

Rajesh Prasad Department of Applied Mechanics Indian Institute of Technology New Delhi TEQIP WORKSHOP ON HIGH RESOLUTION X-RAY AND ELECTRON DIFFRACTION, FEB 01, 2016, IIT-K. Introduction to x-ray diffraction Peak Positions and Intensities Rajesh Prasad Department of Applied Mechanics Indian

More information

2. A proton is traveling with velocity v, to the right, through a magnetic field pointing into the page as indicated in the figure below.

2. A proton is traveling with velocity v, to the right, through a magnetic field pointing into the page as indicated in the figure below. 1. An electron has a mass of 9.11 x 10-31 kg and its charge is -1.6 x 10-19 C. The electron is released from rest in a vacuum between two flat, parallel metal plates that are 10 cm apart. The potential

More information

X-ray Diffraction from Materials

X-ray Diffraction from Materials X-ray Diffraction from Materials 008 Spring Semester Lecturer; Yang Mo Koo Monday and Wednesday 4:45~6:00 8. X-ray Diffractometers Diffractometer: a measuring instrument for analyzing the structure of

More information

PS210 - Optical Techniques. Section VI

PS210 - Optical Techniques. Section VI PS210 - Optical Techniques Section VI Section I Light as Waves, Rays and Photons Section II Geometrical Optics & Optical Instrumentation Section III Periodic and Non-Periodic (Aperiodic) Waves Section

More information

Good Diffraction Practice Webinar Series

Good Diffraction Practice Webinar Series Good Diffraction Practice Webinar Series High Resolution X-ray Diffractometry (1) Mar 24, 2011 www.bruker-webinars.com Welcome Heiko Ress Global Marketing Manager Bruker AXS Inc. Madison, Wisconsin, USA

More information

Data processing and reduction

Data processing and reduction Data processing and reduction Leopoldo Suescun International School on Fundamental Crystallography 2014 May 1st, 2014 Reciprocal lattice c* b* b * dh' k' l' 1 dh' k' l' * dhkl 1 dhkl a a* 0 d hkl c bc

More information