Table of contents 1. Thermal denaturation assay with BRD4(BD2) incubated with the covalent inhibitors vs. their. non-covalent controls.

Size: px
Start display at page:

Download "Table of contents 1. Thermal denaturation assay with BRD4(BD2) incubated with the covalent inhibitors vs. their. non-covalent controls."

Transcription

1 Supporting Information DESIGN AND CHARACTERIZATION OF NOVEL COVALENT BROMODOMAIN AND EXTRA-TERMINAL DOMAIN (BET) INHIBITORS TARGETING A METHIONINE Olesya A. Kharenko a *, Reena G. Patel a, S. David Brown a, Cyrus Calosing a, Andre White b, Damodharan Lakshminarasimhan b, Robert K. Suto b, Bryan C. Duffy c, Douglas B. Kitchen c, Kevin G. McLure a, Henrik C. Hansen a, Edward H van der Horst a, Peter R. Young a a Zenith Epigenetics, Suite 300, 4820 Richard Road SW, Calgary, Alberta, T3E 6L1, Canada b Xtal BioStructures, Inc., 12 Michigan Dr., Natick, MA 01760, USA c AMRI, 26 Corporate Circle, PO Box 15098, Albany, NY , USA To whom correspondence should be addressed: Olesya@zenithepigenetics.com Zenith Epigenetics, Suite 300, 4820 Richard Road SW, Calgary, Alberta, T3E 6L1, Canada Table of contents 1. Thermal denaturation assay with BRD4(BD2) incubated with the covalent inhibitors vs. their non-covalent controls. S2 2. Thermal denaturation assay with non-bet bromodomain proteins incubated with the covalent inhibitors vs. their non-covalent controls. S3 3. Thermal denaturation assay demonstrating stability of the covalent 1A/BRD4(BD1) complex at various ph and temperature conditions S4 4. Thermodenaturation assay with BRD4(BD1) and covalent inhibitor in the presence of the increasing concentrations of methionine or cysteine amino acids S5 5. Determination of the half-life of BRD4 post cycloheximide treatment in OCI-AML3 cell line. S6 6. Effect of covalent inhibitors on durability of proliferation in MV4-11 cells S7 7. Effect of the covalent compound vs. non-covalent control on the viability of PBMCs. S7 8. HPLC traces of tested compounds to demonstrate purity S8 9. Molecular Formula Strings S X-ray data reduction statistics and crystal parameters. S Crystallographic refinement statistics. S References S15 S1

2 Figure S1. Thermal denaturation assay with BRD4(BD2) incubated with the covalent inhibitors vs. their non-covalent controls at 30 min and 4 h. S2

3 Figure S2. Thermal denaturation assay with non-bet bromodomain proteins incubated with the covalent inhibitors vs. their non-covalent controls. S3

4 Figure S3. Thermal denaturation assay demonstrating stability of the covalent 1A/BRD4(BD1) complex in various ph and temperature conditions. A. 1A was incubated with BRD4(BD1) for 4 h at ph=5.4, 7.4, and 9 at room temperature. B. 1A/BRD4(BD1) complex was incubated for 4 h at room temperature and 37 0 C. C. 1A/BRD4(BD1) complex was incubated for 4 h followed by 3 freeze-thaw cycles. Thermoshifts was measured as described in the Materials and Method section. S4

5 Figure S4. Thermodenaturation assay with BRD4(BD1) and covalent inhibitor 1A in the presence of increasing concentrations of methionine or cysteine amino acids. S5

6 Figure S5. Determination of the half-life of BRD4 post cycloheximide treatment in OCI-AML3 cell line. S6

7 % Proliferation Relative to DMSO DMSO 3 3A 2 2A Figure S6. Effect of covalent inhibitors on durability of proliferation in MV4-11 cells S7

8 Figure S7. Effect of the covalent compound vs. non-covalent control on the viability of PBMCs. S8

9 Figure S8. HPLC traces of tested compounds to demonstrate purity 2 (ZEN-2906) 1 (ZEN-2759) S9

10 3 (ZEN-3212) S10

11 2A (ZEN-3862) 3A (ZEN-3411) S11

12 1A (ZEN-3219) S12

13 Table S1. Molecular Formula Strings Compound name 1 (ZEN-2759) CC1=C(C(C)=NO1)C1=CN(CC2=CC=CC=C2)C(=O)C=C1 2 (ZEN-2906) CC1=C(C(C)=NO1)C1=CN(CC2=CC=CC(F)=C2)C(=O)C=C1 3 (ZEN-3212) CC1=C(C(C)=NO1)C1=CC(N)=C2N=CN(CC3=CC=CC=C3)C2=C1 1A (ZEN-3219) CC1=C(C(C)=NO1)C1=CN(CC2=CC=C(C=C2)C2CO2)C(=O)C=C1 2A (ZEN-3411) CC1=C(C(C)=NO1)C1=CC(N)=C2N=CN(CC3=CC=C(C=C3)C3CO3)C2=C1 3A (ZEN-3862) CC1=C(C(C)=NO1)C1=CN(CC2=CC=C(C3CO3)C(F)=C2)C(=O)C=C1 S13

14 Table S2. X-ray data reduction statistics and crystal parameters. 1 (ZEN-2759) 1A (ZEN-3219) Space group P P Unit cell a= Å, b= Å, c= Å, α=β=γ=90 a= Å, b= Å, c= Å, α=β=γ=90 Resolution range (Å) ( ) ( ) Number of measurements 74, ,794 Number of unique reflections 11,124 22,125 R sym (%) a (0.444) (0.483) Completeness (%) a 99.8 (100) 99.9 (100) I/σ a 24.4 (5.8) 12.7 (4.2) Redundancy a 6.7 (6.9) 6.7 (6.6) a Numbers in the parentheses are for the highest resolution shell. Table S3. Crystallographic refinement statistics. 1 (ZEN-2759) 1A (ZEN-3219) Resolutionrange (Å) R cryst (%) R free (%) Number of ligand; waters 1; 176 1; 218 Rmsd bond lengths (Å) a Rmsd bond angles ( ) a Average B-factors (Å 2 ) Main chain atoms Side chain atoms Ligands Waters Ramachandran Plot (%) Favored 96% 100% Allowed 4% 0% Disallowed 0% 0% a Root-mean square deviation (rmsd) from the standard stereochemistry (Engh and Huber, 1991). S14

15 References: Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and Development of COOT Acta Cryst D. 2010, 66, Engh, R.A.; Huber, R. Accurate bond and angle parameters for X-ray protein structure refinement Acta Cryst. 1991, A47, Filippakopoulos, P.; Qi, J.; Picaud, S.; Shen, Y.; Smith, W.B.; Fedorov, O.; Morse, E.M.; Keates, T.; Hickman, T.T.; Felletar, I.; Philpott, M.; Munro, S.; McKeown, M.R.; Wang, Y.; Christie, A.L.; West, N.; Cameron, M.J.; Schwartz, B.; Heightman, T.D.; La Thangue, N.; French, C.A.; Wiest, O.; Kung, A.L.; Knapp, S.; Bradner, J.E.; Selective inhibition of BET bromodomains. Nature 2010, 468, McLure, K.G.; Gesner, E.M.; Tsujikawa, L.; Kharenko, O.A.; Atwell, S.; Campeau, E.; Wasiak, S.; Stein, A.; White, A.; Fontano, E.; Suto, R.K.; Wong, N.C.W.; Wagner, G.S.; Hansen, H.C.; Young, P.R. RVX-208, an inducer of ApoA-I in humans, is a BET Bromodomain antagonist. PLoS ONE, 2013, 8, Otwinowski, Z.; Minor, W. Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods in Enzymology, 1997, 276: S15

Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland Supporting information Twenty crystal structures of bromodomain and PHD finger containing protein 1 (BRPF1)/ligand complexes reveal conserved binding motifs and rare interactions Jian Zhu and Amedeo Caflisch*

More information

Supporting Information

Supporting Information Supporting Information Discovery and optimization of a selective ligand for the Switch/Sucrose Non-Fermenting-related bromodomains of Polybromo protein-1 by the use of virtual screening and hydration analysis.

More information

Supporting Information. Synthesis of Aspartame by Thermolysin : An X-ray Structural Study

Supporting Information. Synthesis of Aspartame by Thermolysin : An X-ray Structural Study Supporting Information Synthesis of Aspartame by Thermolysin : An X-ray Structural Study Gabriel Birrane, Balaji Bhyravbhatla, and Manuel A. Navia METHODS Crystallization. Thermolysin (TLN) from Calbiochem

More information

Electronic Supplementary Information (ESI) for Chem. Commun. Unveiling the three- dimensional structure of the green pigment of nitrite- cured meat

Electronic Supplementary Information (ESI) for Chem. Commun. Unveiling the three- dimensional structure of the green pigment of nitrite- cured meat Electronic Supplementary Information (ESI) for Chem. Commun. Unveiling the three- dimensional structure of the green pigment of nitrite- cured meat Jun Yi* and George B. Richter- Addo* Department of Chemistry

More information

Acta Crystallographica Section F

Acta Crystallographica Section F Supporting information Acta Crystallographica Section F Volume 70 (2014) Supporting information for article: Chemical conversion of cisplatin and carboplatin with histidine in a model protein crystallised

More information

Structurale, Université Grenoble Alpes, CNRS, CEA, Grenoble, France

Structurale, Université Grenoble Alpes, CNRS, CEA, Grenoble, France Supplementary Information to Lysine relay mechanism coordinates intermediate transfer in vitamin B6 biosynthesis Matthew J. Rodrigues 1,2, Volker Windeisen 1,3, Yang Zhang 4, Gabriela Guédez 3, Stefan

More information

PAN-modular Structure of Parasite Sarcocystis muris Microneme Protein SML-2 at 1.95 Å Resolution and the Complex with 1-Thio-β-D-Galactose

PAN-modular Structure of Parasite Sarcocystis muris Microneme Protein SML-2 at 1.95 Å Resolution and the Complex with 1-Thio-β-D-Galactose Supplementary Material to the paper: PAN-modular Structure of Parasite Sarcocystis muris Microneme Protein SML-2 at 1.95 Å Resolution and the Complex with 1-Thio-β-D-Galactose Jürgen J. Müller, a Manfred

More information

Pathogenic C9ORF72 Antisense Repeat RNA Forms a Double Helix with Tandem C:C Mismatches

Pathogenic C9ORF72 Antisense Repeat RNA Forms a Double Helix with Tandem C:C Mismatches Supporting Information Pathogenic C9ORF72 Antisense Repeat RNA Forms a Double Helix with Tandem C:C Mismatches David W. Dodd, Diana R. Tomchick, David R. Corey, and Keith T. Gagnon METHODS S1 RNA synthesis.

More information

Supporting Information

Supporting Information Supporting Information Structural Basis of the Antiproliferative Activity of Largazole, a Depsipeptide Inhibitor of the Histone Deacetylases Kathryn E. Cole 1, Daniel P. Dowling 1,2, Matthew A. Boone 3,

More information

Plasmid Relevant features Source. W18N_D20N and TrXE-W18N_D20N-anti

Plasmid Relevant features Source. W18N_D20N and TrXE-W18N_D20N-anti Table S1. E. coli plasmids Plasmid Relevant features Source pdg680 T. reesei XynII AA 2-190 with C-terminal His 6 tag optimized for E. coli expression in pjexpress401 Wan et al. (in press) psbn44d psbn44h

More information

Supplementary Material

Supplementary Material upplementary Material Molecular docking and ligand specificity in fragmentbased inhibitor discovery Chen & hoichet 26 27 (a) 2 1 2 3 4 5 6 7 8 9 10 11 12 15 16 13 14 17 18 19 (b) (c) igure 1 Inhibitors

More information

Supporting Information

Supporting Information In Silico Identification of a ovel Hinge-Binding Scaffold for Kinase Inhibitor Discovery Yanli Wang a#, Yuze Sun b,a#, Ran Cao a#, Dan Liu a, Yuting Xie a, Li Li a, Xiangbing Qi a*, and iu Huang a* a.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Table of Contents Page Supplementary Table 1. Diffraction data collection statistics 2 Supplementary Table 2. Crystallographic refinement statistics 3 Supplementary Fig. 1. casic1mfc packing in the R3

More information

Tools for Cryo-EM Map Fitting. Paul Emsley MRC Laboratory of Molecular Biology

Tools for Cryo-EM Map Fitting. Paul Emsley MRC Laboratory of Molecular Biology Tools for Cryo-EM Map Fitting Paul Emsley MRC Laboratory of Molecular Biology April 2017 Cryo-EM model-building typically need to move more atoms that one does for crystallography the maps are lower resolution

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11054 Supplementary Fig. 1 Sequence alignment of Na v Rh with NaChBac, Na v Ab, and eukaryotic Na v and Ca v homologs. Secondary structural elements of Na v Rh are indicated above the

More information

Supplementary information for:

Supplementary information for: SUPPLEMETARY IFRMATI Supplementary information for: Structure of a β 1 -adrenergic G protein-coupled receptor Tony Warne, Maria J. Serrano-Vega, Jillian G. Baker#, Rouslan Moukhametzianov, Patricia C.

More information

Targeting Low-Druggability Bromodomains: Fragment Based Screening and Inhibitor Design against the BAZ2B Bromodomain

Targeting Low-Druggability Bromodomains: Fragment Based Screening and Inhibitor Design against the BAZ2B Bromodomain pubs.acs.org/jmc Terms of Use CC-BY Targeting Low-Druggability Bromodomains: Fragment Based Screening and Inhibitor Design against the BAZ2B Bromodomain Fleur M. Ferguson, Oleg Fedorov, Apirat Chaikuad,

More information

Acta Cryst. (2017). D73, doi: /s

Acta Cryst. (2017). D73, doi: /s Acta Cryst. (2017). D73, doi:10.1107/s2059798317010932 Supporting information Volume 73 (2017) Supporting information for article: Designing better diffracting crystals of biotin carboxyl carrier protein

More information

Direct Method. Very few protein diffraction data meet the 2nd condition

Direct Method. Very few protein diffraction data meet the 2nd condition Direct Method Two conditions: -atoms in the structure are equal-weighted -resolution of data are higher than the distance between the atoms in the structure Very few protein diffraction data meet the 2nd

More information

Web-based Auto-Rickshaw for validation of the X-ray experiment at the synchrotron beamline

Web-based Auto-Rickshaw for validation of the X-ray experiment at the synchrotron beamline Web-based Auto-Rickshaw for validation of the X-ray experiment at the synchrotron beamline Auto-Rickshaw http://www.embl-hamburg.de/auto-rickshaw A platform for automated crystal structure determination

More information

Supporting Information. Full and Partial Agonism of a Designed Enzyme Switch

Supporting Information. Full and Partial Agonism of a Designed Enzyme Switch Supporting Information Full and Partial Agonism of a Designed Enzyme Switch S. Jimmy Budiardjo 1, Timothy J. Licknack 2, Michael B. Cory 2, Dora Kapros 2, Anuradha Roy 3, Scott Lovell 4, Justin Douglas

More information

Acta Crystallographica Section D

Acta Crystallographica Section D Supporting information Acta Crystallographica Section D Volume 70 (2014) Supporting information for article: Structural characterization of the virulence factor Nuclease A from Streptococcus agalactiae

More information

BET PROTACs Are More Broadly Effective Than BET Inhibitors. Dr. Kevin Coleman Arvinas, LLC New Haven, CT

BET PROTACs Are More Broadly Effective Than BET Inhibitors. Dr. Kevin Coleman Arvinas, LLC New Haven, CT BET PROTACs Are More Broadly Effective Than BET Inhibitors Dr. Kevin Coleman Arvinas, LLC New Haven, CT 1 Disclosures I am an employee of and have an equity stake in Arvinas 2 Arvinas: The Protein Degradation

More information

Summary of Experimental Protein Structure Determination. Key Elements

Summary of Experimental Protein Structure Determination. Key Elements Programme 8.00-8.20 Summary of last week s lecture and quiz 8.20-9.00 Structure validation 9.00-9.15 Break 9.15-11.00 Exercise: Structure validation tutorial 11.00-11.10 Break 11.10-11.40 Summary & discussion

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Results DNA binding property of the SRA domain was examined by an electrophoresis mobility shift assay (EMSA) using synthesized 12-bp oligonucleotide duplexes containing unmodified, hemi-methylated,

More information

Crystal lattice Real Space. Reflections Reciprocal Space. I. Solving Phases II. Model Building for CHEM 645. Purified Protein. Build model.

Crystal lattice Real Space. Reflections Reciprocal Space. I. Solving Phases II. Model Building for CHEM 645. Purified Protein. Build model. I. Solving Phases II. Model Building for CHEM 645 Purified Protein Solve Phase Build model and refine Crystal lattice Real Space Reflections Reciprocal Space ρ (x, y, z) pronounced rho F hkl 2 I F (h,

More information

According to the manufacture s direction (Pierce), RNA and DNA

According to the manufacture s direction (Pierce), RNA and DNA Supplementary method Electrophoretic Mobility-shift assay (EMSA) According to the manufacture s direction (Pierce), RNA and DNA oligonuleotides were firstly labeled by biotin. TAVb (1pM) was incubated

More information

Methyl acetoacetate at 150 K. The crystal structure of methyl acetoacetate, C 5 H 8 O 3, at 150 K contains discrete molecules.

Methyl acetoacetate at 150 K. The crystal structure of methyl acetoacetate, C 5 H 8 O 3, at 150 K contains discrete molecules. organic papers Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Methyl acetoacetate at 150 K Howard A. Shallard-Brown,* David J. Watkin and Andrew R. Cowley Chemical Crystallography

More information

Catalytic Mechanism of the Glycyl Radical Enzyme 4-Hydroxyphenylacetate Decarboxylase from Continuum Electrostatic and QC/MM Calculations

Catalytic Mechanism of the Glycyl Radical Enzyme 4-Hydroxyphenylacetate Decarboxylase from Continuum Electrostatic and QC/MM Calculations Catalytic Mechanism of the Glycyl Radical Enzyme 4-Hydroxyphenylacetate Decarboxylase from Continuum Electrostatic and QC/MM Calculations Supplementary Materials Mikolaj Feliks, 1 Berta M. Martins, 2 G.

More information

FW 1 CDR 1 FW 2 CDR 2

FW 1 CDR 1 FW 2 CDR 2 Supplementary Figure 1 Supplementary Figure 1: Interface of the E9:Fas structure. The two interfaces formed by V H and V L of E9 with Fas are shown in stereo. The Fas receptor is represented as a surface

More information

Iron Complexes of a Bidentate Picolyl NHC Ligand: Synthesis, Structure and Reactivity

Iron Complexes of a Bidentate Picolyl NHC Ligand: Synthesis, Structure and Reactivity Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Supplementary Information for Iron Complexes of a Bidentate Picolyl HC Ligand: Synthesis,

More information

Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein

Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein Acta Cryst. (2015). D71, 274-282, doi:10.1107/s1399004714025243 Supporting information Volume 71 (2015) Supporting information for article: Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08

More information

Structural basis of PROTAC cooperative recognition for selective protein degradation

Structural basis of PROTAC cooperative recognition for selective protein degradation SUPPLEMENTARY INFORMATION Structural basis of PROTAC cooperative recognition for selective protein degradation Morgan S. Gadd 1, Andrea Testa 1, Xavier Lucas 1, Kwok-Ho Chan, Wenzhang Chen, Douglas J.

More information

Supporting Information

Supporting Information Selective Hg 2+ sensing behaviors of rhodamine derivatives with extended conjugation based on two successive ring-opening processes Chunyan Wang a,b and Keith Man-Chung Wong a,b * a Department of Chemistry,

More information

Supporting Information

Supporting Information Supporting Information Horne et al. 10.1073/pnas.0902663106 SI Materials and Methods Peptide Synthesis. Protected 3 -amino acids were purchased from PepTech. Cyclically constrained -residues, Fmoc-ACPC

More information

Structural Insights into Bound Water in. Crystalline Amino Acids: Experimental and Theoretical 17 O NMR

Structural Insights into Bound Water in. Crystalline Amino Acids: Experimental and Theoretical 17 O NMR --- Supporting Information --- Structural Insights into Bound Water in Crystalline Amino Acids: Experimental and Theoretical 17 O NMR Vladimir K. Michaelis 1*, Eric G. Keeler 1, Ta-Chung Ong 1, Kimberley

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION UPPEER ORO doi:10.1038/nature10753 D D D D P E ntracellular C1 W P P C EC1 D Q R H C D W D R C C2 D E D E C R Q Q W P W W R P P EC2 EC3 P C C P W P W W P C W H R C R E C3 P R R P P P C Extracellular embrane

More information

Figure 1. Molecules geometries of 5021 and Each neutral group in CHARMM topology was grouped in dash circle.

Figure 1. Molecules geometries of 5021 and Each neutral group in CHARMM topology was grouped in dash circle. Project I Chemistry 8021, Spring 2005/2/23 This document was turned in by a student as a homework paper. 1. Methods First, the cartesian coordinates of 5021 and 8021 molecules (Fig. 1) are generated, in

More information

Crystal Structure of Fibroblast Growth Factor 9 (FGF9) Reveals Regions. Implicated in Dimerization and Autoinhibition

Crystal Structure of Fibroblast Growth Factor 9 (FGF9) Reveals Regions. Implicated in Dimerization and Autoinhibition JBC Papers in Press. Published on November 1, 2000 as Manuscript M006502200 Crystal Structure of Fibroblast Growth Factor 9 (FGF9) Reveals Regions Implicated in Dimerization and Autoinhibition 1 Copyright

More information

type GroEL-GroES complex. Crystals were grown in buffer D (100 mm HEPES, ph 7.5,

type GroEL-GroES complex. Crystals were grown in buffer D (100 mm HEPES, ph 7.5, Supplementary Material Supplementary Materials and Methods Structure Determination of SR1-GroES-ADP AlF x SR1-GroES-ADP AlF x was purified as described in Materials and Methods for the wild type GroEL-GroES

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information To the paper entitled Effect of potential supramolecular-bond

More information

Supporting Information

Supporting Information Supporting Information The Mode of Action of Anticancer Gold-Based Drugs:a Structural Perspective Luigi Messori, Federica Scaletti, Lara Massai, Maria A. Cinellu, Chiara Gabbiani, Alessandro Vergara, and

More information

Macromolecular X-ray Crystallography

Macromolecular X-ray Crystallography Protein Structural Models for CHEM 641 Fall 07 Brian Bahnson Department of Chemistry & Biochemistry University of Delaware Macromolecular X-ray Crystallography Purified Protein X-ray Diffraction Data collection

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.1397 Crystal structures of Λ-[Ru(phen) 2 dppz] 2+ with oligonucleotides containing TA/TA and AT/AT steps show two intercalation modes Hakan Niyazi a, 1 James P. Hall a, Kyra O Sullivan

More information

Supplementary materials. Crystal structure of the carboxyltransferase domain. of acetyl coenzyme A carboxylase. Department of Biological Sciences

Supplementary materials. Crystal structure of the carboxyltransferase domain. of acetyl coenzyme A carboxylase. Department of Biological Sciences Supplementary materials Crystal structure of the carboxyltransferase domain of acetyl coenzyme A carboxylase Hailong Zhang, Zhiru Yang, 1 Yang Shen, 1 Liang Tong Department of Biological Sciences Columbia

More information

Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1.

Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1. Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1. PDZK1 constru cts Amino acids MW [kda] KD [μm] PEPT2-CT- FITC KD [μm] NHE3-CT- FITC KD [μm] PDZK1-CT-

More information

Supporting Information

Supporting Information Supporting Information Ottmann et al. 10.1073/pnas.0907587106 Fig. S1. Primary structure alignment of SBT3 with C5 peptidase from Streptococcus pyogenes. The Matchmaker tool in UCSF Chimera (http:// www.cgl.ucsf.edu/chimera)

More information

The copper active site in CBM33 polysaccharide oxygenases

The copper active site in CBM33 polysaccharide oxygenases Supporting Information for: The copper active site in CBM33 polysaccharide oxygenases Glyn R. Hemsworth, Edward J. Taylor, Robbert Q. Kim, Rebecca C. Gregory, Sally J. Lewis, Johan P. Turkenburg, Alison

More information

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues Kang Yuan, Goonay Yousefalizadeh, Felix Saraci, Tai Peng, Igor Kozin, Kevin G. Stamplecoskie, Suning Wang*

More information

Exploiting Protein Conformational Change to Optimize Adenosine-Derived Inhibitors of HSP70

Exploiting Protein Conformational Change to Optimize Adenosine-Derived Inhibitors of HSP70 SUPPRTIG IFRMATI Exploiting Protein Conformational Change to ptimize Adenosine-Derived Inhibitors of HSP70 Matthew D. Cheeseman, 1 Isaac M. Westwood, 1,2 livier Barbeau, 1 Martin Rowlands, 1 Sarah Dobson,

More information

Rational Design of Thermodynamic and Kinetic Binding Profiles by. Optimizing Surface Water Networks Coating Protein Bound Ligands

Rational Design of Thermodynamic and Kinetic Binding Profiles by. Optimizing Surface Water Networks Coating Protein Bound Ligands SUPPORTING INFORMATION Rational Design of Thermodynamic and Kinetic Binding Profiles by Optimizing Surface Water Networks Coating Protein Bound Ligands Stefan G. Krimmer,, Jonathan Cramer,, Michael Betz,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11524 Supplementary discussion Functional analysis of the sugar porter family (SP) signature motifs. As seen in Fig. 5c, single point mutation of the conserved

More information

Supplementary Figures

Supplementary Figures 1 Supplementary Figures Supplementary Figure 1 Type I FGFR1 inhibitors (a) Chemical structures of a pyrazolylaminopyrimidine inhibitor (henceforth referred to as PAPI; PDB-code of the FGFR1-PAPI complex:

More information

X-ray Crystallography I. James Fraser Macromolecluar Interactions BP204

X-ray Crystallography I. James Fraser Macromolecluar Interactions BP204 X-ray Crystallography I James Fraser Macromolecluar Interactions BP204 Key take-aways 1. X-ray crystallography results from an ensemble of Billions and Billions of molecules in the crystal 2. Models in

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11085 Supplementary Tables: Supplementary Table 1. Summary of crystallographic and structure refinement data Structure BRIL-NOP receptor Data collection Number of crystals 23 Space group

More information

High-resolution crystal structure of ERAP1 with bound phosphinic transition-state analogue inhibitor

High-resolution crystal structure of ERAP1 with bound phosphinic transition-state analogue inhibitor High-resolution crystal structure of ERAP1 with bound phosphinic transition-state analogue inhibitor Petros Giastas 1, Margarete Neu 2, Paul Rowland 2, and Efstratios Stratikos 1 1 National Center for

More information

= (8) V = (8) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

= (8) V = (8) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 1-(3-Amino-1H-inden-2-yl)ethanone Dong-Yue Hu and Zhi-Rong Qu* Ordered Matter Science Research Center, College

More information

organic papers 2-[(Dimethylamino)(phenyl)methyl]benzoic acid

organic papers 2-[(Dimethylamino)(phenyl)methyl]benzoic acid organic papers Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 2-[(Dimethylamino)(phenyl)methyl]benzoic acid Yvette L. Dann, Andrew R. Cowley and Harry L. Anderson* University

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION UPPLEMETARY IFRMATI In format provided by Filippakopoulos et al. (MAY 2014 upplemental Table 2: Bromodomain ligand complexes Bromodomain/ligand complexes deposited on the Protein Data Bank (PDB are given,

More information

FRAGMENT SCREENING IN LEAD DISCOVERY BY WEAK AFFINITY CHROMATOGRAPHY (WAC )

FRAGMENT SCREENING IN LEAD DISCOVERY BY WEAK AFFINITY CHROMATOGRAPHY (WAC ) FRAGMENT SCREENING IN LEAD DISCOVERY BY WEAK AFFINITY CHROMATOGRAPHY (WAC ) SARomics Biostructures AB & Red Glead Discovery AB Medicon Village, Lund, Sweden Fragment-based lead discovery The basic idea:

More information

Supplementary Information. The protease GtgE from Salmonella exclusively targets. inactive Rab GTPases

Supplementary Information. The protease GtgE from Salmonella exclusively targets. inactive Rab GTPases Supplementary Information The protease GtgE from Salmonella exclusively targets inactive Rab GTPases Table of Contents Supplementary Figures... 2 Supplementary Figure 1... 2 Supplementary Figure 2... 3

More information

A Primer in X-ray Crystallography for Redox Biologists. Mark Wilson Karolinska Institute June 3 rd, 2014

A Primer in X-ray Crystallography for Redox Biologists. Mark Wilson Karolinska Institute June 3 rd, 2014 A Primer in X-ray Crystallography for Redox Biologists Mark Wilson Karolinska Institute June 3 rd, 2014 X-ray Crystallography Basics Optimistic workflow for crystallography Experiment Schematic Fourier

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 10.108/nature0608 a c pmol L-[ H]Leu / mg LeuT pmol L-[ H]Leu / min / mg LeuT 900 50 600 450 00 150 200 150 100 0 0.0 2.5 5.0.5 10.0.5 50 N Cl CMI IMI DMI H C CH N N H C CH N Time (min) 0 0 100 200

More information

Rapid Cascade Synthesis of Poly-Heterocyclic Architectures from Indigo

Rapid Cascade Synthesis of Poly-Heterocyclic Architectures from Indigo S1 Rapid Cascade Synthesis of Poly-Heterocyclic Architectures from Indigo Alireza Shakoori 1, John B. Bremner 1, Anthony C. Willis 2, Rachada Haritakun 3 and Paul A. Keller 1 * 1 School of Chemistry, University

More information

Protein crystallography. Garry Taylor

Protein crystallography. Garry Taylor Protein crystallography Garry Taylor X-ray Crystallography - the Basics Grow crystals Collect X-ray data Determine phases Calculate ρ-map Interpret map Refine coordinates Do the biology. Nitrogen at -180

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary materials Figure S1 Fusion protein of Sulfolobus solfataricus SRP54 and a signal peptide. a, Expression vector for the fusion protein. The signal peptide of yeast dipeptidyl aminopeptidase

More information

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK 73019-5251 Sample: KP-XI-furan-enzymatic alcohol Lab ID: 12042 User:

More information

Supplementary Figure 1. Biochemical and sequence alignment analyses the

Supplementary Figure 1. Biochemical and sequence alignment analyses the Supplementary Figure 1. Biochemical and sequence alignment analyses the interaction of OPTN and TBK1. (a) Analytical gel filtration chromatography analysis of the interaction between TBK1 CTD and OPTN(1-119).

More information

Structural Perspectives on Drug Resistance

Structural Perspectives on Drug Resistance Structural Perspectives on Drug Resistance Irene Weber Departments of Biology and Chemistry Molecular Basis of Disease Program Georgia State University Atlanta, GA, USA What have we learned from 20 years

More information

Synthesis and structural characterization of homophthalic acid and 4,4-bipyridine

Synthesis and structural characterization of homophthalic acid and 4,4-bipyridine Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(4):905-909 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Synthesis and structural characterization of homophthalic

More information

Data quality indicators. Kay Diederichs

Data quality indicators. Kay Diederichs Data quality indicators Kay Diederichs Crystallography has been highly successful Now 105839 Could it be any better? 2 Confusion what do these mean? CC1/2 Rmerge Rsym Mn(I/sd) I/σ Rmeas CCanom Rpim Rcum

More information

SI Text S1 Solution Scattering Data Collection and Analysis. SI references

SI Text S1 Solution Scattering Data Collection and Analysis. SI references SI Text S1 Solution Scattering Data Collection and Analysis. The X-ray photon energy was set to 8 kev. The PILATUS hybrid pixel array detector (RIGAKU) was positioned at a distance of 606 mm from the sample.

More information

Supplementary Information

Supplementary Information Supplementary Information Structural analysis of leader peptide binding enables leaderfree cyanobactin processing Jesko Koehnke 1,2, Greg Mann 1,2, Andrew F Bent 1,2, Hannes Ludewig 1, Sally Shirran 1,

More information

Supporting Information

Supporting Information Supporting Information Peramivir Phosphonate Derivatives as Influenza Neuraminidase Inhibitors Peng-Cheng Wang a, Jim-Min Fang a,b, *, Keng-Chang Tsai c, Shi-Yun Wang b, Wen-I Huang b, Yin-Chen Tseng b,

More information

Supporting Information

Supporting Information Supporting Information Structural Analysis of the Binding of Type I, I 1/2, and II Inhibitors to Eph Tyrosine Kinases Jing Dong, *1 Hongtao Zhao, 1 Ting Zhou, 1 Dimitrios Spiliotopoulos, 1 Chitra Rajendran,

More information

Scattering by two Electrons

Scattering by two Electrons Scattering by two Electrons p = -r k in k in p r e 2 q k in /λ θ θ k out /λ S q = r k out p + q = r (k out - k in ) e 1 Phase difference of wave 2 with respect to wave 1: 2π λ (k out - k in ) r= 2π S r

More information

Supporting Information

Supporting Information Protein-Observed Fluorine NMR is a Complementary Ligand Discovery Method to 1 H CPMG Ligand- Observed NMR. Andrew K. Urick, 1,2 Luis Pablo Calle, 3 Juan F. Espinosa, 3 Haitao Hu, 2 * William C. K. Pomerantz

More information

Supporting information

Supporting information Supporting information Sensitizing Tb(III) and Eu(III) Emission with Triarylboron Functionalized 1,3-diketonato Ligands Larissa F. Smith, Barry A. Blight, Hee-Jun Park, and Suning Wang* Department of Chemistry,

More information

GC376 (compound 28). Compound 23 (GC373) (0.50 g, 1.24 mmol), sodium bisulfite (0.119 g,

GC376 (compound 28). Compound 23 (GC373) (0.50 g, 1.24 mmol), sodium bisulfite (0.119 g, Supplemental Material Synthesis of GC376 GC376 (compound 28). Compound 23 (GC373) (0.50 g, 1.24 mmol), sodium bisulfite (0.119 g, 1.12 mmol), ethyl acetate (2 ml), ethanol (1 ml) and water (0.40 ml) were

More information

The high-resolution structure of (+)-epi-biotin bound to streptavidin

The high-resolution structure of (+)-epi-biotin bound to streptavidin Acta Crystallographica Section D Biological Crystallography ISSN 0907-4449 The high-resolution structure of (+)-epi-biotin bound to streptavidin Isolde Le Trong, a Dimitri G. L. Aubert, b Neil R. Thomas

More information

IgE binds asymmetrically to its B cell receptor CD23

IgE binds asymmetrically to its B cell receptor CD23 Supplementary Information IgE binds asymmetrically to its B cell receptor CD23 Balvinder Dhaliwal 1*, Marie O. Y. Pang 2, Anthony H. Keeble 2,3, Louisa K. James 2,4, Hannah J. Gould 2, James M. McDonnell

More information

Design of a Novel Globular Protein Fold with Atomic-Level Accuracy

Design of a Novel Globular Protein Fold with Atomic-Level Accuracy Design of a Novel Globular Protein Fold with Atomic-Level Accuracy Brian Kuhlman, Gautam Dantas, Gregory C. Ireton, Gabriele Varani, Barry L. Stoddard, David Baker Presented by Kate Stafford 4 May 05 Protein

More information

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK 73019-5251 Sample: KP-XI-cinnamyl-chiral alcohol Lab ID: 12040 User:

More information

Supporting Information

Supporting Information Supporting Information Binding motifs in the CBP bromodomain: an analysis of 20 crystal structures of complexes with small molecules Jian Zhu, 1 Jing Dong, 1 Laurent Batiste, 1 Andrea Unzue, 2 Aymeric

More information

Examples of Protein Modeling. Protein Modeling. Primary Structure. Protein Structure Description. Protein Sequence Sources. Importing Sequences to MOE

Examples of Protein Modeling. Protein Modeling. Primary Structure. Protein Structure Description. Protein Sequence Sources. Importing Sequences to MOE Examples of Protein Modeling Protein Modeling Visualization Examination of an experimental structure to gain insight about a research question Dynamics To examine the dynamics of protein structures To

More information

Supporting Information. UV-induced ligand exchange in MHC class I protein crystals

Supporting Information. UV-induced ligand exchange in MHC class I protein crystals Supporting Information for the article entitled UV-induced ligand exchange in MHC class I protein crystals by Patrick H.N. Celie 1, Mireille Toebes 2, Boris Rodenko 3, Huib Ovaa 3, Anastassis Perrakis

More information

Supporting Information

Supporting Information Supporting Information Virtual Screen to NMR (VS2NMR): Discovery of fragment hits for the CBP bromodomain Dimitrios Spiliotopoulos, *,a Jian Zhu, a Eike-Christian Wamhoff, b,c Nicholas Deerain, a Jean-Rémy

More information

Supplementary Materials for

Supplementary Materials for www.advances.sciencemag.org/cgi/content/full/1/7/e1500263/dc1 Supplementary Materials for Newton s cradle proton relay with amide imidic acid tautomerization in inverting cellulase visualized by neutron

More information

2015 AP Biology Unit 2 PRETEST- Introduction to the Cell and Biochemistry

2015 AP Biology Unit 2 PRETEST- Introduction to the Cell and Biochemistry Name: Class: _ Date: _ 2015 AP Biology Unit 2 PRETEST- Introduction to the Cell and Biochemistry Multiple Choice Identify the choice that best completes the statement or answers the question. 1) In what

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Supporting Information Over or under: Hydride attack at the metal versus the coordinated

More information

Charge density refinement at ultra high resolution with MoPro software. Christian Jelsch CNRS Université de Lorraine

Charge density refinement at ultra high resolution with MoPro software. Christian Jelsch CNRS Université de Lorraine Charge density refinement at ultra high resolution with MoPro software Christian Jelsch CNRS Université de Lorraine Laboratoire de Cristallographie & Résonance Magnétique & Modélisations (CRM2) Nancy,

More information

Crystal structure of calf spleen purine nucleoside phosphorylase complexed to a novel purine analogue

Crystal structure of calf spleen purine nucleoside phosphorylase complexed to a novel purine analogue FEBS Letters 581 (2007) 5082 5086 Crystal structure of calf spleen purine nucleoside phosphorylase complexed to a novel purine analogue H.M. Pereira a, *, V. Berdini b, A. Cleasby b, R.C. Garratt a a Instituto

More information

Synthesis of a Labile Sulfur-Centred Ligand, [S(H)C(PPh 2 S) 2 ] : Structural Diversity in Lithium(I), Zinc(II) and Nickel(II) Complexes

Synthesis of a Labile Sulfur-Centred Ligand, [S(H)C(PPh 2 S) 2 ] : Structural Diversity in Lithium(I), Zinc(II) and Nickel(II) Complexes Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI): Synthesis of a Labile Sulfur-Centred Ligand,

More information

Modelling Macromolecules with Coot

Modelling Macromolecules with Coot Modelling Macromolecules with Coot Overview Real Space Refinement A Sample of Tools Tools for Cryo-EM Tools for Ligands [Carbohydrates] Paul Emsley MRC Laboratory of Molecular Biology Acknowldegments,

More information

Full-length GlpG sequence was generated by PCR from E. coli genomic DNA. (with two sequence variations, D51E/L52V, from the gene bank entry aac28166),

Full-length GlpG sequence was generated by PCR from E. coli genomic DNA. (with two sequence variations, D51E/L52V, from the gene bank entry aac28166), Supplementary Methods Protein expression and purification Full-length GlpG sequence was generated by PCR from E. coli genomic DNA (with two sequence variations, D51E/L52V, from the gene bank entry aac28166),

More information

Phase problem: Determining an initial phase angle α hkl for each recorded reflection. 1 ρ(x,y,z) = F hkl cos 2π (hx+ky+ lz - α hkl ) V h k l

Phase problem: Determining an initial phase angle α hkl for each recorded reflection. 1 ρ(x,y,z) = F hkl cos 2π (hx+ky+ lz - α hkl ) V h k l Phase problem: Determining an initial phase angle α hkl for each recorded reflection 1 ρ(x,y,z) = F hkl cos 2π (hx+ky+ lz - α hkl ) V h k l Methods: Heavy atom methods (isomorphous replacement Hg, Pt)

More information

Nature Structural & Molecular Biology doi: /nsmb Supplementary Figure 1. CRBN binding assay with thalidomide enantiomers.

Nature Structural & Molecular Biology doi: /nsmb Supplementary Figure 1. CRBN binding assay with thalidomide enantiomers. Supplementary Figure 1 CRBN binding assay with thalidomide enantiomers. (a) Competitive elution assay using thalidomide-immobilized beads coupled with racemic thalidomide. Beads were washed three times

More information

organic papers Acetone (2,6-dichlorobenzoyl)hydrazone: chains of p-stacked hydrogen-bonded dimers Comment Experimental

organic papers Acetone (2,6-dichlorobenzoyl)hydrazone: chains of p-stacked hydrogen-bonded dimers Comment Experimental organic papers Acta Crystallographica Section E Structure Reports Online Acetone (2,6-dichlorobenzoyl)hydrazone: chains of p-stacked hydrogen-bonded dimers ISSN 1600-5368 Solange M. S. V. Wardell, a Marcus

More information

Protein Structure Determination from Pseudocontact Shifts Using ROSETTA

Protein Structure Determination from Pseudocontact Shifts Using ROSETTA Supporting Information Protein Structure Determination from Pseudocontact Shifts Using ROSETTA Christophe Schmitz, Robert Vernon, Gottfried Otting, David Baker and Thomas Huber Table S0. Biological Magnetic

More information

Proteins. Central Dogma : DNA RNA protein Amino acid polymers - defined composition & order. Perform nearly all cellular functions Drug Targets

Proteins. Central Dogma : DNA RNA protein Amino acid polymers - defined composition & order. Perform nearly all cellular functions Drug Targets Proteins Central Dogma : DNA RNA protein Amino acid polymers - defined composition & order Perform nearly all cellular functions Drug Targets Fold into discrete shapes. Proteins - cont. Specific shapes

More information