Physics 30: Chapter 5 Exam Wave Nature of Light

Size: px
Start display at page:

Download "Physics 30: Chapter 5 Exam Wave Nature of Light"

Transcription

1 Physics 30: Chapter 5 Exam Wave Nature of Light Name: Date: Mark: /33 Numeric Response. Place your answers to the numeric response questions, with units, in the blanks at the side of the page. (1 mark each) 1. Determine the frequency of 300 nm light x Hz 2. A laser pulse aimed from the Earth at a reflector on the Moon requires a total travel time of 2.71 s between the initial pulse and the detection of the reflected signal back on the Earth. Calculate the distance between the Earth and the Moon x 10 8 m 3. Light from air strikes the surface of water (n = 1.33) at an angle of 36 relative to the surface as it comes from the air. Calculate the angle of refraction Light falls on a pair of slits 1.30 µm apart. The maxima are measured to be 61.0 cm apart and the screen is a distance of 1.00 m from the slits. Determine the wavelength of light. 677 nm Kennedy

2 Written Response. Show all your work. Clearly identify your final answer(s) rounded off to the proper number of significant digits. Most hand held lasers have a power rating of 0.5 mw. A more powerful 40 mw green laser is used with a DVD in order to determine its wavelength as shown in the diagram below. The DVD acts as a diffraction grating having a line spacing of 0.74 µm. screen Distance between first order bright fringes laser DVD Separation distance (cm) Distance between first order bright fringes (cm) (43.9) (48.6) (66.1) (79.7) (93.0) Kennedy

3 a. Plot the data in order to produce a straight line. (3 marks) Distance between first order bright spots as a function of Separation Distance Distance to Central Fringe (cm) (45.0, 46.0) (90.0, 94.5) Separation distance (cm) b. Use the graph to determine the wavelength of the green laser. (3 marks) The laser has a wavelength of 542 nm. Kennedy

4 Multiple Choice. Select the best answer and mark it clearly on your Scantron. (1 mark each) 1. Identify the situation below that would produce electromagnetic radiation. a. An electron travelling at a constant speed b. A neutron accelerating from rest c. An electron travelling in a circle d. A neutron travelling in a circle 2. Select the list that has sections of the EMR spectrum ordered from lowest to highest energy. a. infrared, violet, red, X-rays b. radio, orange, blue, gamma c. X-rays, ultraviolet, blue, infrared d. Infrared, green, red gamma 3. An electromagnet wave is travelling to the north. Its magnetic component is vibrating eastwest. Its electric component must be vibrating a. up-down b. west-east c. north-south d. south-north 4. Calculate the period of the wave for a blue laser diode having a frequency of 4.24 x Hz. a x s b x 10-7 s c x s d x s 5. A physics teacher orders a new pen laser that has a wavelength of 460 nm. The location in the spectrum of the laser beam produced by this pen laser is most likely a. red b. orange c. blue d. ultraviolet 6. Determine the time required for a radio signal to reach Earth if it was sent from Mars which is a distance of 7.80 x m when it is closest to the Earth. a. 260 s b ms c x s d. 130 s Kennedy

5 7. Identify the graph that best communicates the frequency of an electromagnet wave as a function of wavelength. a. b. wavelength wavelength c. d. wavelength wavelength 8. A laser requires a time of 620 ms to travel from its source, bounce off a distant reflector and return to the source. Determine the separation distance between the source and reflector. a x 10 8 m b x 10 7 m c x 10-8 m d x 10-8 m 9. Armand Fizeau used a spinning wheel rotating at 12.5 Hz, which showed that the light travelled the 8.63 km separating the wheel and a reflecting mirror, and back in a time of 5.5 x 10-5 s. Calculate the speed of light as determined by Fizeau. a. 1.6 x 10 8 m/s b. 2.9 x 10 8 m/s c. 3.0 x 10 8 m/s d. 3.1 x 10 8 m/s Kennedy

6 Use the information below to answer questions 10 & 11. Albert Michelson used a rotating mirror and a plane mirror, as shown in the diagram below, to precisely determine the speed of light. This allowed a pulse of light to be reflected and observed at the detector only when the rotating mirror rotated at a proper frequency. Light source Rotating mirror Plane mirror Observer (detector) 10. Determine Michelson s value for the speed of light using an 8-sided mirror rotating at Hz placed km from the plane mirror. a x 10 8 m/s b x 10 8 m/s c x 10 8 m/s d x 10 8 m/s 11. Determine the separation distance between Michelson s rotating 8-sided mirror and the plane mirror if the mirror must be rotating at Hz to allow the observer to detect the reflected light pulse. a km b km c km d. 120 km 12. A ray of light from air, having a refractive index of 1.00, is incident on the surface of a block of glass, having a refractive index of 1.50, at an angle of Determine the angle of refraction. a b c d Light travelling from air enters a layer of a clear liquid. The speed of light through the liquid is 2.75 x 10 8 m/s. Calculate the liquid s index of refraction relative to air. a b c d Kennedy

7 14. As a light wave crosses the boundary between two different mediums, its remains constant. a. speed b. frequency c. angle d. wavelength 15. The speed of light in a clear liquid is 0.80 the speed of light in air. The critical angle of the liquid is a b. 37 c. 53 d Diffraction may be defined as the amount of a. bending as a wave passes from one substance to another b. bending as a wave passes through an opening c. frequency shift when a wave passes from one substance to another d. frequency shift as a wave passes through an opening 17. A grating is ruled with a line density of 5400 lines/cm. Monochromatic light striking the grating forms a second order image diffracted at Determine the wavelength of the light used. a. 655 nm b. 131 nm c x 10-4 m d x 10-5 m 18. Monochromatic light of 530 nm is passed through two narrow slits imprinted onto a slide. The distance between the two slits is 0.75 mm and the screen is located 120 cm away from the slide. Determine the separation distance between bright lines in the interference pattern formed on the screen. a. 1.2 mm b mm c mm d mm Kennedy

8 19. Determine the angle of deviation of the second order maxima produced when monochromatic light of 640 nm is directed through two slits that are 6.43 µm apart. a b c. 53 d Identify the phenomena below that does not support the idea that light is a wave. a. Polarization b. Diffraction c. Motion through a vacuum d. Constructive and destructive interference 21. A visible spectrum is produced using white light and a glass prism. The colour that demonstrates the greatest deviation from its original path is a. red b. green c. blue d. violet 22. Dispersion may be defined as the a. separation of wavelengths due colour absorption b. separation of wavelengths due to refraction c. production of constructive interference d. production of destructive interference 23. A polarizing filter a. filters out all light except wavelengths that are oriented with the filter b. causes light to behave like a particle reflecting between two mirrors c. generates electromagnetic fields d. releases energy in the form of EMR in all directions Kennedy

9 Stats Class average on multiple choice: 83 % Question Answer % Correct Question Answer % Correct 1 C B 60 2 B A 77 3 A B 90 4 D A 97 5 C C 73 6 A D 67 7 A A 80 8 B A 83 9 E B B C B B C 87 Kennedy

UNIT-5 EM WAVES UNIT-6 RAY OPTICS

UNIT-5 EM WAVES UNIT-6 RAY OPTICS UNIT-5 EM WAVES 2 Marks Question 1. To which regions of electromagnetic spectrum do the following wavelengths belong: (a) 250 nm (b) 1500 nm 2. State any one property which is common to all electromagnetic

More information

A) n L < 1.0 B) n L > 1.1 C) n L > 1.3 D) n L < 1.1 E) n L < 1.3

A) n L < 1.0 B) n L > 1.1 C) n L > 1.3 D) n L < 1.1 E) n L < 1.3 1. A beam of light passes from air into water. Which is necessarily true? A) The frequency is unchanged and the wavelength increases. B) The frequency is unchanged and the wavelength decreases. C) The

More information

0.4 s 0.8 s 1.5 s. 2.5 s. 2. A beam of light from a ray box spreads out as shown in the diagram and strikes a plane mirror.

0.4 s 0.8 s 1.5 s. 2.5 s. 2. A beam of light from a ray box spreads out as shown in the diagram and strikes a plane mirror. 1. ship is fitted with echo-sounding equipment. pulse of sound is sent downwards from the ship at a speed of 1500 m/s. The seabed is 600m below the ship. How long will it take the pulse of sound to return

More information

P5 Revision Questions

P5 Revision Questions P5 Revision Questions Part 2 Question 1 How can microwaves be used to communicate? Answer 1 Sent from transmitter, received and amplified by satellite in space, re-transmitted back to earth and picked

More information

Final Exam, Part A. December 12, Score:

Final Exam, Part A. December 12, Score: Physics 152 December 12, 2005 Final Exam, Part A Roster No.: Score: Exam time limit: 2 hours. You may use a calculator and both sides of TWO sheets of notes, handwritten only. Closed book; no collaboration.

More information

A 0.2 m s -1. B 10 m s -1. C 20 m s -1. D 40 m s -1

A 0.2 m s -1. B 10 m s -1. C 20 m s -1. D 40 m s -1 Q1. Two points on a progressive wave are one-eighth of a wavelength apart. The distance between them is 0.5 m, and the frequency of the oscillation is 10 Hz. What is the minimum speed of the wave? 0.2

More information

Name Class Date. What two models do scientists use to describe light? What is the electromagnetic spectrum? How can electromagnetic waves be used?

Name Class Date. What two models do scientists use to describe light? What is the electromagnetic spectrum? How can electromagnetic waves be used? CHAPTER 16 12 SECTION Sound and Light The Nature of Light KEY IDEAS As you read this section, keep these questions in mind: What two models do scientists use to describe light? What is the electromagnetic

More information

Higher Physics Particles and Waves 2 Notes

Higher Physics Particles and Waves 2 Notes Higher Physics Particles and Waves 2 Notes Teachers Booklet Learning Outcomes Interference and diffraction This builds on information from N5 Waves and Radiation H Particles and Waves book 1 At the end

More information

Electromagnetic Waves A.K.A. Light

Electromagnetic Waves A.K.A. Light Electromagnetic Waves A.K.A. Light When Thomas Edison worked late into the night on the electric light, he had to do it by gas lamp or candle. I'm sure it made the work seem that much more urgent. George

More information

Physics 25 Exam #4 December 2, 2008 Dr. Alward Page 1

Physics 25 Exam #4 December 2, 2008 Dr. Alward Page 1 1. Light with a wavelength of 589 nm in a vacuum strikes the surface of an unknown liquid at an angle of 31.2 with respect to the normal to the surface. If the light travels at a speed of 1.97 10 8 m/s

More information

Which of the following can be used to calculate the resistive force acting on the brick? D (Total for Question = 1 mark)

Which of the following can be used to calculate the resistive force acting on the brick? D (Total for Question = 1 mark) 1 A brick of mass 5.0 kg falls through water with an acceleration of 0.90 m s 2. Which of the following can be used to calculate the resistive force acting on the brick? A 5.0 (0.90 9.81) B 5.0 (0.90 +

More information

Downloaded from

Downloaded from Question 10.1: Monochromatic light of wavelength 589 nm is incident from air on a water surface. What are the wavelength, frequency and speed of (a) reflected, and (b) refracted light? Refractive index

More information

Physics 11 Exam 3 Spring 2016

Physics 11 Exam 3 Spring 2016 Physics 11 Exam 3 Spring 2016 Name: Circle the BEST Answer 1 Electromagnetic waves consist of A) compressions and rarefactions of electromagnetic pulses. B) oscillating electric and magnetic fields. C)

More information

The Final Exam (Exam 4) will be on FRIDAY MAY 11 From 3 5 PM in LR1 VAN

The Final Exam (Exam 4) will be on FRIDAY MAY 11 From 3 5 PM in LR1 VAN 1 --------------------------------------------------------------------------------------------------------------------- 29:006 SPRING 2012 PRACTICE EXAM 4 ---------------------------------------------------------------------------------------------------------------------

More information

TOPIC: LIGHT, ELECTROMAGNETIC WAVES, 2D AND 3D WAVEFRONTS

TOPIC: LIGHT, ELECTROMAGNETIC WAVES, 2D AND 3D WAVEFRONTS TOPIC: LIGHT, ELECTROMAGNETIC WAVES, 2D AND 3D WAVEFRONTS Learner Note: You need to know your definitions very well. You need to know the difference between refraction, reflection and diffraction. These

More information

CHAPTER 9. Knowledge. (d) 3 2 l

CHAPTER 9. Knowledge. (d) 3 2 l CHAPTER 9 Review K/U Knowledge/Understanding T/I Thinking/Investigation C Communication A Application Knowledge For each question, select the best answer from the four alternatives. 1. Water waves splash

More information

Waves Part 3B: Interference

Waves Part 3B: Interference Waves Part 3B: Interference Last modified: 31/01/2018 Contents Links Interference Path Difference & Interference Light Young s Double Slit Experiment What Sort of Wave is Light? Michelson-Morley Experiment

More information

SPECTRUM. Dispersion. This phenomenon can be observed in a lab environment using a

SPECTRUM. Dispersion. This phenomenon can be observed in a lab environment using a SPECTRUM Dispersion The phenomenon due to which a polychromatic light, like sunlight, splits into its component colours, when passed through a transparent medium like a glass prism, is called dispersion

More information

Skoog Chapter 6 Introduction to Spectrometric Methods

Skoog Chapter 6 Introduction to Spectrometric Methods Skoog Chapter 6 Introduction to Spectrometric Methods General Properties of Electromagnetic Radiation (EM) Wave Properties of EM Quantum Mechanical Properties of EM Quantitative Aspects of Spectrochemical

More information

Wave - Particle Duality of Light

Wave - Particle Duality of Light Properties of Light Objectives Explain wave-particle duality State the speed of light Describe electromagnetic waves and the electromagnetic spectrum Explain how light interacts with transparent and opaque

More information

1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light

1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light 1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light 1. Double-Slit Eperiment reading: Chapter 22 2. Single-Slit Diffraction reading: Chapter 22 3. Diffraction Grating reading: Chapter

More information

Prac%ce Quiz 8. These are Q s from old quizzes. I do not guarantee that the Q s on this year s quiz will be the same, or even similar.

Prac%ce Quiz 8. These are Q s from old quizzes. I do not guarantee that the Q s on this year s quiz will be the same, or even similar. Prac%ce Quiz 8 These are Q s from old quizzes. I do not guarantee that the Q s on this year s quiz will be the same, or even similar. A laser beam shines vertically upwards. What laser power is needed

More information

SECTION A Waves and Sound

SECTION A Waves and Sound AP Physics Multiple Choice Practice Waves and Optics SECTION A Waves and Sound 1. Which of the following statements about the speed of waves on a string are true? I. The speed depends on the tension in

More information

Unit 2 - Particles and Waves - Part 2

Unit 2 - Particles and Waves - Part 2 WAVE-PARTICLE DUALITY Unit - Particles and Waves - Part 8. The photoelectric effect and wave particle duality Photoelectric effect as evidence for the particulate nature of light. Photons of sufficient

More information

10. A Kelvin thermometer and a Fahrenheit thermometer both give the same reading for a certain sample. The corresponding Celsius temperature is: A)

10. A Kelvin thermometer and a Fahrenheit thermometer both give the same reading for a certain sample. The corresponding Celsius temperature is: A) Physics 223 practice final exam, Form X!! Fall 2017 Name Write your answers (one per question) on a Scantron form (882E) using a pencil. Write your name above. Return this exam with your scantron upon

More information

Higher Physics. Particles and Waves

Higher Physics. Particles and Waves Perth Academy Physics Department Higher Physics Particles and Waves Particles and Waves Homework Standard Model 1 Electric Fields and Potential Difference 2 Radioactivity 3 Fusion & Fission 4 The Photoelectric

More information

Fig. 8.1 illustrates the three measurements. air medium A. ray 1. air medium A. ray 2. air medium A. ray 3. Fig For Examiner s Use

Fig. 8.1 illustrates the three measurements. air medium A. ray 1. air medium A. ray 2. air medium A. ray 3. Fig For Examiner s Use 9 9 9 14 8 In an optics lesson, a Physics student traces the paths of three s of light near the boundary between medium A and. The student uses a protractor to measure the various angles. Fig. 8.1 illustrates

More information

Modern Physics, Waves, Electricity

Modern Physics, Waves, Electricity Name: Date: 1. Metal sphere has a charge of +12 elementary charges and identical sphere has a charge of +16 elementary charges. fter the two spheres are brought into contact, the charge on sphere is 4.

More information

General Physics II Summer Session 2013 Review Ch - 16, 17, 18

General Physics II Summer Session 2013 Review Ch - 16, 17, 18 95.104 General Physics II Summer Session 2013 Review Ch - 16, 17, 18 A metal ball hangs from the ceiling by an insulating thread. The ball is attracted to a positivecharged rod held near the ball. The

More information

SECTION 3 & 4 LIGHT WAVES & INFORMATION TRANSFER

SECTION 3 & 4 LIGHT WAVES & INFORMATION TRANSFER SECTION 3 & 4 LIGHT WAVES & INFORMATION TRANSFER Light Waves Light is a type of energy that travels as waves. Light is different than other waves because it does not need matter to travel. Light waves

More information

Bannerman High School Physics Department. Making Accurate Statements. Higher Physics. Quanta and Waves

Bannerman High School Physics Department. Making Accurate Statements. Higher Physics. Quanta and Waves Bannerman High School Physics Department Making Accurate Statements Higher Physics Quanta and Waves Mandatory Key Area: Particle Physics 1. Use your knowledge of physics to estimate the ratio of the smallest

More information

A beam of coherent monochromatic light from a distant galaxy is used in an optics experiment on Earth.

A beam of coherent monochromatic light from a distant galaxy is used in an optics experiment on Earth. Waves_P2 [152 marks] A beam of coherent monochromatic light from a distant galaxy is used in an optics experiment on Earth. The beam is incident normally on a double slit. The distance between the slits

More information

Massachusetts Institute of Technology Physics 8.03 Practice Final Exam 3

Massachusetts Institute of Technology Physics 8.03 Practice Final Exam 3 Massachusetts Institute of Technology Physics 8.03 Practice Final Exam 3 Instructions Please write your solutions in the white booklets. We will not grade anything written on the exam copy. This exam is

More information

Chapter 26: Properties of Light

Chapter 26: Properties of Light Lecture Outline Chapter 26: Properties of Light This lecture will help you understand: Electromagnetic Waves The Electromagnetic Spectrum Transparent Materials Opaque Materials Seeing Light The Eye Electromagnetic

More information

Light as a Transverse Wave.

Light as a Transverse Wave. Waves and Superposition (Keating Chapter 21) The ray model for light (i.e. light travels in straight lines) can be used to explain a lot of phenomena (like basic object and image formation and even aberrations)

More information

Solution 3: A glass prism deviates the violet light most and the red light least.

Solution 3: A glass prism deviates the violet light most and the red light least. EXERCISE- 6 (A) Question 1: Name three factors on which the deviation produces by a prism depends and state how does it depend on the factors stated by you. Solution 1: The deviation produced by the prism

More information

PARTICLES AND WAVES CHAPTER 29 CONCEPTUAL QUESTIONS

PARTICLES AND WAVES CHAPTER 29 CONCEPTUAL QUESTIONS CHAPTER 29 PARTICLES AND WAVES CONCEPTUAL QUESTIONS 1. REASONING AND SOLUTION A monochromatic light source emits photons of a single frequency. According to Equation 29.2, the energy, E, of a single photon

More information

Fluorescence. Incandescence. Electric. Bioluminescence Chemiluminescence. Combustion

Fluorescence. Incandescence. Electric. Bioluminescence Chemiluminescence. Combustion Fluorescence Incandescence Electric Bioluminescence Chemiluminescence Combustion Pythagoras A Greek philosopher Believed light was beams of tiny particles The eyes could detect these particles and see

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , 1 O P T I C S 1. Define resolving power of a telescope & microscope and give the expression for its resolving power. 2. Explain briefly the formation of mirage in deserts. 3. The radii of curvature of

More information

PS210 - Optical Techniques. Section VI

PS210 - Optical Techniques. Section VI PS210 - Optical Techniques Section VI Section I Light as Waves, Rays and Photons Section II Geometrical Optics & Optical Instrumentation Section III Periodic and Non-Periodic (Aperiodic) Waves Section

More information

Algebra Based Physics

Algebra Based Physics Slide 1 / 108 Slide 2 / 108 Algebra Based Physics Electromagnetic Waves 2015-12-01 www.njctl.org Slide 3 / 108 Table of Contents Click on the topic to go to that section An Abridged "History" of Light

More information

Revision Guide. Chapter 7 Quantum Behaviour

Revision Guide. Chapter 7 Quantum Behaviour Revision Guide Chapter 7 Quantum Behaviour Contents CONTENTS... 2 REVISION CHECKLIST... 3 REVISION NOTES... 4 QUANTUM BEHAVIOUR... 4 Random arrival of photons... 4 Photoelectric effect... 5 PHASE AN PHASORS...

More information

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

PHYSICS 11. Review What is the critical angle for a glass that has an index of refraction of 1.52?

PHYSICS 11. Review What is the critical angle for a glass that has an index of refraction of 1.52? Waves Review 4 1. Explain, with the help of a sketch, what each of these terms means with respect to waves: (a) crest; (b) trough; (c) wavelength; (d) frequency; (e) amplitude. 2. A dog wags its tail 50

More information

Final Exam. PHY2049 Fall11

Final Exam. PHY2049 Fall11 Exam 1. Three charges form an equilateral triangle of side length d = 2 cm. The top charge is q3 = 3 μc, while the bottom two are q1 = q2 = - 6 μc. What is the magnitude of the net force acting on q3?

More information

DEPARTMENT OF NATURAL SCIENCES. PHYS 1112, Exam 3 Section 1 Version 1 December 6, 2004 Total Weight: 100 points

DEPARTMENT OF NATURAL SCIENCES. PHYS 1112, Exam 3 Section 1 Version 1 December 6, 2004 Total Weight: 100 points TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 1112, Exam 3 Section 1 Version 1 December 6, 2004 Total Weight: 100 points 1. Check your examination for completeness prior to starting.

More information

Unit 3: Optics Chapter 4. Properties of Light

Unit 3: Optics Chapter 4. Properties of Light Unit 3: Optics Chapter 4 Properties of Light There are many types of light sources... Fluorescence Incandescence Electric Bioluminescence Chemiluminescence Combustion The Nature of Light Pythagoras A Greek

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum The Electromagnetic Spectrum 1 of 19 Boardworks Ltd 2016 The Electromagnetic Spectrum 2 of 19 Boardworks Ltd 2016 Detecting waves beyond the visible spectrum 3 of 19 Boardworks Ltd 2016 Invisible light

More information

Telescopes (Chapter 6)

Telescopes (Chapter 6) Telescopes (Chapter 6) Based on Chapter 6 This material will be useful for understanding Chapters 7 and 10 on Our planetary system and Jovian planet systems Chapter 5 on Light will be useful for understanding

More information

Photochemical principles

Photochemical principles Chapter 1 Photochemical principles Dr. Suzan A. Khayyat 1 Photochemistry Photochemistry is concerned with the absorption, excitation and emission of photons by atoms, atomic ions, molecules, molecular

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

Core Concept. PowerPoint Lectures to accompany Physical Science, 8e. Chapter 7 Light. New Symbols for this Chapter 3/29/2011

Core Concept. PowerPoint Lectures to accompany Physical Science, 8e. Chapter 7 Light. New Symbols for this Chapter 3/29/2011 PowerPoint Lectures to accompany Physical Science, 8e Chapter 7 Light Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Core Concept Light is electromagnetic radiation

More information

Optics in a Fish Tank Demonstrations for the Classroom

Optics in a Fish Tank Demonstrations for the Classroom Optics in a Fish Tank Demonstrations for the Classroom Introduction: This series of demonstrations will illustrate a number of optical phenomena. Using different light sources and a tank of water, you

More information

Waves Part 3: Superposition

Waves Part 3: Superposition Waves Part 3: Superposition Last modified: 06/06/2017 Superposition Standing Waves Definition Standing Waves Summary Standing Waves on a String Standing Waves in a Pipe Standing Waves in a Pipe with One

More information

Experiment #4 Nature of Light: Telescope and Microscope and Spectroscope

Experiment #4 Nature of Light: Telescope and Microscope and Spectroscope Experiment #4 Nature of Light: Telescope and Microscope and Spectroscope In this experiment, we are going to learn the basic principles of the telescope and the microscope that make it possible for us

More information

KULLEGG MARIA REGINA BOYS SECONDARY MOSTA HALF-YEARLY EXAMINATIONS 2010/2011

KULLEGG MARIA REGINA BOYS SECONDARY MOSTA HALF-YEARLY EXAMINATIONS 2010/2011 KULLEGG MARIA REGINA BOYS SECONDARY MOSTA HALF-YEARLY EXAMINATIONS 2010/2011 SUBJECT: PHYSICS NAME : FORM : TIME: 1 HR 30 MIN INDEX NO : MARK: Answer ALL questions in the spaces provided on the Exam Paper.

More information

WAVE OPTICS GENERAL. Fig.1a The electromagnetic spectrum

WAVE OPTICS GENERAL. Fig.1a The electromagnetic spectrum WAVE OPTICS GENERAL - The ray optics cannot explain the results of the two following experimental situations: a) When passing by small openings or illuminating small obstacles, the light bends around borders

More information

Particles and Waves Homework One (Target mark 13 out of 15)

Particles and Waves Homework One (Target mark 13 out of 15) Particles and Waves Homework One (Target mark 13 out of 15) Display all answers to 2 significant figures. 1. A car covers a distance of 170m in a time of 18s. Calculate the average speed of the car. 2.

More information

Indicate whether each statement is true or false by circling your answer. No explanation for your choice is required. Each answer is worth 3 points.

Indicate whether each statement is true or false by circling your answer. No explanation for your choice is required. Each answer is worth 3 points. Physics 5B FINAL EXAM Winter 2009 PART I (15 points): True/False Indicate whether each statement is true or false by circling your answer. No explanation for your choice is required. Each answer is worth

More information

AP Waves/Optics ~ Learning Guide

AP Waves/Optics ~ Learning Guide AP Waves/Optics ~ Learning Guide Name: Instructions: Using a pencil, answer the following questions. The guide is marked based on effort, completeness, thoughtfulness, and neatness (not accuracy). Do your

More information

Cumulative Review 1 Use the following information to answer the next two questions.

Cumulative Review 1 Use the following information to answer the next two questions. Cumulative Review 1 Use the following information to answer the next two questions. 1. At what distance from the mirror is the image located? a. 0.10 m b. 0.20 m c. 0.30 m d. 0.40 m 2. At what distance

More information

SPH4U UNIVERSITY PHYSICS

SPH4U UNIVERSITY PHYSICS SPH4U UNIVERSITY PHYSICS THE WAVE NATURE OF LIGHT L (P.520-525) Wave Nature of Light Not only did Young s double-slit experiment demonstrate the wave nature of light, it also paved the way for applications

More information

Discussion Review Test #2. Units 12-19: (1) (2) (3) (4) (5) (6)

Discussion Review Test #2. Units 12-19: (1) (2) (3) (4) (5) (6) Discussion Review Test #2 Units 12-19: (1) (2) (3) (4) (5) (6) (7) (8) (9) Galileo used his observations of the changing phases of Venus to demonstrate that a. the sun moves around the Earth b. the universe

More information

GCE AS/A level 1322/01 PHYSICS PH2 Waves and Particles

GCE AS/A level 1322/01 PHYSICS PH2 Waves and Particles Surname Centre Number Candidate Number Other Names 2 GCE AS/A level 1322/01 PHYSICS PH2 Waves and Particles S15-1322-01 P.M. THURSDAY, 4 June 2015 1 hour 30 minutes For s use Question Maximum Mark Mark

More information

Physics 1161: Lecture 22

Physics 1161: Lecture 22 Physics 1161: Lecture 22 Blackbody Radiation Photoelectric Effect Wave-Particle Duality sections 30-1 30-4 Everything comes unglued The predictions of classical physics (Newton s laws and Maxwell s equations)

More information

A) n 1 > n 2 > n 3 B) n 1 > n 3 > n 2 C) n 2 > n 1 > n 3 D) n 2 > n 3 > n 1 E) n 3 > n 1 > n 2

A) n 1 > n 2 > n 3 B) n 1 > n 3 > n 2 C) n 2 > n 1 > n 3 D) n 2 > n 3 > n 1 E) n 3 > n 1 > n 2 55) The diagram shows the path of a light ray in three different materials. The index of refraction for each material is shown in the upper right portion of the material. What is the correct order for

More information

λ Fig. 2 Name: y direction. In what c) in the + y direction d) in the y direction e) in the x direction

λ Fig. 2 Name: y direction. In what c) in the + y direction d) in the y direction e) in the x direction Name: Exam #3 D#: Physics 140 Section #: hoose the best answer for each of Questions 1-19 below. Mark your answer on your scantron form using a # pencil. (5.6 pts each) 1. At a certain instant in time,

More information

Preview from Notesale.co.uk Page 1 of 38

Preview from Notesale.co.uk Page 1 of 38 F UNDAMENTALS OF PHOTONICS Module 1.1 Nature and Properties of Light Linda J. Vandergriff Director of Photonics System Engineering Science Applications International Corporation McLean, Virginia Light

More information

Ch Guided Reading Sound and Light

Ch Guided Reading Sound and Light Name Date Hour Chapter 15 Answer Key Ch.15-18 Guided Reading Sound and Light 1. Compare the speed of sound as it travels within a liquid, a solid, and a gas. Why does the speed of sound differ? Sound travels

More information

Figure 1 shows white light passing through a triangular glass prism. The white light splits up into different colours. Two of the colours are shown.

Figure 1 shows white light passing through a triangular glass prism. The white light splits up into different colours. Two of the colours are shown. Name Q9.Visible white light consists of several different colours. Figure 1 shows white light passing through a triangular glass prism. The white light splits up into different colours. Two of the colours

More information

Version 087 EX4 ditmire (58335) 1

Version 087 EX4 ditmire (58335) 1 Version 087 EX4 ditmire (58335) This print-out should have 3 questions. Multiple-choice questions ma continue on the next column or page find all choices before answering. 00 (part of ) 0.0 points A material

More information

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one 5.1.1 Oscillating Systems Waves Review Checklist 5.1.2 Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one Four pendulums are built as shown

More information

U n 3 n Ba Kr (D) Br (C) Kr (B) Rb (E) 94 37

U n 3 n Ba Kr (D) Br (C) Kr (B) Rb (E) 94 37 1984 36. The critical angle for a transparent material in air is 30. The index of refraction of the material is most nearly (A) 0.33 (B) 0.50 (C) 1.0 (D) 1.5 (E) 2.0 37. An object is placed as shown in

More information

Science 30 Unit C: Electromagnetic Energy

Science 30 Unit C: Electromagnetic Energy Science 30 Unit C: Electromagnetic Energy Chapter 2 Assignment Summary Science 30 Unit C: Electromagnetic Energy Chapter 2 Assignment Total Possible Marks 57 For Teacher s Use Only Your Mark Teacher s

More information

Chapter 33: ELECTROMAGNETIC WAVES 559

Chapter 33: ELECTROMAGNETIC WAVES 559 Chapter 33: ELECTROMAGNETIC WAVES 1 Select the correct statement: A ultraviolet light has a longer wavelength than infrared B blue light has a higher frequency than x rays C radio waves have higher frequency

More information

Some properties of waves: Huygens principle Superposition Coherence Interference Young s double-slit experiment Thin-film interference

Some properties of waves: Huygens principle Superposition Coherence Interference Young s double-slit experiment Thin-film interference Some properties of waves: Huygens principle Superposition Coherence Interference Young s double-slit experiment Thin-film interference Phys 2435: Chap. 35, Pg 1 Geometrical Optics Assumption: the dimensions

More information

Exam 3--PHYS 202--S10

Exam 3--PHYS 202--S10 ame: Exam 3--PHYS 202--S0 Multiple Choice Identify the choice that best completes the statement or answers the question A person uses a convex lens that has a focal length of 25 cm to inspect a gem The

More information

PAP Physics Spring Exam Review

PAP Physics Spring Exam Review Class: Date: PAP Physics Spring Exam Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.. A container of gas is at a pressure of.3 0 5 Pa

More information

Wave Properties of Light Karolina H. Czarnecka, PhD Department of Molecular Bases of Medicine

Wave Properties of Light Karolina H. Czarnecka, PhD Department of Molecular Bases of Medicine Wave Properties of Light Karolina H. Czarnecka, PhD Department of Molecular Bases of Medicine karolina.czarnecka@umed.lodz.pl THE ELECTROMAGNETIC FORCE One of the four fundamental forces, the electromagnetic

More information

f= = s = Hz m Thus (B) is the correct answer.

f= = s = Hz m Thus (B) is the correct answer. MCAT Physics Problem Solving Drill 17: Electromagnetic Radiation Question No. 1 of 10 Question 1. Violet light has a wavelength of 700 nm. What is the frequency of this radiation? Question #01 (A) 2.3

More information

Revision Guide for Chapter 7

Revision Guide for Chapter 7 Revision Guide for Chapter 7 Contents Student s Checklist Revision Notes Path of least time... 4 Interference of photons... 5 Quantum behaviour... 5 Photons... 6 Electron diffraction... 7 Probability...

More information

Which of the following classes of electromagnetic waves will not ionise neutral atoms?

Which of the following classes of electromagnetic waves will not ionise neutral atoms? 1 In an experiment to demonstrate the photoelectric effect, a charged metal plate is illuminated with light from different sources. The plate loses its charge when an ultraviolet light source is used but

More information

Name : Roll No. :.... Invigilator s Signature :.. CS/B.Tech (NEW)/SEM-2/PH-201/2013 2013 PHYSICS - I Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are

More information

Name Final Exam May 1, 2017

Name Final Exam May 1, 2017 Name Final Exam May 1, 217 This test consists of five parts. Please note that in parts II through V, you can skip one question of those offered. Some possibly useful formulas appear below. Constants, etc.

More information

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters Disclaimer: Chapter 29 Alternating-Current Circuits (1) This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters 29-33. LC circuit: Energy stored LC

More information

Chapter 5 Electrons In Atoms

Chapter 5 Electrons In Atoms Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5.2 Electron Arrangement in Atoms 5.3 Atomic Emission Spectra and the Quantum Mechanical Model 1 Copyright Pearson Education, Inc., or its affiliates.

More information

Exam 4. P202 Spring 2004 Instructor: Prof. Sinova

Exam 4. P202 Spring 2004 Instructor: Prof. Sinova Exam 4 P202 Spring 2004 Instructor: Prof. Sinova Name: Date: 4/22/04 Section: All work must be shown to get credit for the answer marked. You must show or state your reasoning. If the answer marked does

More information

[2] [2] Fig. 4.1

[2] [2] Fig. 4.1 1 (a) (i) Explain what is meant by a progressive wave.... [2] (ii) State two differences between a progressive and a stationary wave. 1... 2... [2] (b) Fig. 4.1 shows, at time t = 0, the shape of a section

More information

Revision checklist SP4 5. SP4 Waves. SP4a Describing waves. SP4b Wave speeds. SP4c Refraction

Revision checklist SP4 5. SP4 Waves. SP4a Describing waves. SP4b Wave speeds. SP4c Refraction SP4 Waves SP4a Describing waves Recall that waves transfer energy and information but do not transfer matter. Describe waves using the terms frequency, wavelength, amplitude, period and velocity. Describe

More information

Electromagnetic Radiation

Electromagnetic Radiation Electromagnetic Radiation Producing EMR All EMR is produced by accelerating charges Consists of changing electric and magnetic fields Speed of all EMR in vacuum is 3.00 x 10 8 m/s EMR is made up electric

More information

Wave Motion and Sound

Wave Motion and Sound Wave Motion and Sound 1. A back and forth motion that repeats itself is a a. Spring b. Vibration c. Wave d. Pulse 2. The number of vibrations that occur in 1 second is called a. A Period b. Frequency c.

More information

PHYSICS 253 SAMPLE FINAL EXAM. Student Number. The last two pages of the exam have some equations and some physical constants.

PHYSICS 253 SAMPLE FINAL EXAM. Student Number. The last two pages of the exam have some equations and some physical constants. PHYSICS 253 SAMPLE FINAL EXAM Name Student Number CHECK ONE: Instructor 1 10:00 Instructor 2 1:00 Note that problems 1-19 are worth 2 points each, while problem 20 is worth 15 points and problems 21 and

More information

Chapter 27: Light. What is light?

Chapter 27: Light. What is light? Chapter 27: Light What is light? Scientists first theorized light was a wave as it behaved with a wave properties, i.e. diffraction and interference. In 1905, Einstein realized that light was behaving

More information

Phys 2B Final Exam Name:

Phys 2B Final Exam Name: Phys 2B Final Exam Name: Multiple Choice (3 points each) 1. Two capacitors initially uncharged are connected in series to a battery, as shown. What is the charge on the top plate of C 1? a. 81 μc b. 18

More information

PHYA2. (JUN15PHYA201) WMP/Jun15/PHYA2/E4. General Certificate of Education Advanced Subsidiary Examination June Mechanics, Materials and Waves

PHYA2. (JUN15PHYA201) WMP/Jun15/PHYA2/E4. General Certificate of Education Advanced Subsidiary Examination June Mechanics, Materials and Waves Centre Number Candidate Number For Examiner s Use Surname Other Names Candidate Signature Examiner s Initials General Certificate of Education Advanced Subsidiary Examination June 2015 Question 1 2 Mark

More information

PH206 Exam III Spring 2000

PH206 Exam III Spring 2000 Name PH206 Exam III Spring 2000 Some Constants: % = 3.14159 sin(a±b)=sinacosb ± cosasinb ) = 5.6696 10-8 W/m 2 #K 4 cos(a±b)=cosacosb. sinasinb k B = 1.38 10-23 J/K sina ± sinb = 2 sin ½(A±B) cos½(a.b)

More information

E-JUST s Sample Entrance Exam Faculty of Engineering

E-JUST s Sample Entrance Exam Faculty of Engineering E-JUST s Sample Entrance Exam Faculty of Engineering PHYSICS Time: 1 hr Choose the right answer: 1. Three equal resistors connected in series across a source e.m.f. together dissipate 10 watt. If the same

More information

Light Waves: Problem Set

Light Waves: Problem Set Light Waves: Problem Set Unless told otherwise, use 2.998x10 8 m/s as the value of the speed of light. Problem 1: In 1957, the U.S. Naval Research Laboratory conducted the first ever radar measurements

More information

Exam 2. Study Question. Conclusion. Question. Question. study question continued

Exam 2. Study Question. Conclusion. Question. Question. study question continued PS 110A-Hatch-Exam 2 Review - 1 Exam 2 Take exam in Grant Bldg. starting Friday, 13 th, through Monday, 16 th (by 4:00 pm). No late fee associated with Monday, before 4:00. Allow at least 1 hour for exam.

More information

LECTURE 32: Young's Double-Slit Experiment

LECTURE 32: Young's Double-Slit Experiment Select LEARNING OBJECTIVES: LECTURE 32: Young's Double-Slit Experiment Understand the two models of light; wave model and particle model. Be able to understand the difference between diffraction and interference.

More information