CHLOROPHYLL CONTENT QUANTIFICATION IN ACCLIMATED IN VITRO PLUM PLANTS (PRUNUS DOMESTICA, L.) Zs. Jakab-Ilyefalvi, D. Pamfil

Size: px
Start display at page:

Download "CHLOROPHYLL CONTENT QUANTIFICATION IN ACCLIMATED IN VITRO PLUM PLANTS (PRUNUS DOMESTICA, L.) Zs. Jakab-Ilyefalvi, D. Pamfil"

Transcription

1 Annals of RSCB Vol. XVI, Issue CHLOROPHYLL CONTENT QUANTIFICATION IN ACCLIMATED IN VITRO PLUM PLANTS (PRUNUS DOMESTICA, L.) Zs. Jakab-Ilyefalvi, D. Pamfil UNIVERSITY OF AGRICULTURAL SCIENCES AND VETERINARY MEDICINE, DEPARTMENT OF BIOTECHNOLOGY, CLUJ-NAPOCA Summary The apparition of the symptoms caused by the plum pox virus through formation of mosaic surfaces and necrotic zones at the stone fruits are known as reduction factors of the chlorophyll content and influences negatively the physiological factors inclusively the affection of the metabolic processes in the accumulating of sugar content. Spectroscopy results revealed the fact that the chlorophyll a content is higher in the case of healthy plants, this varying from 7. mg/l to the quantity.93 mg/l in comparison with the infected plants at which the chlorophyll a content was at a lower level. The content in chlorophyll a of the infected leaves varied between. mg/l respectively.38 mg/l, concluding the fact that the chlorophyll content was significantly reduced regarding the analyzed in vitro plant leaves. The analyzed leaves presented chlorothic bands, circles, and the reduction of the chlorophyll content cannot due because of the physiological stadium of leaves, the in vitro plantlets have presented a high juvenile stadium being regenerated by meristematic tissue culture technique. The low chlorophyll content was probable due to alterations in the biosynthesis of chlorophylls. Similar phenomena were observed in the case of the chlorophyll b content analysis at the healthy and infected plum leaves. According the analysis the chlorophyll b content varied mg/l at the healthy in vitro plants. In the case of the infected in vitro plants the chlorophyll b content varied between,5 3. mg/l. Results show that the total chlorophyll content in the plum leaves had lower values in the case of infected samples, comparative with the healthy ones. Key words: chlorophyll, plum, leaves, plum pox virus zsolt.jakab@yahoo.com Introduction The apparition of the symptoms caused by the plum pox virus through formation of mosaic surfaces and necrotic zones at the stone fruits are known as reduction factors of the chlorophyll content and influences negatively the physiological factors inclusively the affection of the metabolic processes in the accumulating of sugar content (Bulgaru and Isac, 988). Many studies showed the fact that the whole photosynthetic and metabolic system can be affected in the case of severe 55 infection with PPV, influencing thus the main vital processes of the plants ( Zhang, et al,, Wang, et al., 7). The complex photosynthetic process also in greenhouse conditions are open field conditions are influenced by the degradation of chlorophylls, thus the quantification of the exact chlorophyll content of the two types of chlorophyll a and b can be used in the characterization of the photosynthetic capacity of the plants. The photo-inhibition in additional way is associated but not necessary accompanied by the degradation of the chlorophylls

2 Annals of RSCB Vol. XVI, Issue (Critchley, 998). The study effectuated by Baumgartnerova and Slovakova, 998, regarding the chlorophyll containment and the viral concentration of PPV particles have concluded the fact that in the symptomatic leaves of apricot the assimilatory pigment containment was affected by the plum pox viral infection. The affected leaves presented a lower level of chlorophylls and the carotene content was higher than those used for control. Material and methods In order to elucidate the a and b chlorophyll amount from the in vitro plum plants at the cultivars Ivan, Iulia, Geta, Jubileu 5, it has been proceeded to the extraction and determination of chlorophylls after the method described by Arnon, (98), and Baumgartnerova, (998). Micropropagated in vitro plantlets were labeled and numbered starting with the acclimation process. There have been effectuated serological and molecular tests in order to confirm the presence of the PPV virus. Healthy and PPV infected leaves were sampled according to the effectuated tests. Leaves were put in zip bags and introduced in a refrigerating box and transported to the Biochemistry Department of USAMV Cluj-Napoca where took place the extraction and determination of chlorophyll content. Samples were weighted,. g for every individual sample. Refrigerated 8 % cc. acetone was used in order to rive the protein-chlorophyll complexes and to extract the chlorophylls. The vegetal material was introduced in a grinding mortar and 8 % cc. acetone was used for extraction. The chlorophyll extract were put inb Falcon tubes and introduced in an ultrasonic cleaner (Tellsonic, TPC-5) for 5 minutes. Fig. - Preparing of vegetal samples Fig.. Weighing of the leaf samples Fig. 3 Extraction of chlorophylls a+b in 8 % acetone Fig. Centrifugation of the plant extract at 7 rpm 5

3 Annals of RSCB Vol. XVI, Issue Fig.5 Chlorophyll extracts ready for UV-VIS spectroscopy The homogenate was centrifuged at 7 rpm, decanted, and procedure was repeated once again. The final volume was measured for every sample in order to effectuate the final chlorophyll concentration. The quantification of the chlorophyll content was effectuated based on the absorbance registered by UV VIS spectroscopy tehnique. Based by the formula published by Arnon, (98) subsequently there were effectuated the exact chlorophyll content calculations. Total chlorophyll (µg/ml) =. (A 5 ) + 8. (A 3 ) Chlorophyll a (µg/ml) =.7 (A 3 ) -.9 (A 5 ) Chlorophyll b (µg/ml) =.9 (A 5 ) -.8 (A 3 ) Sample number acclimated plant TABLE I. Determination of the optical density by spectroscopy of the chlorophyll extracts Sample Phytoviral No. Status A 3 A 5 A 33 A 5 8 Healthy,89,3,9398, Healthy,98,7,75, Healthy,98,397,395, Healthy,87,87,7, Healthy,8,97,938,355 7 Infected,535,98,5937,87 Infected,3857,598,97, Infected,3,9,85,898 5 Infected,3355,38,,773 3 Infected,555,93,793,58 3 Infected,337,8,8, Healthy,977,87,83, Infected,,5,778, 89 8 Healthy,75,93,5558,85 8 Healthy,3333,95,3987, Healthy,9,7,35,58 57

4 Annals of RSCB Vol. XVI, Issue Results and discussion There have been analyzed the individual content of a chlorophylls respectively b type chlorophylls at both of the plant categories also at the healthy ones and those infected with plum pox virus. The major importance in the light assimilation process is due to chlorophyll a due to the fact that these are the main responsible for the satisfactory functioning of the PS II photo-system in natural light conditions. The b type chlorophylls the main components of the proteins which collect LHCP light and the content of this pigment in the leaves is important for the capacity of the leave to accommodate in shadow conditions (conditions typical in greenhouse). Comparative analyses of chlorophyll "a" in plum leaves (Prunus domestica,l.) 9 8 mg/ L Healthy leaves Infected leaves Fig. Comparative analysis of the chlorophyll a content in the analyzed samples Comparative analyses of chlorophyll "b" in plum leaves (Prunus domestica,l.) mg/ L Healthy leaves Infected leaves Fig. 7. Comparative analysis of the chlorophyll b content in the analyzed samples Analyzing the fig. it is revealed the fact that the chlorophyll a content is higher in the case of healthy plants, this varying from 7. mg/l to the quantity.93 mg/l in comparison with the infected plants at which the chlorophyll a content was at a lower level. The content in chlorophyll a of the infected leaves varied 58 between. mg/l respectively.38 mg/l, concluding the fact that the chlorophyll content was significantly reduced regarding the analyzed in vitro plant leaves. The analyzed leaves presented chlorothic bands, mosaicated circles, and the reduction of the chlorophyll content cannot due because of the leaves sencescence, the in vitro plantlets

5 Annals of RSCB Vol. XVI, Issue have presented a high juvenile stadium being regenerated by meristematic tissue culture technique. The low chlorophyll content was probable due to alterations in the biosynthesis of chlorophylls. Similar phenomena was observed in the case of the chlorophyll b content analysis at the healthy and infected plum leaves ( Fig. 7). According the analysis the chlorophyll b content varied mg/l at the healthy in vitro plants. In the case of the infected in vitro plants the chlorophyll b content varied between,5 3. mg/l. A lower value of chlorophylls can be influenced by an excess of irradiation of these pigments at the plants grown in open field condition (Jason et al., ). The analysis of the absorbance spectra. The chlorophyll molecules are components in different photo-systems integrated in the interior of the tylacoid membranes of the chloroplasts. The chlorophylls are absorbing the most intense light from the blue region of the electromagnetic spectra of light, followed by the red region, but they absorb very weak in the green region, from this derives the fact that the vegetal tissues containing the chlorophylls are becoming the green color after this pigment. The absorption of the chlorophylls are between the -7 nm, and this region is named the photosynthetically active region (PAR). sursa: Fig. 8 Spectral absorbance of chlorophylls in the visible light Chlorophyll a molecules extracted in acetone in our experiences have absorbed at optical densities of A=3nm respectively A=3 nm, and the chlorophyll b at optical densities of A=5 nm and A=5 nm for the two extremities of the spectra. Proba nr. - Nediluata 5 7 Fig. 9 of the chlorophyll extract, plum cultivar Ivan, healthy plant 59

6 Annals of RSCB Vol. XVI, Issue In fig.9 it is shown the absorption spectra of the sample no., the specific absorption at the level of chlorophylls having a value of.89 OD at the maximum value of A=3 nm respectively.57 OD at the maximum value of A=33. This sample has been diluted to an appropriate reading at the maximum value of A=33 nm obtaining optimal values Proba nr. - Nediluata which could be interpreted properly obtaining the value,3333 at the maximum value of A=33 nm respectively,38 at the maximum value of A=33 nm. The specific absorbance at the chlorophyll b at the absorbance maximum of A=5 nm has presented the values,3 at the absorbance of A=5 nm the optical density was,9398. at the maxima of A=33 nm presented the value of,598 DO and the A=33 nm the optical density was,97. As shown above in our experiences, the total chlorophyll content in the plum leaves had lower values in the case of infected samples, comparative with the healthy ones. 5 7 Comparison between the absorbance of chlorophyll extracts of healthy / infected plum leaves Fig. of the chlorophyll extract, plum cultivar Iulia, infected plant In the case of sample no. the registred specific absorbance had the value,3857 OD at the A=33 nm point respectively,7397 OD at the maxima of A=33 nm at the chlorophyll a level. The specific absorbance at the chlorophyll b The comparative analysis of the spectra of the two plant categories reveals the fact that there are notable differences between the absorbance of the chlorophyll content of healthy and infected plants, in the frame of the same cultivar Geta there being differences between the infected plants and healthy plants. Proba nr. - Nediluat Proba nr. 8 - Nediluat Proba nr. 5 - Nediluata Proba nr. 9 - Nediluata Fig. Comparations between the absorbance of healthy and infected samples at cultivar Geta The spectral curve of the healthy plants where noted with red color and the spectra of the infected leaves were noted with black color, being revealed the existing differences. The symptoms of healthy leaves without the mosaic shaped

7 Annals of RSCB Vol. XVI, Issue surfaces on the leaves have revealed higher levels of chlorophyll content. According to the effectuated studies, we consider that among other factors which contributes to the decrease of the chlorophyll content, the incidence of the plum pox virus influences the biosynthesis and metabolic system of chlorophylls, experiences confirmed by other researches (Zhang, at al., ). References Arnon, D.I., Copper enzymes in isolated chloroplast, polyphenoloxidase in beta vulgaris, Plant physiology, Vol., Number, -, 99. Baumgartnerova, H., Slovakova, L., Petrusova, N., Relationship between concentration of plum pox virus and content of pigments in virusinfected symptomatic apricot leaves, Acta Virol., ():-8, 998. Critchley, C., Photoinhibition in photosynthesis, a comprehensive treatise, Cambridge University Press, Cambridge, Jason, J.G., Thomas and D.M. Pharr, Photosynthesis, chlorophyll florescence, and carbohydrate content of illicium taxa grown under varied irradiance, J. Am. Soc. Hort. Sci., 9:-53,. Hong, W., Falin Wang, Gang Wang, Khalid Majourhat, The responses of photosynthetic capacity, chlorophyll fluorescence and chlorophyll content of nectarine ( Prunus persica var Nectarina Maxim) to greenhouse and field grown conditions, Scientia Horticulturae, :-7, 7. Bulgaru, L., Isac, M. Some biochemical changes induced by plumn pox in plum, Acta Horticulturae,Vol.35,5-9, 988. Zhang, Y., Simeone, A. M., Cappelini, P., Physiological modifications caused by plum pox virus in the leaves of peach and apricot tree, Agris, ISMEA (Italy), 39(3), p. 7-5,.

Evaluation of Total Chlorophyll Content in Microwave-Irradiated Ocimum basilicum L.

Evaluation of Total Chlorophyll Content in Microwave-Irradiated Ocimum basilicum L. Evaluation of Total Chlorophyll Content in Microwave-Irradiated Ocimum basilicum L. I. Lung a, M.L. Soran a*, M. Stan a, C. Bele b, C. Matea b a National Institute for Research and Development of Isotopic

More information

Photosynthesis and Life

Photosynthesis and Life 7-1 Chapter 7 Photosynthesis and Life During photosynthesis Organisms use the energy of light to build highenergy organic molecules. Plants, algae, and some bacteria can do this. Can make their own food

More information

8.2 Photosynthesis Overview

8.2 Photosynthesis Overview 8.2 Photosynthesis Overview Chlorophyll and Chloroplasts What role do pigments play in the process of photosynthesis? Photosynthetic organisms capture energy from sunlight with pigments. Light Energy from

More information

Photosynthesis and Cellular Respiration: Photosynthesis

Photosynthesis and Cellular Respiration: Photosynthesis Photosynthesis and Cellular Respiration: Photosynthesis Unit Objective I can compare the processes of photosynthesis and cellular respiration in terms of energy flow, reactants, and products. During this

More information

Photosynthesis: An Overview. Lesson Overview. Lesson Overview. 8.2 Photosynthesis: An Overview

Photosynthesis: An Overview. Lesson Overview. Lesson Overview. 8.2 Photosynthesis: An Overview Lesson Overview 8.2 Photosynthesis: An Overview Chlorophyll and Chloroplasts What role do pigments play in the process of photosynthesis? Photosynthetic organisms capture energy from sunlight with pigments.

More information

Photosynthesis. Introduction

Photosynthesis. Introduction Photosynthesis Learning Objectives: Explain the importance of photosynthetic pigments for transformation of light energy into chemical bond and the advantage of having more than one pigment in the same

More information

Cell Energy Photosynthesis Study Guide

Cell Energy Photosynthesis Study Guide Name Date Pd Circle the word or phrase that best completes the statement. Study all notes and read Ch 4.1-4.3. 1. All cells use adenosine triphosphate (ATP) for energy. ATP is a molecule / organelle that

More information

EFFECTS OF PACLOBUTRAZOL ON STOMATAL SIZE AND DENSITY IN PEACH LEAVES

EFFECTS OF PACLOBUTRAZOL ON STOMATAL SIZE AND DENSITY IN PEACH LEAVES EFFECTS OF PACLOBUTRAZOL ON STOMATAL SIZE AND DENSITY IN PEACH LEAVES A. Blanco, E. Monge, and J. Val Estación Experimental Aula Dei (CSIC). Apartado 202. 50080 Zaragoza. Spain Abstract To study the stomatal

More information

1 Which of the following organisms do NOT carry on photosynthesis?

1 Which of the following organisms do NOT carry on photosynthesis? 1 Which of the following organisms do NOT carry on photosynthesis? plants algae some bacteria 2 3 animals The correct description of the relationship between photosynthesis and the living world is. herbivores,

More information

BIOL 221 Concepts of Botany

BIOL 221 Concepts of Botany BIOL 221 Concepts of Botany Topic 13: Photosynthesis A. Introduction Through photosynthesis, the abundant energy from the sun is collected and converted into chemical forms by photosynthetic organisms

More information

5/08/ :49 PM 28/02/13. Lecture 2: Photosynthesis:

5/08/ :49 PM 28/02/13. Lecture 2: Photosynthesis: 5/08/2014 10:49 PM 28/02/13 Lecture 2: Photosynthesis: Two types of chlorophyll in plants (green pigments in the thylakoids that are responsible for the absorption of Photosynthetically active radiation

More information

Photosynthesis is the main route by which that energy enters the biosphere of the Earth.

Photosynthesis is the main route by which that energy enters the biosphere of the Earth. Chapter 5-Photosynthesis Photosynthesis is the main route by which that energy enters the biosphere of the Earth. To sustain and power life on Earth, the captured energy has to be released and used in

More information

AP Biology. Warm-up. Photosynthesis: Life from Light and Air. Energy needs of life. Energy needs of life. Objective: Warm-up:

AP Biology. Warm-up. Photosynthesis: Life from Light and Air. Energy needs of life. Energy needs of life. Objective: Warm-up: Warm-up Objective: Explain how photosynthesis converts light energy into chemical energy. Warm-up: In the light reactions, what is the electron donor? Where do the electrons end up? 2006-2007 Photosynthesis:

More information

NOTES: PHOTOSYNTHESIS!

NOTES: PHOTOSYNTHESIS! NOTES: 8.2 8.3 PHOTOSYNTHESIS! 8.2 - Photosynthesis: Trapping the Sun s Energy Key Concepts: What did the experiments of van Helmont, Priestley, and Ingenhousz reveal about how plants grow? What is the

More information

Virtual Lab 5 Photosynthesis

Virtual Lab 5 Photosynthesis Name Period Assignment # Virtual Lab 5 Photosynthesis http://www.phschool.com/science/biology_place/labbench/lab4/intro.html 1) Define photosynthesis 2) Define chlorophyll Click 4-I Chromatography on the

More information

Sweet Sunshine Lexile 1060L

Sweet Sunshine Lexile 1060L Sweet Sunshine Lexile 1060L 1 Photosynthesis is the foundation of most life on earth. The basic chemistry of photo-synthesis was explained by several scientists in the 16 th, 17 th, and 18 th centuries.

More information

Just Like the Guy From Krypton Photosynthesis

Just Like the Guy From Krypton Photosynthesis Just Like the Guy From Krypton Photosynthesis An Overview of Photosynthesis Most of the energy used by almost all living cells ultimately comes from the sun plants, algae, and some bacteria capture the

More information

Outline - Photosynthesis

Outline - Photosynthesis Outlin Photosynthesis Photosynthesis 1. An Overview of Photosynthesis & Respiration 2. Autotrophs and producers 3. Electromagnetic Spectrum & light energy 4. Chloroplasts: Structure and Function 5. Photosynthetic

More information

Light and Photosynthesis. Supplemental notes Lab 4 Horticultural Therapy

Light and Photosynthesis. Supplemental notes Lab 4 Horticultural Therapy Light and Photosynthesis Supplemental notes Lab 4 Horticultural Therapy Light The Electromagnetic Spectrum is a continuum of all electromagnetic waves arranged according to frequency and wavelength, the

More information

Lesson Overview. 8.2 Photosynthesis: An Overview

Lesson Overview. 8.2 Photosynthesis: An Overview 8.2 Photosynthesis: An Overview Light Energy from the sun travels to Earth in the form of light. Sunlight is a mixture of different wavelengths Light Our eyes see the different wavelengths of the visible

More information

THE EFFECT OF MINERAL FERTILIZATION ON THE PIGMENT CONTENT IN MARIGOLD (CALLENDULA OFFICINALIS L.)

THE EFFECT OF MINERAL FERTILIZATION ON THE PIGMENT CONTENT IN MARIGOLD (CALLENDULA OFFICINALIS L.) Lucrări Ştiinţifice vol. 5, seria Agronomie THE EFFECT OF MINERAL FERTILIZATION ON THE PIGMENT CONTENT IN MARIGOLD (CALLENDULA OFFICINALIS L.) Alina Elena MARTA, Carmen Doina JITĂREANU, Marinela BĂDEANU,

More information

Lecture Series 13 Photosynthesis: Energy from the Sun

Lecture Series 13 Photosynthesis: Energy from the Sun Lecture Series 13 Photosynthesis: Energy from the Sun Photosynthesis: Energy from the Sun A. Identifying Photosynthetic Reactants and Products B. The Two Pathways of Photosynthesis: An Overview C. Properties

More information

Effects of nitrogen application rate on flag leaf photosynthetic characteristics and grain growth and development of high2quality wheat

Effects of nitrogen application rate on flag leaf photosynthetic characteristics and grain growth and development of high2quality wheat 2006,12(1) :49-55 Plant Nutrition and Fertilizer Science,,,, (, 271018) 3 :,, 8901 N 120 360 kg/ hm 2, SN1391 N 120 240 kg/ hm 2, 360 kg/ hm 2,,, ; ; : ; ; ; : S5121106 : A : 1008-505X(2006) 01-0049- 07

More information

Studies on the Bulb Development and Its Physiological Mechanisms in Lilium Oriental Hybrids

Studies on the Bulb Development and Its Physiological Mechanisms in Lilium Oriental Hybrids Studies on the Bulb Development and Its Physiological Mechanisms in Lilium Oriental Hybrids Y.P. Xia, H.J. Zheng and C.H. Huang Department of Horticulture College of Agriculture and Biotechnology Zhejiang

More information

Sunlight as an Energy Source

Sunlight as an Energy Source Photosynthesis Sunlight as an Energy Source Photosynthetic organisms use pigments to capture the energy of sunlight Photosynthesis The synthesis of organic molecules from inorganic molecules using the

More information

Effect of the grape chromem1osaic and grape fanleaf yellow mosaic virus infection on the photosynthetical carbon dioxide fixation in vine leaves

Effect of the grape chromem1osaic and grape fanleaf yellow mosaic virus infection on the photosynthetical carbon dioxide fixation in vine leaves Vitis 8, 26-21 (1969) Research Institute for Viticulture and Enology, Budapest, Hungary Effect of the grape chromem1osaic and grape fanleaf yellow mosaic virus infection on the photosynthetical carbon

More information

Chapter 10: PHOTOSYNTHESIS

Chapter 10: PHOTOSYNTHESIS Chapter 10: PHOTOSYNTHESIS 1. Overview of Photosynthesis 2. Light Absorption 3. The Light Reactions 4. The Calvin Cycle 1. Overview of Photosynthesis Chapter Reading pp. 185-190, 206-207 What is Photosynthesis?

More information

Chapter 8: Photosynthesis

Chapter 8: Photosynthesis Name: KEY Class: Date Chapter 8: Photosynthesis Section 8-1 Energy and Life (pages 201-203) Autotrophs and Heterotrophs (page 201) 1. Where does the energy of food originally come from? The sun, plants

More information

Lecture 3. Photosynthesis 1

Lecture 3. Photosynthesis 1 Lecture 3 Photosynthesis 1 Constituent of plant component Plants component: water (70%), organic matter (27%), mineral (3%) - dry matter Water eg. Tomato contain 42-93% water young shoot 90-95% water cereal/grain

More information

The light reactions convert solar energy to the chemical energy of ATP and NADPH

The light reactions convert solar energy to the chemical energy of ATP and NADPH 10.2 - The light reactions convert solar energy to the chemical energy of ATP and NADPH Chloroplasts are solar-powered chemical factories The conversion of light energy into chemical energy occurs in the

More information

8-2 Photosynthesis: An Overview. 8-2 Photosynthesis: An Overview

8-2 Photosynthesis: An Overview. 8-2 Photosynthesis: An Overview 8-2 Photosynthesis: An Overview The key cellular process identified with energy production is photosynthesis. Photosynthesis is the process in which green plants use the energy of sunlight to convert water

More information

Photosynthesis. From Sunlight to Sugar

Photosynthesis. From Sunlight to Sugar Photosynthesis From Sunlight to Sugar What is Photosynthesis? Photosynthesis is a process that captures energy from sunlight to make sugars used as food for producers. The light energy is stored as chemical

More information

Photosynthesis. light

Photosynthesis. light Photosynthesis light 6CO + 6H 0 C 6 H 1 O 6 + 6O light Carbon dioxide + water sugar + oxygen Chlorophyll pigment that absorbs light energy Absorbs red and blue light Reflects green and yellow light Chlorophyll

More information

Separation and Identification of Plant Pigments Dr. Gergens - SD Mesa College

Separation and Identification of Plant Pigments Dr. Gergens - SD Mesa College Separation and Identification of Plant Pigments Dr. Gergens - SD Mesa College PURPOSE In this experiment, the photosynthetic pigments common to all flowering plants will be extracted by liquidliquid extraction.

More information

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 10 Photosynthesis PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Overview:

More information

Life Sciences For NET & SLET Exams Of UGC-CSIR. Section B and C. Volume-10. Contents A. PHOTOSYNTHESIS 1 B. RESPIRATION AND PHOTORESPIRATION 33

Life Sciences For NET & SLET Exams Of UGC-CSIR. Section B and C. Volume-10. Contents A. PHOTOSYNTHESIS 1 B. RESPIRATION AND PHOTORESPIRATION 33 Section B and C Volume-10 Contents 6. SYSTEM PHYSIOLOGY-PLANTS A. PHOTOSYNTHESIS 1 B. RESPIRATION AND PHOTORESPIRATION 33 C. NITROGEN METABOLISM 51 D. PLANT HORMONES 73 0 6. SYSTEM PHYSIOLOGY-PLANTS A.

More information

Common Effects of Abiotic Stress Factors on Plants

Common Effects of Abiotic Stress Factors on Plants Common Effects of Abiotic Stress Factors on Plants Plants are living organisms which lack ability of locomotion. Animals can move easily from one location to other. Immovable property of plants makes it

More information

Lecture-17. Electron Transfer in Proteins I

Lecture-17. Electron Transfer in Proteins I Lecture-17 Electron Transfer in Proteins I The sun is main source of energy on the earth. The sun is consumed by the plant and cyanobacteria via photosynthesis process. In this process CO2 is fixed to

More information

AP Biology

AP Biology Chapter 10. Photosynthesis: Life from Light Energy needs of life All life needs a constant input of energy Heterotrophs get their energy from eating others consumers of other organisms consume organic

More information

AP Biology

AP Biology Chapter 10. Photosynthesis: Life from Light Energy needs of life All life needs a constant input of energy Heterotrophs get their energy from eating others consumers of other organisms consume organic

More information

Unit 1 Matter & Energy for Life. Biology Photosynthesis

Unit 1 Matter & Energy for Life. Biology Photosynthesis Unit 1 Matter & Energy for Life Biology 2201 3.2 The Process of Photosynthesis Photosynthesis The process by which an organism captures the energy of the sun to convert CO 2 and water into glucose. Light

More information

Chapter 10. Photosynthesis

Chapter 10. Photosynthesis Chapter 10 Photosynthesis Overview: The Process That Feeds the Biosphere Photosynthesis is the process that converts solar energy into chemical energy Directly or indirectly, photosynthesis nourishes almost

More information

Autotrophs and Heterotrophs

Autotrophs and Heterotrophs Section 8-1 Notes Energy and Life Energy is the ability to do work. Living things depend on energy. Without the ability to obtain and use energy, life would cease to exist. Where does the energy that living

More information

Photosynthesis. 8Big idea. Cellular Basis of Life Q: How do plants and other organisms capture energy from the sun? Name Class Date WHAT I KNOW

Photosynthesis. 8Big idea. Cellular Basis of Life Q: How do plants and other organisms capture energy from the sun? Name Class Date WHAT I KNOW Name Class Date 8Big idea Photosynthesis Cellular Basis of Life Q: How do plants and other organisms capture energy from the sun? WHAT I KNOW WHAT I LEARNED 8.1 How do organisms store energy? 8.2 What

More information

Importance. The Reaction of Life : The conversion of the sun s energy into a form man and other living creatures can use.

Importance. The Reaction of Life : The conversion of the sun s energy into a form man and other living creatures can use. PLANT PROCESSES Photosynthesis Importance The Reaction of Life : The conversion of the sun s energy into a form man and other living creatures can use. Photo light Synthesis to put together 3 Important

More information

Photosynthesis: Life from Light and Air. Regents Biology

Photosynthesis: Life from Light and Air. Regents Biology Photosynthesis: Life from Light and Air Plants are energy producers Like animals, plants need energy to live unlike animals, plants don t need to eat food to make that energy Plants make both FOOD & ENERGY

More information

Lesson Overview. Photosynthesis: An Overview. Lesson Overview. 8.2 Photosynthesis: An Overview

Lesson Overview. Photosynthesis: An Overview. Lesson Overview. 8.2 Photosynthesis: An Overview Lesson Overview 8.2 Photosynthesis: An Overview Light and pigments Energy from the sun travels to Earth in the form of light. Sunlight is a mixture of different wavelengths. The wavelengths we see is known

More information

? Lighting is in our culture Lighting is in our culture LED USE WHY

? Lighting is in our culture Lighting is in our culture LED USE WHY WHY USE LED? Lighting is in is our in culture our culture THE FUNDAMENTAL REASONING BEHIND THE USE OF GROW LIGHTS - COMMUNITY CONCERNS NOURISHING OUR PLANET AND ITS PEOPLE In the last 50 years, our world

More information

PHOTOSYNTHESIS Student Packet SUMMARY

PHOTOSYNTHESIS Student Packet SUMMARY PHOTOSYNTHESIS Student Packet SUMMARY LIVING SYSTEMS REQUIRE ENERGY AND MATTER TO MAINTAIN ORDER, GROW AND REPRODUCE Energy input must exceed energy lost and used by an organism. Organisms use various

More information

Chapter 10 Photosynthesis

Chapter 10 Photosynthesis Chapter 10 Photosynthesis Photosynthesis Process by which plants use light energy to make food. A reduction process that makes complex organic molecules from simple molecules. Ps General Equation 6 CO

More information

Chapter 8 Notes Photosynthesis

Chapter 8 Notes Photosynthesis Name: Date: Chapter 8 Notes Photosynthesis Section 8-2 & 8-3 Photosynthesis: An Overview (p. 204-214) The study of energy capture and use begins with. Photosynthesis is the process in which plants use

More information

Photosynthesis: Life from Light and Air

Photosynthesis: Life from Light and Air Photosynthesis: Life from Light and Air 2006-2007 Energy needs of life All life needs a constant input of energy get their energy from eating others eat food = other organisms = make energy through get

More information

ATP, Cellular Respiration and Photosynthesis

ATP, Cellular Respiration and Photosynthesis ATP, Cellular Respiration and Photosynthesis Energy for Cells Free Energy: the energy available to do work Types of Reactions Endergonic Reactions: require an input of energy Exergonic Reactions: release

More information

Concept 10.1 Photosynthesis converts light energy to the chemical energy of food

Concept 10.1 Photosynthesis converts light energy to the chemical energy of food Name Period Chapter 10: Photosynthesis This chapter is as challenging as the one you just finished on cellular respiration. However, conceptually it will be a little easier because the concepts learned

More information

BioWash as an Adjuvant, Translocation Promoter, and Cationic Exchange Stimulator Overview of Processes within the Plant

BioWash as an Adjuvant, Translocation Promoter, and Cationic Exchange Stimulator Overview of Processes within the Plant BioWash as an Adjuvant, Translocation Promoter, and Cationic Exchange Stimulator Overview of Processes within the Plant Photosynthesis is the primary driver of the plant. Through a series of complex steps,

More information

Photosynthesis (2.9) IB Diploma Biology

Photosynthesis (2.9) IB Diploma Biology Photosynthesis (2.9) IB Diploma Biology Essential Idea: Photosynthesis transforms light energy into chemical potential energy that can be used by organisms 2.9.1 Photosynthesis is the production of carbon

More information

1 (a) Fig. 1.1 is a diagram representing a three-dimensional view of a chloroplast. space B. Fig (i) Name parts A to C in Fig A... B...

1 (a) Fig. 1.1 is a diagram representing a three-dimensional view of a chloroplast. space B. Fig (i) Name parts A to C in Fig A... B... 1 (a) Fig. 1.1 is a diagram representing a three-dimensional view of a chloroplast. A space B C Fig. 1.1 (i) Name parts A to C in Fig. 1.1. A... B... C... [3] (ii) Describe two ways in which the structure

More information

Lesson Overview. 8.3 The Process of Photosynthesis

Lesson Overview. 8.3 The Process of Photosynthesis 8.3 The Process of Photosynthesis The Light-Dependent Reactions: Generating ATP and NADPH The light-dependent reactions encompass the steps of photosynthesis that directly involve sunlight. The light-dependent

More information

PHOTOSYNTHESIS. Trapping the Sun s Energy

PHOTOSYNTHESIS. Trapping the Sun s Energy 1 PHOTOSYNTHESIS Trapping the Sun s Energy 2 Energy is trapped in chemical bonds But where does energy come from? GLUCOSE 3 Carbohydrate sugar molecule Simple sugar, known as a monosaccharide(ex: fructose,

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Name Period Date Photosynthesis and Cellular Respiration Biology A - STUDY GUIDE 1. Know the parts of the process. (MTS_LT1 ) a. The site (organelle) in a plant cell where photosynthesis takes place: b.

More information

Biology. Slide 1 of 28. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 28. End Show. Copyright Pearson Prentice Hall Biology 1 of 28 8-2 Photosynthesis: An Overview 2 of 28 8-2 Photosynthesis: An Overview The key cellular process identified with energy production is photosynthesis. Photosynthesis is the process in which

More information

TREES. Functions, structure, physiology

TREES. Functions, structure, physiology TREES Functions, structure, physiology Trees in Agroecosystems - 1 Microclimate effects lower soil temperature alter soil moisture reduce temperature fluctuations Maintain or increase soil fertility biological

More information

7/31/2014 WHAT IS LIGHT? SUPPLEMENTAL LIGHTING JOHANNA OOSTERWYK DC SMITH GREENHOUSE MANAGER UW-MADISON DEPARTMENT OF HORTICULTURE

7/31/2014 WHAT IS LIGHT? SUPPLEMENTAL LIGHTING JOHANNA OOSTERWYK DC SMITH GREENHOUSE MANAGER UW-MADISON DEPARTMENT OF HORTICULTURE WHAT IS LIGHT? SUPPLEMENTAL LIGHTING JOHANNA OOSTERWYK DC SMITH GREENHOUSE MANAGER UW-MADISON DEPARTMENT OF HORTICULTURE Electromagnetic radiation Energy emitted by a light source Measured in watts Visible

More information

Analysis of pheophorbide a and other intermediates of the chlorophyll metabolism in Arabidopsis leaves by HPLC Summary Introduction Materials

Analysis of pheophorbide a and other intermediates of the chlorophyll metabolism in Arabidopsis leaves by HPLC Summary Introduction Materials Analysis of pheophorbide a and other intermediates of the chlorophyll metabolism in Arabidopsis leaves by HPLC Ryouichi Tanaka Inst Low Temp Sci, Hokkaido Univ, N19 W8, Kita-ku, Sapporo, 060-0819, JAPAN

More information

Located in the thylakoid membranes. Chlorophyll have Mg + in the center. Chlorophyll pigments harvest energy (photons) by absorbing certain

Located in the thylakoid membranes. Chlorophyll have Mg + in the center. Chlorophyll pigments harvest energy (photons) by absorbing certain a review Located in the thylakoid membranes. Chlorophyll have Mg + in the center. Chlorophyll pigments harvest energy (photons) by absorbing certain wavelengths (blue-420 nm and red-660 nm are most important).

More information

Chapter 8 PHOTOSYNTHESIS Chapter # Chapter Title PowerPoint Image Slideshow

Chapter 8 PHOTOSYNTHESIS Chapter # Chapter Title PowerPoint Image Slideshow COLLEGE BIOLOGY PHYSICS Chapter 8 PHOTOSYNTHESIS Chapter # Chapter Title PowerPoint Image Slideshow Figure 8.0 Photosynthesis Figure 8.1 Earth s distribution of photosynthesis as seen via chlorophyll a

More information

13. The diagram below shows two different kinds of substances, A and B, entering a cell.

13. The diagram below shows two different kinds of substances, A and B, entering a cell. Name 1. In the binomial system of nomenclature, which two classification groups provide the scientific name of an organism? A) kingdom and phylum B) phylum and species C) kingdom and genus D) genus and

More information

Validation of a leaf reflectance and transmittance model for three agricultural crop species

Validation of a leaf reflectance and transmittance model for three agricultural crop species Validation of a leaf reflectance and transmittance model for three agricultural crop species Application Note Author G. J. Newnham* and T. Burt** *Remote Sensing and Satellite Research Group, Curtin University

More information

CLASS 11 th. Photosynthesis

CLASS 11 th. Photosynthesis CLASS 11 th 01. Introduction Autotrophic organisms have the ability to synthesise organic food from inorganic raw materials. In this process, they consume physical and chemical forms of energy. One such

More information

Photosynthesis in Detail. 3/19/2014 Averett

Photosynthesis in Detail. 3/19/2014 Averett Photosynthesis in Detail 1 In photosynthesis many chemical reactions, enzymes and ions work together in a precise order. Enzymes Biological catalyst Substance that initiates or speeds up the rate of a

More information

Pearson Biology Chapter 8 Class Notes

Pearson Biology Chapter 8 Class Notes Pearson Biology Chapter 8 Class Notes Photosynthesis Chemical Energy and ATP Why is ATP useful to cells? Energy is the Ability to do Work. Cells use Adenosine Triphosphate (ATP) to Store and Release Energy

More information

METABOLISM. What is metabolism? Categories of metabolic reactions. Total of all chemical reactions occurring within the body

METABOLISM. What is metabolism? Categories of metabolic reactions. Total of all chemical reactions occurring within the body METABOLISM What is metabolism? METABOLISM Total of all chemical reactions occurring within the body Categories of metabolic reactions Catabolic reactions Degradation pathways Anabolic reactions Synthesis

More information

AP Biology. Chloroplasts: sites of photosynthesis in plants

AP Biology. Chloroplasts: sites of photosynthesis in plants The summary equation of photosynthesis including the source and fate of the reactants and products. How leaf and chloroplast anatomy relates to photosynthesis. How photosystems convert solar energy to

More information

1. Which of these types of organisms produce the biosphere's food supply? A. autotrophs and heterotrophs

1. Which of these types of organisms produce the biosphere's food supply? A. autotrophs and heterotrophs Sample Questions: Chapter 7 1 Which of these types of organisms produce the biosphere's food supply? A autotrophs and heterotrophs B consumers and heterotrophs C heterotrophs D autotrophs E consumers 2

More information

Biology Chapter 8: The Process of Photosynthesis. Ms. Nguyen

Biology Chapter 8: The Process of Photosynthesis. Ms. Nguyen Biology Chapter 8: The Process of Photosynthesis Ms. Nguyen Add to a new section of IAN Left side. Chapter 8 Big Idea: Cellular Basis of Life Essential Question: How do plants and other organisms capture

More information

Ch. 10- Photosynthesis: Life from Light and Air

Ch. 10- Photosynthesis: Life from Light and Air Ch. 10- Photosynthesis: Life from Light and Air 2007-2008 Ch. 10 Photosynthesis: Life from Light and Air 2007-2008 Energy needs of life All life needs a constant input of energy consumers Heterotrophs

More information

In this lab we will examine phoptosynthesis, one. organisms convert energy from an unusable form. to a usable chemical form (photosynthesis), an

In this lab we will examine phoptosynthesis, one. organisms convert energy from an unusable form. to a usable chemical form (photosynthesis), an Lab: Photosynthesis Introduction: In this lab we will examine phoptosynthesis, one of the two major processes by which most organisms convert energy from an unusable form The Scientific Method: As you

More information

CH 8: Photosynthesis Overview Photosynthesis is the process that converts solar energy into chemical energy

CH 8: Photosynthesis Overview Photosynthesis is the process that converts solar energy into chemical energy CH 8: Photosynthesis Overview Photosynthesis is the process that converts solar energy into chemical energy Directly or indirectly, photosynthesis nourishes almost the entire living world Autotrophs sustain

More information

Unit 1C Practice Exam (v.2: KEY)

Unit 1C Practice Exam (v.2: KEY) Unit 1C Practice Exam (v.2: KEY) 1. Which of the following statements concerning photosynthetic pigments (chlorophylls a and b, carotenes, and xanthophylls) is correct? (PT1-12) a. The R f values obtained

More information

AP Biology Review Chapters 6-8 Review Questions Chapter 6: Metabolism: Energy and Enzymes Chapter 7: Photosynthesis Chapter 8: Cellular Respiration

AP Biology Review Chapters 6-8 Review Questions Chapter 6: Metabolism: Energy and Enzymes Chapter 7: Photosynthesis Chapter 8: Cellular Respiration AP Biology Review Chapters 6-8 Review Questions Chapter 6: Metabolism: Energy and Enzymes 1. Understand and know the first and second laws of thermodynamics. What is entropy? What happens when entropy

More information

Chapter 10: Photosynthesis

Chapter 10: Photosynthesis Chapter 10: Photosynthesis This chapter is as challenging as the one you just finished on cellular respiration. However, conceptually it will be a little easier because the concepts learned in Chapter

More information

Photosynthesis. 1) Heterotrophs: 2) Autotrophs: 3) Phytoplankton:

Photosynthesis. 1) Heterotrophs: 2) Autotrophs: 3) Phytoplankton: CAPE BIO UNIT 2 Lesson 1-10 th Sept 2012 1 Define the following: Photosynthesis 1) Heterotrophs: 2) Autotrophs: 3) Phytoplankton: Photosynthesis is simply the process by which organisms convert solar energy

More information

Photosynthesis. 3. We have 2 types of organisms depending on their nutrition:

Photosynthesis. 3. We have 2 types of organisms depending on their nutrition: 1 لجان الد فعات/تلخيص علوم حياتية 101 Key concepts 10.1 PHOTOSYNTHESIS CONVERTS LIGHT ENERGY TO THE CHEMICAL ENERGY OF FOOD. 10.2 THE LIGHT REACTIONS CONVERT SOLAR ENERGY TO THE CHEMICAL ENERGY OF ATP

More information

Algal Physiology. I. Photosynthesis in algae II. Characteristics to distinguish algal divisions. I. Photosynthesis

Algal Physiology. I. Photosynthesis in algae II. Characteristics to distinguish algal divisions. I. Photosynthesis Algal Physiology I. Photosynthesis in algae II. Characteristics to distinguish algal divisions 1 I. Photosynthesis 2 1 PSU : Photosynthetic Unit = Antennae + rxn center Light reactions: solar energy is

More information

Biology Slide 1 of 28

Biology Slide 1 of 28 Biology 1 of 28 8-2 Photosynthesis: An Overview 2 of 28 8-2 Photosynthesis: An Overview 8-2 Photosynthesis: An Overview The key cellular process identified with energy production is photosynthesis. Photosynthesis

More information

Photosynthesis: Using Light to Make Food

Photosynthesis: Using Light to Make Food Chapter 7 Photosynthesis: Using Light to Make Food Lectures by Chris C. Romero, updated by Edward J. Zalisko PowerPoint Lectures for Campbell Essential Biology, Fourth Edition Eric Simon, Jane Reece, and

More information

I. Photosynthesis. Algal Physiology. I. Photosynthesis in algae II. Characteristics to distinguish algal divisions

I. Photosynthesis. Algal Physiology. I. Photosynthesis in algae II. Characteristics to distinguish algal divisions Algal Physiology I. Photosynthesis I. Photosynthesis in algae II. Characteristics to distinguish algal divisions 1 2 PSU : Photosynthetic Unit = Antennae + rxn center Light reactions: solar energy is harvested

More information

Chapter 6. Capturing Solar Energy: Photosynthesis. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc.

Chapter 6. Capturing Solar Energy: Photosynthesis. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc. Chapter 6 Capturing Solar Energy: Photosynthesis Lectures by Gregory Ahearn University of North Florida Copyright 2009 Pearson Education, Inc. 6.1 What Is Photosynthesis? Life on earth depends on photosynthesis.

More information

9- #60 5. Photosynthesis. Sixth edition. D. O. Hall. and. K. K. Rao. Published in association with the Institute of Biology CAMBRIDGE UNIVERSITY PRESS

9- #60 5. Photosynthesis. Sixth edition. D. O. Hall. and. K. K. Rao. Published in association with the Institute of Biology CAMBRIDGE UNIVERSITY PRESS 9- #60 5 Photosynthesis Sixth edition D. O. Hall and K. K. Rao Published in association with the Institute of Biology CAMBRIDGE UNIVERSITY PRESS Contents General preface to the series Preface to the sixth

More information

Photosynthesis: Life from Light AP Biology

Photosynthesis: Life from Light AP Biology Photosynthesis: Life from Light Supporting a biosphere On global scale, photosynthesis is the most important process for the continuation of life on Earth u each year photosynthesis synthesizes 160 billion

More information

The summary equation of photosynthesis including the source and fate of the reactants and products. How leaf and chloroplast anatomy relates to

The summary equation of photosynthesis including the source and fate of the reactants and products. How leaf and chloroplast anatomy relates to 1 The summary equation of photosynthesis including the source and fate of the reactants and products. How leaf and chloroplast anatomy relates to photosynthesis. How photosystems convert solar energy to

More information

Photosynthesis 05/03/2012 INTRODUCTION: Summary Reaction for Photosynthesis: CO 2 : H 2 O: chlorophyll:

Photosynthesis 05/03/2012 INTRODUCTION: Summary Reaction for Photosynthesis: CO 2 : H 2 O: chlorophyll: Photosynthesis INTRODUCTION: metabolic process occurring in green plants, algae, some protists and cyanobacteria Photosynthesis is an PROCESS (building organic molecules which store radiant energy as chemical

More information

8.2 Photosynthesis Draw and label a diagram showing the structure of a chloroplast as seen in electron micrographs

8.2 Photosynthesis Draw and label a diagram showing the structure of a chloroplast as seen in electron micrographs 8.2 Photosynthesis 8.2.1 - Draw and label a diagram showing the structure of a chloroplast as seen in electron micrographs double membrane starch grain grana thylakoid internal membrane - location of the

More information

1. What is the source of the oxygen released into the air as a product of photosynthesis? D. Both water and carbon dioxide (Total 1 mark)

1. What is the source of the oxygen released into the air as a product of photosynthesis? D. Both water and carbon dioxide (Total 1 mark) 2.9 Photosynthesis Paper 1 Possible Mult Choice Questions 1. What is the source of the oxygen released into the air as a product of photosynthesis? A. Chlorophyll B. Carbon dioxide only C. Water only D.

More information

LECTURE PRESENTATIONS

LECTURE PRESENTATIONS LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 10 Photosynthesis Lectures by Erin

More information

Energy and Life. Lesson Overview. Lesson Overview. 8.1 Energy and Life

Energy and Life. Lesson Overview. Lesson Overview. 8.1 Energy and Life 8.1 Chemical Energy and ATP Energy is the ability to do work. Your cells are busy using energy to build new molecules, contract muscles, and carry out active transport. Without the ability to obtain and

More information

CHAPTER XI PHOTOSYNTHESIS. DMA: Chapter 11 Hartmann's 1

CHAPTER XI PHOTOSYNTHESIS. DMA: Chapter 11 Hartmann's 1 CHAPTER XI PHOTOSYNTHESIS DMA: Chapter 11 Hartmann's 1 The nature of light The sun's energy travels through space to the earth as electromagnetic radiation waves at the speed of light, about 300,000 Km/s.

More information

CHAPTER 6 STUDY GUIDE. phosphate work. energy adenosine In order for organisms to carry out life processes their cells need (1).

CHAPTER 6 STUDY GUIDE. phosphate work. energy adenosine In order for organisms to carry out life processes their cells need (1). CHAPTER 6 STUDY GUIDE THE FLOW OF ENERGY Section 6.1 Energy for Cells In your textbook, read about ATP. Use each of the terms below just once to complete the passage: released exergonic endergonic ATP

More information

Effect of RGB LED Pulse Lights in Photomorphogenesis of Brassica chinensis

Effect of RGB LED Pulse Lights in Photomorphogenesis of Brassica chinensis 2014 2nd International Conference on Agriculture and Biotechnology IPCBEE vol. 79 (2014) (2014) IACSIT Press, Singapore DOI: 10.7763/IPCBEE. 2014. V79. 3 Effect of RGB LED Pulse Lights in Photomorphogenesis

More information

Lecture 9: Photosynthesis

Lecture 9: Photosynthesis Lecture 9: Photosynthesis I. Characteristics of Light A. Light is composed of particles that travel as waves 1. Comprises a small part of the electromagnetic spectrum B. Radiation varies in wavelength

More information