Eucalyptus globulus Labill.

Size: px
Start display at page:

Download "Eucalyptus globulus Labill."

Transcription

1 Eucalyptus globulus Labill. / / Photo: V. Buono Origin and diffusion Origin: Australia Distribution: Oceania, Africa, Europe, southern America Invasive potential: low Photo: V. Buono Photo:V.Buono Photo: L. Passatore Photo: L. Passatore Introduction Large evergreen tree, with a straight trunk and bent branches, even low positioned, bearing dense clumps of leaves. Blue gum is characterized by the grey-bluish colour of leaves and the bark; the latter with the age progressively peels in long strips and emerges smooth bluish-white and pink areas. The leaves contain terpenes and flavonoids which give it a pungent and very refreshing smell. The oil extracted from the leaves and the steam has flavouring, antimicrobial and pesticide properties. The flowers produce copious nectar that yields a strongly flavoured honey. The solid and flexible structure of the tree makes it an excellent windbreak. It has a great evapotranspiration potential, enabling it to pump large volumes of water from the soil; for this reason it has been largely employed for draining wetlands. Eucalyptus forests are particularly prone to fire-risks but also able to quickly regenerate. Blue gum, native to Australia, has easily naturalized in other continents due to its rapid growth and adaptability to a wide range of conditions. It is especially well-suited to countries with a mediterranean-type climate, but it grows well also in tropics at high altitudes. Common names: Blue Gum (English), Eucalipto (Italian) Photo: L.Passatore Description Life-form and periodicity: : evergreen tree Height: m

2 Fam. myrtaceae Description Roots habit: root system develops mainly in the topsoil but roots can spread several meters deep in the soil, up to 9 m, in search for water. Culm/Stem/Trunk: it has a straight trunk up to two-thirds of its total height. The diameter is 1,2-2,1m. Bark: it sheds often, peeling in large strips, emerging smooth bluish-white and pink areas. Leaf: glossy, thick and leathery. The leaves of the young shoots are ovate, opposite, and horizontal, 7-16 cm long, covered with a blue-grey, waxy bloom, which is the origin of the common name "blue gum"; instead the mature leaves are alternate, cm long, sickle-shaped and dark shining green. Rate of transpiration: l/day/tree Reproductive structure: The white flowers are solitary in the leaf axils. The sepals and petals are united to form a lid which is present on the bud and drops off at anthesis. They are approximately 4-5,5 cm wide and produce copious nectar. The flower has many stamens. Propagative structure: The fruits are woody capsule and range from 1,5 to 2,5 cm in diameter. Numerous small seeds are shed through valves (numbering between 3 and 6 per fruit) which open on the top of the fruit. Development Sexual propagation: Eucalypt flowers are mainly pollinated by insects. Most seed is distributed by wind and gravity, but some is moved by such agents as flood, erosion and birds. Usually seeds fall out within 300 m from the parent tree. The first seeds to leave the globular capsule are infertile. The fertile seeds are located at the bottom of the capsule. In the field, germination should occur no later than 26 days once the appropriate environmental conditions are met. However, seed may remain dormant for several years under dry conditions.. Asexual propagation: by cuttings Growth rate: medium

3 Habitat characteristics Light and water requirement: It prefers full sun and moist soils. Soil requirements: it requires moist, clayish and fertile soils. ph from 6.3 to 6.8. It is well-suited to hydroponic cultivation Tolerance/sensitivity: it is sensitive to the presence of nitrogen; lack of this element implies a reduction of the development of the plant. It can grow under a wide variety of agro-ecological conditions, however it is very sensitive to poor soil structure and shortage or excess of water during early stages of growth Phytotechnologies applications Eucalyptus is an interesting plant for phytoremediation purposes due to its high transpirative activity. It has been employed mainly in hydraulic containment of landfill leachate and contaminated area drainage. Furthermore the rapid growth and the potential use of the wood for energy and paper production, make this species a good candidate for secondary wastewater treatment through tree irrigation. Eucalyptus hydroponic cultivation is another good alternative for contaminated water treatment; several researches demonstrated that eucalyptus is tolerant to heavy metals (Cd, Zn, Cu and Pb) and to arsenic which accordingly with the low translocation factors measured, tend to accumulate mainly in roots. The latter are easy to remove in case of hydroponic culture.(king et al., 2008; Arrigada et al.,2010; Peng et al., 2012;Gomes et al., 2012; Fine et al., 2013) Furthermore the blue-gum leaves can be used as soil amendment in order to stimulate bacterial PCB degradation (Hernandez et al.,1997). Lives contain terpenes, structural analogs of PCBs; these substances act as cometabolite, enhancing the production of enzymes capable to degrade also PCBs (Passatore et al., 2014).

4 Phytotechnologies applications Experimental studies -Experiment 1- Reference Contaminants of concern Plant species Mechanism involved in phytoremediation: Phytostabilisation/rhizodegradation/phyt oaccumulation/phytodegradation/phytov olatilization/ hydraulic control/ tolerant Types of microorganisms associated with the plant Requirements for phytoremediation (specific nutrients, addition of oxygen) Substrate characteristics Laboratory/field experiment Age of plant at 1st exposure (seed, post-germination, mature) Length of experiment Initial contaminant concentration of the substrate D. J. King, A. I. Doronila, C. Feenstra, A. J.M. Baker, I. E. Woodrow, Phytostabilisation of arsenical gold mine tailings using four eucalyptus species: growth, arsenic uptake and availability after five years. Science of the total environment 406; As E. cladocalyx, E. melliodora, E. polybractea, E. viridis Phytostabilisation Not reported in the publication The tailings were covered with various amendments prior to planting as a previous work had shown that plants did not grow on raw tailings. The inclusion of the oxide rock in either milled or non-milled form has previously been shown to be important in plant establishment. The trees were grown on As-rich sulphidic gold mine tailings, located in Australia. Sulphur (2 6%) was predominantly present as pyrite with lesser amounts of arsenopyrite, pyrrhotite, sphalerite and chalcocite ; arsenic ( %) was present as pyrite and arsenopyrite). The high levels of sulphides have not caused acid generation due to the high neutralizing capacity of the source material (gypsum salts).. Field experiment Young trees 5 years The total arsenic levels in the experimental plots were measured at between 0,2 and 0,4% (w/w)

5 Phytotechnologies applications Post-experiment contaminant concentration of the substrate Post-experiment plant condition Contaminant storage sites in the plant and contaminant concentrations in tissues (root, shoot, leaves, no storage) Not reported It is known that the mine tailings tested here do retard the growth of eucalypts (Doronila, 2006), the fact that the plants have survived and are growing, in some cases quite well, does indicate that the trees are tolerant to the As concentrations to which they are exposed. There was significant variation in height within the four species. For example, the smallest E. cladocalyx was just 1,03 m tall after 5 years. The variation in tree heights was not correlated with As concentrations in either stems or leaves. Arsenic was found in all plants grown on the tailings. The highest concentrations were found in the leaves, while smaller amounts were found in the stems. All four species accumulated low As concentrations, the highest being recorded in mature leaves, ranging from 0,29 to 5,14 μg/g As. E. polybractea had significantly higher foliar As than the other three species. Comparison of those samples taken from cores drilled under trees (<2 m from the nearest tree) with those taken from cores drilled away from trees (>5 m), showed no significant effect of trees on As concentrations. Experiment 2- Reference Contaminants of concern Plant species Mechanism involved in phytoremediation: Phytostabilisation/rhizodegradation/phyt oaccumulation/phytodegradation/phytov olatilization/ hydraulic control/ tolerant C. Arriagada, G. Pereira, I. Garcıa-Romera, J.A. Ocampo, Improved zinc tolerance in Eucalyptus globulus inoculated with Glomus deserticola and Trametes versicolor or Coriolopsis rigida. Soil Biology & Biochemistry 42; Zn Eucalyptus globulus Phytostabilisation and phytoaccumulation

6 Phytotechnologies application Types of microorganisms associated with the plant Requirements for phytoremediation (specific nutrients, addition of oxygen) Substrate characteristics Laboratory/field experiment Age of plant at 1st exposure (seed, post-germination, mature) Length of experiment Initial contaminant concentration of the substrate Post-experiment contaminant concentration of the substrate Post-experiment plant condition Contaminant storage sites inthe plant and contaminant concentrations in tissues (root, shoot, leaves, no storage) Saprophytic fungi: Trametes versicolor and Coriolopsis rigida. Arbuscular mycorrhizal: Glomus deserticola G. deserticola inoculum (root-and-soil inoculum consisting of rhizosphere soil containing spores and colonized root fragments of Medicago sativa). C. rigida or T. versicolor inoculum: sterilized barleys seeds were used as saprophytic fungal inoculums carriers. The seeds were inoculated with a thin slice of potato dextrose agar with mycelia of the saprophytic fungi Mixture of sterilized sand:soil at a proportion of 1:1 (V:V). The soil, classified as an Andisol (Acrudoxic Hapludands), with low P content (7,3 mg/kg, NaHCO3-extractable), is moderately acidic (ph 5,4) with good drainage and water infiltration. Laboratory experiment (in vitro and greenhouse). Seedlings 133 days In vitro experiment: in Petri dishes Zn concentrations were 0, 10, 20, 50, 100, and 200 mg Zn/l. Greenhouse experiment. Plants grown at different Zn concentrations (): 0, 10, 100, 500 and 1000 mgzn/kg soil In vitro experiment: the concentration of Zn in the AG growth medium decreased 51-67% after culture with C. rigida and 54-66% after culture with T. versicolor. Greenhouse experiment: in the presence of 500 and 1000 mg kg/l Zn, there were higher metal concentrations in roots and shoots of arbuscular mycorrhizal than in non-arbuscular mycorrhizal plants; furthermore, both saprophytic fungi increased Zn uptake by trees colonized by G. deserticola. At doses higher than 100 mg Zn per kg or liter, the shoot dry weight of plants decreased in all treatments. Plants colonized with Glomus deserticola were less affected than plants not colonized with arbuscular mycorrhizal. The saprophytic fungi T. versicolor and C. rigida increased the shoot dry weight and the tolerance of E. globulus to Zn when these plants were mycorrhizal-colonized. Both saprophytic fungi increased the percentage of arbuscular mycorrhizal root length colonization and elevated its metabolic activity. The higher root to shoot metal ratio observed in mycorrhizal plants indicates that G. deserticola enhanced Zn uptake and accumulation in the root system, playing a filtering/sequestering role in the presence of Zn.

7 Phytotechnologies applications -Experiment 3- Reference Contaminants of concern Mechanism involved in phytoremediation: Phytostabilisation/rhizodegradation/phyt oaccumulation/phytodegradation/phytov olatilization/ hydraulic control/ tolerant Types of microorganisms associated with the plant Requirements for phytoremediation (specific nutrients, addition of oxygen) Substrate characteristics Laboratory/field experiment Age of plant at 1st exposure (seed, post-germination, mature) Length of experiment Initial contaminant concentration of the substrate Post-experiment contaminant concentration of the substrate C. Arriagada, E. Aranda, I. Sampedro, I. Garcıa- Romera, J.A. Ocampo, Interactions of Trametes versicolor, Coriolopsis rigida and the arbuscular mycorrhizal fungus Glomus deserticola on the copper tolerance of Eucalyptus globulus. Chemosphere 77: Cu Phytostabilisation and phytoaccumulation Saprophytic fungi: Trametes versicolor and Coriolopsis rigida. Arbuscular mycorrhizal: Glomus deserticola G. deserticola inoculum (root-and-soil inoculum consisting of rhizosphere soil containing spores and colonized root fragments of Medicago sativa). C. rigida or T. versicolor inoculum: sterilized barleys seeds were used as saprophytic fungal inoculums carriers. The seeds were inoculated with a thin slice of potato dextrose agar with mycelia of the saprophytic fungi. Mixture of sterilized sand:soil at a proportion of 1:1 (V:V). The soil, classified as an Andisol (Acrudoxic Hapludands), with low P content (7,3 mg/kg, NaHCO3- extractable), is moderately acidic (ph 5,4) with good drainage and water infiltration. Laboratory experiment (in vitro and greenhouse) Seedlings 12 weeks In vitro experiment: in Petri dishes concentrations were 0, 10, 20, 30, 60, and 100 mg Cu/l. Greenhouse experiment plants were grown at different Cu concentrations: 0, 10, 100, 1000 and 2000 mgcu/kg soil. In vitro experiment: the Cu concentration in the AG growth medium decreased between 53% and 66% after culture of C. rigida and between 26% and 47% after culture of T. versicolor.

8 Phytotechnologies applications Post-experiment plant condition Contaminant storage sites in the plant and contaminant concentrations in tissues (root, shoot, leaves, no storage) The presence of high levels of Cu in soil decreases the shoot and root dry weights of E. globulus. However, higher plant tolerance of Cu has been observed in the presence of the fungus G. deserticola. In contrast with other essential metals, Cu is toxic to most fungi even at very low concentrations (Baldrian, 2003). Only the C. rigida- G. deserticola combination increased the tolerance of plants to Cu. It is known that E. globulus was able to accumulate heavy metals in the stem more than in the leaves. The absence of a higher root to shoot metal ratio in the mycorrhizal plants (1,70 0,11) indicated that G. deserticola did not play a filtering/sequestering role against Cu. Plants colonised by G. deserticola had higher metal concentrations in the roots and shoots than do non-mycorrhizal plants. Best results have been achieved with the inoculation of G. deserticola + C. rigida, it increased the plant Cu uptake to levels reached by hyperaccumulative plants (up to 400 mg/kg in shoots and 800 mg/kg in roots). Plants inoculated only with C. rigida and T. versicolor did not accumulate more Cu than noninoculated controls. -Experiment 4- Reference Contaminants of concern Mechanism involved in phytoremediation: Phytostabilisation/rhizodegradation/phyt oaccumulation/phytodegradation/phytov olatilization/ hydraulic control/ tolerant Types of microorganisms associated with the plant C. Arriagada, M. A. Herrera, F. Borie, J.A. Ocampo, Contribution of Arbuscular Mycorrhizal and Saprobe Fungi to the Aluminium Resistance of Eucalyptus globulus. Water Air Soil Pollut 182: Al Phytostabilisation and phytoaccumulation Saprophytic fungi: Fusarium concolor and Trichoderma koningii Arbuscular mycorrhizal: Glomus mosseae and Glomus deserticola

9 Phytotechnologies applications Requirements for phytoremediation (specific nutrients, addition of oxygen) Substrate characteristics Laboratory/field experiment Age of plant at 1st exposure (seed, post-germination, mature) Length of experiment Initial contaminant concentration of the substrate Post-experiment contaminant concentration of the substrate Post-experiment plant condition The possibility of manipulating an arbuscular mycorrhizal inoculation together with a saprobe fungus conferring high aluminium tolerance and accumulation in the shoot by E. globulus could be a good alternative for stimulating plant growth under adverse conditions, such as in soils where acidic conditions and low levels of P, Ca and Mg may contribute to aluminium toxicity. In vitro experiment: The AG medium consisted of 1 g glucose, 0,4 g asparagine, 0,05 g MgSO4, 0,05 KH2PO4 and 100 ml distilled water. Greenhouse experiment: mixture of sterilized sand:vermiculite:sepiolite at a volume proportion of 1:1:1. Laboratory experiment (in vitro and greenhouse) Seedlings 16 weeks In vitro experiment: concentrations in Petri dishes were 0, 500 and 1000 mg Al/l. Greenhouse experiment plants were grown at different Cu concentrations: 0, 150, 600, 1500 and 3000 mgal/kg substrate. Not reported in the publication The application of 1500 mg/kg decreased the shoot and root dry weight, chlorophyll content and total P, Mg, and Ca concentrations in the shoot of E. globulus. Neither saprobe fungi gave any additional aluminum tolerance to E. globulus. However, both mycorrhizal fungi G. mosseae and G. deserticola inoculated alone increased the shoot dry weight of Eucalyptus, with the latter being significantly higher, even at the application rate of 1,500 mg kg 1 The application of 3,000 mg kg 1 decreased the shoot dry weight of plants in all treatments tested. the shoot:root ratio increased with both strains of mycorrhizal inoculum, with G. deserticola being higher; this suggests a greater beneficial effect on plant growth produced by such a mycorrhizal strain.

10 Phytotechnologies application Contaminant storage sites in the plant and contaminant concentrations in tissues (root, shoot, leaves, no storage) Aluminum concentration in shoots of E. globulus plants did not show any differences either at lowest (150 mg kg 1) or highest (3,000 mg kg 1) concentrations when plants were not affected either by AMF or saprobe fungi inoculation. However, at 600 and 1500 mg kg 1, both Glomus strains produced a significant increase in shoot aluminum concentration, which was not reinforced by the two inoculated saprobe fungi. In addition, at the same aluminum level in the growth media, the effect of T. koningii was synergistic with what was presented by G. deserticola inoculation and the highest aluminum concentration was obtained (approximately 27 mg kg 1). Aluminum shoot content in this last treatment increased approximately sixfold in comparison to those obtained in control plants.

Structures and Functions of Living Organisms

Structures and Functions of Living Organisms Structures and Functions of Living Organisms Date: 6.L.1 Understand the structures, processes and behaviors of plants that enable them to survive and reproduce. 6.L.1.1 Summarize the basic structures and

More information

plant physiology and energy conversion to plant systems. identify the components and the functions of plant describe the processes of

plant physiology and energy conversion to plant systems. identify the components and the functions of plant describe the processes of Plant Systems-AG1 Essential Questions: 1. How do plant classification, plant anatomy, and plant physiology affect the production and management of plants? 2. What are the necessary steps to Prepare and

More information

Structures and Functions of Living Organisms

Structures and Functions of Living Organisms Structures and Functions of Living Organisms 6.L.1 Understand the structures, processes and behaviors of plants that enable them to survive and reproduce. 6.L.1.1 Summarize the basic structures and functions

More information

SUBJECT: Integrated Science TEACHER: DATE: GRADE: 7 DURATION: 1 wk GENERAL TOPIC: Living Things Reproduce SPECIFIC TOPIC: Living Things and How They

SUBJECT: Integrated Science TEACHER: DATE: GRADE: 7 DURATION: 1 wk GENERAL TOPIC: Living Things Reproduce SPECIFIC TOPIC: Living Things and How They SUBJECT: Integrated Science TEACHER: DATE: GRADE: 7 DURATION: 1 wk GENERAL TOPIC: Living Things Reproduce SPECIFIC TOPIC: Living Things and How They Reproduce Living Things and How They Reproduce Students

More information

TUNDRA. Column 1 biome name Column 2 biome description Column 3 examples of plant adaptations

TUNDRA. Column 1 biome name Column 2 biome description Column 3 examples of plant adaptations Biome Cards (pp. 1 of 7) Cut out each biome card and divide each card into three sections. Place all sections in a plastic storage bag. Have one bag for every two students. Column 1 biome name Column 2

More information

The Plant Kingdom If you were to walk around a forest, what would you see? Most things that you would probably name are plants.

The Plant Kingdom If you were to walk around a forest, what would you see? Most things that you would probably name are plants. INTRODUCTION TO PLANTS The Plant Kingdom If you were to walk around a forest, what would you see? Most things that you would probably name are plants. Plants are abundant in almost every environment that

More information

25-3 Plant Adaptations Slide 2 of 29

25-3 Plant Adaptations Slide 2 of 29 2 of 29 Aquatic Plants How are plants adapted to different environments? 3 of 29 Aquatic Plants Aquatic Plants To take in sufficient oxygen, many aquatic plants have tissues with large air-filled spaces

More information

Assessment Schedule 2017 Biology: Demonstrate understanding of biological ideas relating to the life cycle of flowering plants (90928)

Assessment Schedule 2017 Biology: Demonstrate understanding of biological ideas relating to the life cycle of flowering plants (90928) NCEA Level 1 Biology (90928) 2017 page 1 of 5 Assessment Schedule 2017 Biology: Demonstrate understanding of biological ideas relating to the life cycle of flowering plants (90928) Evidence Statement QUESTION

More information

2a. General: Describe 3 specialised uses for plants. Plants can be used as: i. raw materials ii. foods iii. medicines

2a. General: Describe 3 specialised uses for plants. Plants can be used as: i. raw materials ii. foods iii. medicines 1a. General: Give examples of advantages of there being a wide variety of plants. Greater number of characteristics for breeding. Bigger choice for use as raw materials, foods and medicines. Provide different

More information

2. Which of the following is an organism that is made of only one cell? A. a larva B. an oyster C. an amoeba D. a mold

2. Which of the following is an organism that is made of only one cell? A. a larva B. an oyster C. an amoeba D. a mold 1. I am the barrier between the inside and the outside of the cell. I allow food, oxygen, and other needed materials to enter the cell. I am a part of animal and plant cells. A. cell membrane B. cell wall

More information

1 Evolution of Plants

1 Evolution of Plants 1 Evolution of Plants Plant Evolutionary Tree 1 How Did Plant Life Begin? BIBLICAL WORLDVIEW EVOLUTIONARY WORLDVIEW The Biblical worldview is that plants began on the third day of creation, created by

More information

Plants can be either herbaceous or woody.

Plants can be either herbaceous or woody. Plant Structure Plants can be either herbaceous or woody. Herbaceous plants are plants with growth which dies back to the ground each year, in contrast with woody plants Most herbaceous plants have stems

More information

Organization of Plant Tissue. Wednesday, March 2, 16

Organization of Plant Tissue. Wednesday, March 2, 16 Organization of Plant Tissue Plant Systems Shoot System The Leaf The Stem The Flower Root System The Shoot System Has two main functions: to conduct photosynthesis and to produce flowers for sexual reproduction

More information

Kingdom Plantae. Plants or metaphytes are, autotrophic multicellular eukaryotes, with tissues.

Kingdom Plantae. Plants or metaphytes are, autotrophic multicellular eukaryotes, with tissues. Kingdom Plantae Key words feature bryophytes herbaceous node to release pteridophytes sporangium, leaf (leaves) damp gymnosperms vascular apix cluster angiosperms rhizome sepal shrub tropism fronds calyx

More information

Biology 213 Exam 3 Practice Key

Biology 213 Exam 3 Practice Key Biology 213 Practice Key 1. (4) Explain the difference between a macronutrient and a micronutrient and cite two examples of each category? Macronutrients are the minerals needed by the plant in greater

More information

Shoot System. Root System. below-ground organs (roots) Dermal Tissue. Ground Tissue. Vascular Tissue. above-ground organs (leaves, stems, flowers)

Shoot System. Root System. below-ground organs (roots) Dermal Tissue. Ground Tissue. Vascular Tissue. above-ground organs (leaves, stems, flowers) Shoot System above-ground organs (leaves, stems, flowers) Root System below-ground organs (roots) Dermal Tissue type of plant tissue that is the outer covering of the plant and serves as a protective barrier

More information

Name Date Block. Plant Structures

Name Date Block. Plant Structures Name Date Block What are the Functions of Roots, Stems, and Leaves? Plant Structures Each part of a plant plays an important role in its structure and function. Roots, stems, and leaves are just three

More information

Useful Propagation Terms. Propagation The application of specific biological principles and concepts in the multiplication of plants.

Useful Propagation Terms. Propagation The application of specific biological principles and concepts in the multiplication of plants. Useful Propagation Terms Propagation The application of specific biological principles and concepts in the multiplication of plants. Adventitious Typically describes new organs such as roots that develop

More information

Tree Physiology. Sara Rose

Tree Physiology. Sara Rose Tree Physiology Sara Rose What is a Tree? U.S. Forest Service Woody plants that have well-developed stems and that usually are more than 12 feet tall at maturity. Merriam-Webster A woody perennial plant

More information

Vocabulary. photosynthesis p.48. chlorophyll p.49. sepal p.55. pistil p.55. stamen p.55. ovary p.56. fertilization p.56. dormant p.

Vocabulary. photosynthesis p.48. chlorophyll p.49. sepal p.55. pistil p.55. stamen p.55. ovary p.56. fertilization p.56. dormant p. Name: Section: 2 3 4 Vocabulary Word Definition photosynthesis p.48 chlorophyll p.49 sepal p.55 pistil p.55 stamen p.55 ovary p.56 fertilization p.56 dormant p.62 5 6 7 Chapter 2 Lesson 1 What are plants

More information

Effect of host plant, cultivation media and inoculants sources on propagation of mycorrhizal fungus Glomus Mossae

Effect of host plant, cultivation media and inoculants sources on propagation of mycorrhizal fungus Glomus Mossae EUROPEAN ACADEMIC RESEARCH Vol. V, Issue 12/ March 2018 ISSN 2286-4822 www.euacademic.org Impact Factor: 3.4546 (UIF) DRJI Value: 5.9 (B+) Effect of host plant, cultivation and inoculants sources on propagation

More information

*Modifications in reproduction were key adaptations enabling plants to spread into a variety of terrestrial habitats.

*Modifications in reproduction were key adaptations enabling plants to spread into a variety of terrestrial habitats. Plant Reproduction *Modifications in reproduction were key adaptations enabling plants to spread into a variety of terrestrial habitats. Reproduction In Plants Plant reproduction is the production of new

More information

TREES. Functions, structure, physiology

TREES. Functions, structure, physiology TREES Functions, structure, physiology Trees in Agroecosystems - 1 Microclimate effects lower soil temperature alter soil moisture reduce temperature fluctuations Maintain or increase soil fertility biological

More information

Plants have observalbe life cycles and are essential to all life.

Plants have observalbe life cycles and are essential to all life. 3.3.4.A -- Essential Know the similarities and differences of living things. Identify life processes of living things. Know that some organisms have similar external characteristics and that similarities

More information

SUBJECT: Integrated Science TEACHER: Mr. S. Campbell DATE: GRADE: 7 DURATION: 1 wk GENERAL TOPIC: Living Things Reproduce

SUBJECT: Integrated Science TEACHER: Mr. S. Campbell DATE: GRADE: 7 DURATION: 1 wk GENERAL TOPIC: Living Things Reproduce SUBJECT: Integrated Science TEACHER: Mr. S. Campbell DATE: GRADE: 7 DURATION: 1 wk GENERAL TOPIC: Living Things Reproduce Living Things and How They Reproduce Students will be able to:- 1) Identify root,

More information

Introduction to Plants

Introduction to Plants Introduction to Plants Plants Alive What are the characteristics of plants? All plants are multicellular, which means their bodies are made up of more than one cell. Plants are eukaryotes, which means

More information

Cupaniopsis anacardioides (carrotwood)

Cupaniopsis anacardioides (carrotwood) Australia/New Zealand Weed Risk Assessment adapted for Florida. Data used for analysis published in: Gordon, D.R., D.A. Onderdonk, A.M. Fox, R.K. Stocker, and C. Gantz. 28. Predicting Invasive Plants in

More information

UNIT 3. PLANTS. PRIMARY 4/ Natural Science Pedro Antonio López Hernández

UNIT 3. PLANTS. PRIMARY 4/ Natural Science Pedro Antonio López Hernández UNIT 3. PLANTS PRIMARY 4/ Natural Science Pedro Antonio López Hernández They help to keep it in place. Roots They take in the water and minerals a plant needs to make its food. They support the leaves.

More information

UNIT 3. PLANTS. 5 primary / Natural Science Pedro Antonio López Hernández Colegio La Presentación de Granada

UNIT 3. PLANTS. 5 primary / Natural Science Pedro Antonio López Hernández Colegio La Presentación de Granada UNIT 3. PLANTS 5 primary / Natural Science Pedro Antonio López Hernández Colegio La Presentación de Granada CHARACTERISTICS OF PLANTS A plant is a living thing with limited mobility. There are many different

More information

This book focuses mostly on Proteas, but also considers some of the other Proteaceae genera that are more widely cultivated.

This book focuses mostly on Proteas, but also considers some of the other Proteaceae genera that are more widely cultivated. CHAPTER 1: INTRODUCING THE PROTEA FAMILY There are around 1700 species and 79 genera of plants in the Proteaceae (Protea) family, and most are indigenous to the southern hemisphere. Around half of these

More information

Trees are: woody complex, large, long-lived self-feeding shedding generating systems compartmented, self optimizing

Trees are: woody complex, large, long-lived self-feeding shedding generating systems compartmented, self optimizing BASIC TREE BIOLOGY Trees are: woody complex, large, long-lived self-feeding shedding generating systems compartmented, self optimizing Roots: absorb water and minerals store energy support and anchor

More information

Weed Identification and Control. Jim Wanstall NMDA State Noxious Weed Coordinator

Weed Identification and Control. Jim Wanstall NMDA State Noxious Weed Coordinator Weed Identification and Control Jim Wanstall NMDA State Noxious Weed Coordinator What Is A Weed? A weed is any plant that interferes with the management objectives for a particular site. An invasive weed

More information

Name: B5 PLANT HORMONES. Class: Practice questions. Date: 53 minutes. Time: 53 marks. Marks: Biology Only. Comments: Page 1 of 25

Name: B5 PLANT HORMONES. Class: Practice questions. Date: 53 minutes. Time: 53 marks. Marks: Biology Only. Comments: Page 1 of 25 B5 PLANT HORMONES Practice questions Name: Class: Date: Time: 53 minutes Marks: 53 marks Comments: Biology Only Page of 25 Hormones called auxins control plant growth. A student investigated plant growth

More information

Copyright 2009 Pearson Education, Inc. FUNGI

Copyright 2009 Pearson Education, Inc. FUNGI Copyright 2009 Pearson Education, Inc. FUNGI FUNGI Fungi are absorptive heterotrophic eukaryotes that digest their food externally and absorb the nutrients Most fungi consist of a mass of threadlike hyphae

More information

Tropical Agricultural Research & Extension 16(4): 2014

Tropical Agricultural Research & Extension 16(4): 2014 Tropical Agricultural Research & Extension 16(4): 2014 EFFECTS OF MYCORRHIZAE AS A SUBSTITUTE FOR INORGANIC FERTILIZER ON GROWTH AND YIELD OF TOMATO (LYCOPERSICON ESCULENTUM L.) AND SOY- BEAN (GLYCINE

More information

Unit D: Controlling Pests and Diseases in the Orchard. Lesson 5: Identify and Control Diseases in the Orchard

Unit D: Controlling Pests and Diseases in the Orchard. Lesson 5: Identify and Control Diseases in the Orchard Unit D: Controlling Pests and Diseases in the Orchard Lesson 5: Identify and Control Diseases in the Orchard 1 Terms Abiotic disease Bacteria Biotic diseases Cultural disease control Disease avoidance

More information

All About Plants. What are plants?

All About Plants. What are plants? All About Plants What are plants? Plants are living things that are made up of cells. They need air, water, soil, and sunlight to live. They cannot move from place to place, but their leaves move to catch

More information

Chapter What is a Plant? Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Chapter What is a Plant? Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Chapter 22.1 Biology What is a Plant? 1 of 33 Objectives 1. Describe the basic characteristics of life. 2. Describe what plants need to survive. 3. Describe the life cycle of plants. 4. Describe how the

More information

Kingdom Plantae. Biology : A Brief Survey of Plants. Jun 22 7:09 PM

Kingdom Plantae. Biology : A Brief Survey of Plants. Jun 22 7:09 PM Kingdom Plantae Biology 2201 6.1 6.2 : A Brief Survey of Plants The study of plants is called botany. Plants are believed to have evolved from green algae. The main plant (land) characteristics are as

More information

Lidia Sas Paszt The Rhizosphere Laboratory, Research Institute of Horticulture, Skierniewice, Poland,

Lidia Sas Paszt The Rhizosphere Laboratory, Research Institute of Horticulture, Skierniewice, Poland, Lidia Sas Paszt lidia.sas@inhort.pl The Rhizosphere Laboratory, Research Institute of Horticulture, Skierniewice, Poland, www.inhort.pl - Research on the role of roots & rhizosphere in growth & yelding

More information

Detailed Course Outline

Detailed Course Outline Detailed Course Outline Unit 1 Worlds of Opportunity Lesson 1.1 A World without Enough Plants 1. Many people work in a variety of agricultural enterprises to produce food, fiber, and fuel, which are essential

More information

Map showing location of tropical rainforests

Map showing location of tropical rainforests Information sheet one: where are the rainforests located? Map showing location of tropical rainforests On your sheet describe the geographical location of the tropical rainforests. Top tip: Use an atlas

More information

Gymnosperms. Section 22-4

Gymnosperms. Section 22-4 Gymnosperms Section 22-4 Seeds can be found everywhere! Gymnosperms - bear their seeds directly in the surfaces of cones conifers such as pines and spruces cycads which are palmlike plants ginkgoes gnetophytes

More information

Ecology for Planting Design - understanding long-term plant performance. (C) Noel Kingsbury 2016

Ecology for Planting Design - understanding long-term plant performance. (C) Noel Kingsbury 2016 Ecology for Planting Design - understanding long-term plant performance (C) Noel Kingsbury 2016 Understanding plants as living materials Inherently less predictable than hard materials Need to understand,

More information

Ch 25 - Plant Hormones and Plant Growth

Ch 25 - Plant Hormones and Plant Growth Ch 25 - Plant Hormones and Plant Growth I. Patterns of plant growth A. Plant continue to grow, even in old age. i.e. new leaves, needles, new wood, new cones, new flowers, etc. B. Meristem continues to

More information

Anatomy of Plants Student Notes

Anatomy of Plants Student Notes Directions: Fill in the blanks. Anatomy of Plants Student Notes Plant Cell Biology Segment 1. Plants Plants are organisms are incapable of movement produce food through 2. Animals Animals are multicellular

More information

flower leaf stem roots

flower leaf stem roots 1. PARTS OF A PLANT Plants have three main parts: roots, stem and leaves. Roots: are in the soil. They obtain food and water from the soil and provide support for the plant. Leaves: they breathe and make

More information

1 These are living cells that lack nuclei and ribosomes; they transport sugars and other organic nutrients

1 These are living cells that lack nuclei and ribosomes; they transport sugars and other organic nutrients 1 These are living cells that lack nuclei and ribosomes; they transport sugars and other organic nutrients collenchyma parenchyma sclerenchyma sieve cells tracheids 2 The fiber cells of plants are a type

More information

2011 Assessment Report. Biology Level 1

2011 Assessment Report. Biology Level 1 National Certificate of Educational Achievement 2011 Assessment Report Biology Level 1 90927 Demonstrate understanding of biological ideas relating to micro-organisms 90928 Demonstrate understanding of

More information

Plant Diversity & Evolution (Outline)

Plant Diversity & Evolution (Outline) Plant Diversity & Evolution (Outline) Review the Life cycle of Fungi Characteristics of organisms in the Kingdom Plantae. Evolution of plants: Challenges and adaptations to living on land Highlights of

More information

What were some challenges that plants had to overcome as they moved to land? Drying out in the sun Conserving water Reproduction without water

What were some challenges that plants had to overcome as they moved to land? Drying out in the sun Conserving water Reproduction without water Classification of Plants (Ch. 22) The 3 major characteristics that make an organism a plant are: Multicellular eukaryote Cell walls with cellulose Carry out photosynthesis Plants most likely evolved from:

More information

for GREENHOUSES GREENHOUSE Why are Mycorrhizae Important? Benefit to Plants

for GREENHOUSES GREENHOUSE Why are Mycorrhizae Important? Benefit to Plants GREENHOUSE for GREENHOUSES Why are Mycorrhizae Important? Mycorrhizal fungi are essential to living soils, and allowed plants to colonize the surface of our planet around 450 million years ago. More than

More information

Topic 2: Plants Ch. 16,28

Topic 2: Plants Ch. 16,28 Topic 2: Plants Ch. 16,28 Characteristics of Plants p. 316 1. Multicellular eukaryotic organisms 2. Composed of tissues, organs and organ systems. 3. Cell walls made of cellulose. 4. Store energy as starch.

More information

Mycorrhizal inoculation of grapevine rootstocks suitable for mediterranean soils: evaluation of their growth response

Mycorrhizal inoculation of grapevine rootstocks suitable for mediterranean soils: evaluation of their growth response Mycorrhizal inoculation of grapevines in replant soils: improved field application and plant performance Nogales A., Camprubí A., Estaún V., Calvet C. IRTA, Recerca i Tecnologia Agroalimentàries, Ctra.

More information

Evaluation and selection of efficient strains of AM fungi & Rhizobium for Acacia nilotica and Ailanthus excelsa in western Rajasthan.

Evaluation and selection of efficient strains of AM fungi & Rhizobium for Acacia nilotica and Ailanthus excelsa in western Rajasthan. Forestry Research Project in Thrust Areas/Theme Wise S. No. Thrust Area (Theme ) Project Title Objective Institute 1. Forest 2. Forest Evaluation and selection of efficient strains of AM fungi & Rhizobium

More information

Symbiotic Fungal Endophytes that Confer Tolerance for Plant Growth in Saline and Dry Soils Zakia Boubakir, Elizabeth Cronin, Susan Kaminskyj

Symbiotic Fungal Endophytes that Confer Tolerance for Plant Growth in Saline and Dry Soils Zakia Boubakir, Elizabeth Cronin, Susan Kaminskyj Symbiotic Fungal Endophytes that Confer Tolerance for Plant Growth in Saline and Dry Soils Zakia Boubakir, Elizabeth Cronin, Susan Kaminskyj Department of Biology University of Saskatchewan 1 Outline Background

More information

ASSOCIATION OF MICROFLORA WITH RUBBER (Hevea brasiliensis) AND THEIR BENEFICIAL ROLES

ASSOCIATION OF MICROFLORA WITH RUBBER (Hevea brasiliensis) AND THEIR BENEFICIAL ROLES ASSOCIATION OF MICROFLORA WITH RUBBER (Hevea brasiliensis) AND THEIR BENEFICIAL ROLES Introduction: The rubber tree (Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg.), the most important source of natural

More information

Unit 5: Plant Science. Mr. Nagel Meade High School

Unit 5: Plant Science. Mr. Nagel Meade High School Unit 5: Plant Science Mr. Nagel Meade High School Warm Up What significant roles do plants perform on Earth? How do you know? Name two modern issues that could be interrelated with plants. IB Syllabus

More information

Bamboo. Rosa Isela Perez, Master Gardener Trainee 2016

Bamboo. Rosa Isela Perez, Master Gardener Trainee 2016 Bamboo The bamboos are a subfamily (Bambusoideae) of flowering perennial evergreen plants in the grass family (Poaceae). Careful estimates indicate that there may be as many as (90) genera and (1000) species.

More information

vascular phloem These 68 vocabulary cards are part of a SCIENCE unit. Please keep this set in: Plants - Standard 6-8

vascular phloem These 68 vocabulary cards are part of a SCIENCE unit. Please keep this set in: Plants - Standard 6-8 Instructions for Vocabulary Cards: Please photocopy the following pages onto heavy card stock (back to back, so the word is printed on the back side of the matching definition). Then, laminate each page.

More information

Biomes Section 2. Chapter 6: Biomes Section 2: Forest Biomes DAY ONE

Biomes Section 2. Chapter 6: Biomes Section 2: Forest Biomes DAY ONE Chapter 6: Biomes Section 2: Forest Biomes DAY ONE Of all the biomes in the world, forest biomes are the most widespread and the most diverse. The large trees of forests need a lot of water, so forests

More information

Root cross-section (Ranunculus)

Root cross-section (Ranunculus) Plant Lab Review Root cross-section (Ranunculus) Epidermis Cortex Vascular Cylinder Phloem Endodermis Xylem Ranunculus Root Cross section Give three functions of the root Anchor plant Absorb water and

More information

Passiflora coriacea (bat-leafed passion flower)

Passiflora coriacea (bat-leafed passion flower) Australia/New Zealand Weed Risk Assessment adapted for Florida. Data used for analysis published in: Gordon, D.R., D.A. Onderdonk, A.M. Fox, R.K. Stocker, and C. Gantz. 28. Predicting Invasive Plants in

More information

Fungi Coloring Worksheet

Fungi Coloring Worksheet Fungi Coloring Worksheet The basic structural features of fungi are not cells but hyphae. Hyphae are microscopic branching filaments filled with cytoplasm and nuclei. Each thread consists of a tube formed

More information

Mycorrhizal Fungi. Symbiotic relationship with plants -- form sheath around fine roots and extend hyphae into soil and sometimes into root cells

Mycorrhizal Fungi. Symbiotic relationship with plants -- form sheath around fine roots and extend hyphae into soil and sometimes into root cells Mycorrhizal Fungi Symbiotic relationship with plants -- form sheath around fine roots and extend hyphae into soil and sometimes into root cells Mycorrhizae transfer nutrients to roots (important in infertile

More information

EFFECTS OF DROUGHT STRESS ON GROWTH RESPONSE IN CORN, SUDAN GRASS, AND BIG BLUESTEM TO GLOMUS ETUNICA TUM*

EFFECTS OF DROUGHT STRESS ON GROWTH RESPONSE IN CORN, SUDAN GRASS, AND BIG BLUESTEM TO GLOMUS ETUNICA TUM* New Phytol. (\9S7), 15, A2^\ 4O3 EFFECTS OF DROUGHT STRESS ON GROWTH RESPONSE IN CORN, SUDAN GRASS, AND BIG BLUESTEM TO GLOMUS ETUNICA TUM* BY B. A. DANIELS HETRICK, D. GERSCHEFSKE KITT AND G. THOMPSON

More information

Plant Growth and Development Part I. Levels of Organization

Plant Growth and Development Part I. Levels of Organization Plant Growth and Development Part I Levels of Organization Whole Plant Organs Tissues Cells Organelles Macromolecules Levels of Organization Whole Plant Organs Tissues Cells Organelles Macromolecules 1

More information

Plant Nutrition and Transport. Chapter 29

Plant Nutrition and Transport. Chapter 29 Plant Nutrition and Transport Chapter 29 Overview: Underground Plants The success of plants depends on their ability to gather and conserve resources from their environment. The transport of materials

More information

Trachelospermum jasminoides (confederate jasmine)

Trachelospermum jasminoides (confederate jasmine) Australia/New Zealand Weed Risk Assessment adapted for Florida. Data used for analysis published in: Gordon, D.R., D.A. Onderdonk, A.M. Fox, R.K. Stocker, and C. Gantz. 28. Predicting Invasive Plants in

More information

Working with Mycorrhizas in Forestry and Agriculture

Working with Mycorrhizas in Forestry and Agriculture Working with Mycorrhizas in Forestry and Agriculture SUB Gdttingen 206 384661 Mark Brundrett, Neale Bougher, Bernie Dell, Tim Grove and Nick Malajczuk CONTENTS Chapter I. INTRODUCTION 1.1. MYCORRHIZAL

More information

Getting Started With Orchids About Orchids Orchids in Wisconsin Vanilla Orchids Vanilla Orchids Where Orchids Are Found Orchids In Nature

Getting Started With Orchids About Orchids Orchids in Wisconsin Vanilla Orchids Vanilla Orchids Where Orchids Are Found Orchids In Nature 1 2 Getting Started With Orchids About Orchids The orchid family is the largest plant family Over 35,000 species Every country in the world and every state in the United States, including Alaska, has orchids!

More information

Chapter 15 PLANT STRUCTURES AND TAXONOMY

Chapter 15 PLANT STRUCTURES AND TAXONOMY Chapter 15 PLANT STRUCTURES AND TAXONOMY Chapter 15: Parts of a plant Manufactures food by photosynthesis Attracts insects for pollination Contains seeds Supports branches and transports food and water

More information

Flowers Seeds Pollination Germination

Flowers Seeds Pollination Germination * Flowers Seeds Pollination Germination *In order for plants to be successful in many different environments they must be able to reproduce themselves. *The reproductive patterns of plants reflect the

More information

Chapter 6. Weathering, Erosion, and Soil

Chapter 6. Weathering, Erosion, and Soil Chapter 6 Weathering, Erosion, and Soil Introduction Rocks and minerals disintegrate and decompose by the processes of physical and chemical weathering. This breakdown occurs because the parent material

More information

Asexual & Plant Reproduction

Asexual & Plant Reproduction For more awesome GSE and level resources, visit us at www.savemyexams.co.uk/ sexual & Plant Reproduction Question Paper Level Subject Exam oard Topic Sub Topic ooklet O Level iology ambridge International

More information

Common Effects of Abiotic Stress Factors on Plants

Common Effects of Abiotic Stress Factors on Plants Common Effects of Abiotic Stress Factors on Plants Plants are living organisms which lack ability of locomotion. Animals can move easily from one location to other. Immovable property of plants makes it

More information

SCI-4 BNES 4.4 Summative Exam not valid for Paper Pencil Test Sessions

SCI-4 BNES 4.4 Summative Exam not valid for Paper Pencil Test Sessions SCI-4 BNES 4.4 Summative Exam not valid for Paper Pencil Test Sessions [Exam ID:1LEHLS 1 Which seed is carried by the wind? A B C D 2 Which section of the plant is the roots? A Section 3 B Section 1 C

More information

Plant Anatomy and Life Processes Study Guide

Plant Anatomy and Life Processes Study Guide Plant Anatomy and Life Processes Study Guide Science SOL 4.4 Please use this study guide to study daily for your test! Please keep this study guide in your HOMEWORK FOLDER so that you can use it to study

More information

Treat the Cause not the symptom

Treat the Cause not the symptom Treat the Cause not the symptom A few facts about Novozymes Biologicals Bu sin ess d ivisio n o f No vo zym es w it h it s o w n R& D, Manufacturing, Sales & Marketing, Administration Headquartered in

More information

Environmental Science: Biomes Test

Environmental Science: Biomes Test Name: Date: Pd. VERSION 1 Environmental Science: Biomes Test 1. Eland are large herbivores with loose skin under the throat and neck. This patch of skin aids in lowering the body temperature when temperatures

More information

THINK! Why is it important for a cotyledon to take up so much room inside a seed? (Respond in your science notebook.)

THINK! Why is it important for a cotyledon to take up so much room inside a seed? (Respond in your science notebook.) Germination Plant Unit Reading and Activity Guide When are dispersed from the plant, they can either lay or they can begin to grow immediately given the right conditions. This early stage of seed growth

More information

Bio Ch Plants.notebook. April 09, 2015

Bio Ch Plants.notebook. April 09, 2015 1 Plants are vitally important to all life on Earth, especially humans Form the base of the food chain Medicines Clothing Building Materials 2 Plants for Food Cereals - The grass family - Rich in carbohydrates

More information

Chapter 33 Plant Responses

Chapter 33 Plant Responses Chapter 33 Plant Responses R. Cummins 1 Chapter 33 Plant Responses External Factors Light, Day Length, Gravity, Temperature Internal Factors Hormones R. Cummins 2 Tropisms R. Cummins 3 Phototropism and

More information

Why Should You Consider Using Mycorrhizae? Northeast Greenhouse Conference 2018 Mycorrhizal Applications LLC 1

Why Should You Consider Using Mycorrhizae? Northeast Greenhouse Conference 2018 Mycorrhizal Applications LLC 1 Why Should You Consider Using Mycorrhizae? Mycorrhizal Applications LLC 1 A mutually beneficial relationship, which is characterized by movement of carbon flows to the fungus and inorganic nutrients move

More information

Transport in Plant (IGCSE Biology Syllabus )

Transport in Plant (IGCSE Biology Syllabus ) Transport in Plant (IGCSE Biology Syllabus 2016-2018) Plants have transport systems to move food, water and minerals around. These systems use continuous tubes called xylem and phloem: - Xylem vessels

More information

Soft stems. Wind pollinated

Soft stems. Wind pollinated Plant Adaptations The temperature in grassland or the prairies are windy, have hot summers and cold winters. Rainfall is uncertain and in the range of about 25-27 cm per year, and drought is common. The

More information

How Plants Grow HOME GARDENING OSHER LIFELONG LEARNING SPRING 2015

How Plants Grow HOME GARDENING OSHER LIFELONG LEARNING SPRING 2015 How Plants Grow HOME GARDENING OSHER LIFELONG LEARNING SPRING 2015 What is a plant? 1.bp.blogspot.com What is a plant? Living organism that, unlike an animal, cannot move voluntarily, manufactures food

More information

Big Advantage!:Vegetative reproduction is a faster way to reproduce compared to sexual reproduction if the environment is favorable.

Big Advantage!:Vegetative reproduction is a faster way to reproduce compared to sexual reproduction if the environment is favorable. DAY 5 OF CHAPTER 25 NOTES http://www.toto.com/misha/mavica/folliage2.jpg Asexual reproduction in plants is also known as vegetative reproduction. Methods of vegetative reproduction include plant structures

More information

Pros and Cons of Clonal Growth

Pros and Cons of Clonal Growth Clonal Growth Pros and Cons of Clonal Growth Advantages Rapid growth More widespread foraging Lower mortality than seedlings Greater competitive ability Disadvantages No recombination Limited dispersal

More information

Discuss: March 15, Plants part 2.notebook NITROGEN CYCLE. Animated Nitrogen Cycle. Jan 3 5:33 PM. Jan 3 8:20 PM. Carbon Cycle BrainPOP

Discuss: March 15, Plants part 2.notebook NITROGEN CYCLE. Animated Nitrogen Cycle. Jan 3 5:33 PM. Jan 3 8:20 PM. Carbon Cycle BrainPOP Plant Kingdom Review What cycles are needed for plant life? - Carbon-Oxygen Cycle (including Photosynthesis) - Nitrogen Cycle - Water Cycle Let's take a look at the first two... Jan 3 5:33 PM Jan 3 8:20

More information

Levels of Organization

Levels of Organization Plant Growth and Development Part I Levels of Organization Whole Plant Organs Tissues Cells Organelles Macromolecules Levels of Organization Whole Plant Organs Tissues Cells Organelles Macromolecules Plant

More information

Secondary Curriculum Maps

Secondary Curriculum Maps Secondary Curriculum Maps Cumberland Valley School District Soaring to Greatness, Committed to Excellence Principles of Agricultural Science - Plants The purpose of the Plant Science course is to expose

More information

Carissa bispinosa (hedgethorn)

Carissa bispinosa (hedgethorn) Australia/New Zealand Weed Risk Assessment adapted for Florida. Data used for analysis published in: Gordon, D.R., D.A. Onderdonk, A.M. Fox, R.K. Stocker, and C. Gantz. 28. Predicting Invasive Plants in

More information

What do plants compete for? What do animals compete for? What is a gamete and what do they carry? What is a gene?

What do plants compete for? What do animals compete for? What is a gamete and what do they carry? What is a gene? How are these animals adapted to their surroundings: - a) Polar bear b) Camel c) Cactus What do plants compete for? What do animals compete for? What is a gamete and what do they carry? What is a gene?

More information

22 1 Introduction to Plants Slide 2 of 33

22 1 Introduction to Plants Slide 2 of 33 2 of 33 What Is a Plant? What is a plant? 3 of 33 What Is a Plant? What Is a Plant? Plants are multicellular eukaryotes that have cell walls made of cellulose. Plants develop from multicellular embryos

More information

Name Class Date. In the space provided, write the letter of the description that best matches the term or phrase.

Name Class Date. In the space provided, write the letter of the description that best matches the term or phrase. Assessment Chapter Test B Plant Responses In the space provided, write the letter of the description that best matches the term or phrase. 1. thigmonasty 2. auxin 3. ethylene 4. phytochrome 5. abscisic

More information

(A) Ethylene (B) Absisic acid (C) Auxin (D) Gibberellin (E) Cytokinin

(A) Ethylene (B) Absisic acid (C) Auxin (D) Gibberellin (E) Cytokinin College Biology - Problem Drill 17: Plant Function Question No. 1 of 10 1. Which of the following plant hormones is responsible for phototropism? Question #01 (A) Ethylene (B) Absisic acid (C) Auxin (D)

More information

Unit G: Pest Management. Lesson 2: Managing Crop Diseases

Unit G: Pest Management. Lesson 2: Managing Crop Diseases Unit G: Pest Management Lesson 2: Managing Crop Diseases 1 Terms Abiotic disease Bacteria Biotic disease Cultural disease control Disease avoidance Disease resistance Disease tolerance Fungi Infectious

More information

Australia/New Zealand Weed Risk Assessment adapted for Florida.

Australia/New Zealand Weed Risk Assessment adapted for Florida. Australia/New Zealand Weed Risk Assessment adapted for Florida. Data used for analysis published in: Gordon, D.R., D.A. Onderdonk, A.M. Fox, R.K. Stocker, and C. Gantz. 2008. Predicting Invasive Plants

More information

Key Plant Unit Test Multiple Choice

Key Plant Unit Test Multiple Choice Plant Unit Test Multiple Choice For questions 1 25, circle the letter of the best answer from the choices provided. (2 pts each) For questions 1 3, refer to the diagram of the plant cell below: A B C D

More information