Zoological Systematics & Taxonomy

Size: px
Start display at page:

Download "Zoological Systematics & Taxonomy"

Transcription

1 Name: PRE-LAB This lab is designed to introduce you to the basics of animal classification (systematics) and taxonomy of animals. This is a field that is constantly changing with the discovery of new animals, fossils, scientific techniques and the development of a better understanding of the evolutionary relationships between organisms. Systematics is: _ Taxonomy is: _ How many different animal species currently live on Earth? This is not an easy question to answer. There are many regions of the planet that are not wellexplored for animal life, in particular, the deep ocean. Some animal species are only found in very small areas (eg. less than one square kilometer or less), especially in the tropics. Estimates of the total number of all living species generally range from 10 to 100 million (with most estimates between 10 and 20 million). More than 1.5 million animals have been identified and named with most animals being insects and microscopic life forms. We may never know how many different animals there are because many of them have and will become extinct before being counted and described. Some zoologists estimate that less than 20% of all living animals and less than 1% of animals that existed in the past have been named. The tremendous diversity in life today is not new to our planet. The noted evolutionary biologist Stephen Jay Gould estimated that 99% of all plant and animal species that have existed have already become extinct with most leaving no fossils. Also, realize that humans and other large animals are freakishly rare life forms, since 99% of all known animal species are smaller than bumble bees. Linnaeus and Some History of Classification Biologists use a variety of scientific techniques to classify organisms into different categories. Most of these procedures judge the varying degrees of apparent similarity and difference that they can see from the macroscopic to the microscopic to the molecular level. The assumption is that the greater the degree of similarity, the closer the biological and potentially the evolutionary relationship.

2 Today many scientific techniques are used to determine phylogenetic relationships between organisms and establish taxonomy of an animal including: comparative anatomy or comparative morphology is: comparative embryology is: comparative cytology is: comparative biochemistry is: Before the advent of modern, genetically based evolutionary studies, European and American biology consisted primarily of taxonomy, or classification of organisms into different categories based on their physical characteristics. The leading naturalists of the 18 th and 19 th centuries spent their lives identifying and naming newly discovered plants and animals. However, few of them asked what accounted for the patterns of similarities and differences between the organisms. This basically non-speculative approach is not surprising since most naturalists two centuries ago held the view that plants and animals had been created in their present form and that they have remained unchanged. As a result, it made no sense to ask how organisms have evolved through time. Similarly, for these early taxonomists, it was inconceivable that two animals or plants may have had a common ancestor or that extinct species may have been ancestors of modern ones. One of the most important 18th century naturalists was a Swedish botanist and medical doctor named Carl von Linné ( ). He wrote 180 books mainly describing plant species in extreme detail. Since his published writings were mostly in Latin, he is known to the scientific world today as Carolus Linnaeus, which is the Latinized form he chose for his name. For more biographical information on Linnaeus, review the UC Museum of Paleontology at UC Berkeley website at Although fundamental classification of animals may predate civilization, the questions of how classifications are to be constructed are by no means settled. Linnaeus, in 1735, published Systema Naturae. This marks the beginning of the modern classification of plants and animals. He devised practical techniques for the naming of groups of organisms and their ranking and ordering. He developed the system of binomial nomenclature, which is:

3 While the form of the Linnaean classification system remains substantially the same, the reasoning behind it has undergone considerable change. For Linnaeus and his contemporaries, taxonomy served to demonstrate the unchanging order inherent in the natural world. This static view of nature was overturned in science by the middle of the 19th century by a small number of radical naturalists, most notably Charles Darwin. They provided some of the first conclusive evidence that evolution of life forms has occurred. In addition, Darwin and Wallace proposed natural selection as the mechanism responsible for these changes. Late in his life, Linnaeus also began to have some doubts about species being unchanging. Crossbreeding resulting in new varieties of plants suggested to him that life forms could change somewhat. However, he stopped short of accepting the evolution of one species into another. How Zoologists and Taxonomists Classify Animals On discovering an unknown organism, researchers begin their classification by looking for anatomical features that appear to have the same function as those found on other species. The next step is determining whether or not the similarities are due to an independent evolutionary development or due to descent from a common ancestor. If the latter is the case, then the two species are probably closely related and should be classified into the same or near biological categories. How does one identify an unknown specimen? One way is by direct comparison with specimens in a museum reference collection. However, few biologists have ready access to such collections and if they do the collections are often incomplete. Even with such access, most non-specialists would find this a tedious approach, involving working through thousands of museum specimens. In fact, this is part of the foundation of the field of taxonomy. In order for scientists and museums to organize their collections, a set of standards was necessary to make sense of the incredible diversity of organisms as well as for effective communication between biologists. A practical alternative is to use a taxonomic key which is: You will work with a basic taxonomic key as part of today s lab.

4 Major Taxonomic Divisions of Life Be aware that all taxa except the species and subspecies epithets are capitalized; species and subspecies epithets begin with lowercase letters. Genus, species, and subspecies names are printed in italics or are underlined when written or typed. For a complete scientific name of an animal species, both genus and species must be listed. There are 7 major divisions of life which are listed as: (in order) Animals are classified into phyla (the taxa groups into which kingdoms are divided) based on the basic body plans including the presence of true tissues, type of body symmetry, the presence and type of an internal body cavity (coelom), segmentation, and cephalization. TRUE TISSUES A tissue is a: Generally four basic types of tissues are recognized. 1. Nervous tissue = 2. Muscular tissue = 3. Connective tissue = 4. Epithelial tissue = ANIMAL SYMMETRY 1. RADIAL SYMMETRY is: 2. BILATERAL SYMMETRY is: 3. ASYMMETRICAL SYMMETRY is:

5 EMBRYONIC DEVELOPMENT AND BODY CAVITIES The bilaterally symmetrical animals are further classified based on whether or not they possess a coelom. A coelom is an internal body cavity between the gut and the body wall lined with mesoderm. As the digestive system (gut) forms in animals with a true coelom, it may develop in one of two different ways. This determines if the animal is a protostome or a deuterostome. 1. ACOELOMATE (ACOELOMIC ANIMAL) IS: 2. PSEUDOCOELOMATE (PSEUDOCOELOMIC ANIMAL) IS: 3. EUCOELOMATE (EUCOELOMIC ANIMAL) or COELOMATE IS: Using your textbook and the Internet, determine which label belongs with each animal and write it on the blank. The determination of coelom formation must be made by developmental and internal study of the individual animals. You cannot figure out the answer just by looking at the animals look them up in the textbook or on the Internet. Indicate the type of coelom present in each worm. Nematode worm Flatworm Earthworm/Annelid METAMERISM is: CEPHALIZATION is:

6 Use of a Dichotomous Taxonomic Key Following is a brief exercise in classification that shows you how to use a taxonomic key to "run down" or "key out" the classification of an animal when neither its common nor its scientific name is known. You will be given a handout that is a simple key to the more common phyla and classes of animals and free-living protozoans. The key, for the most part, uses external characters that can be visualized without dissection. It is designed for use with adult specimens. Like most keys, this key is utilitarian in the sense that the animal groups are not arranged in perfect phylogenetic sequence, and the characters used in the key may have no particular phylogenetic significance for the taxon. They are simply the characters that typically provide the best assurance of correct identification. A two-choice system serves as the basis of a dichotomous key. In the dichotomous key, two contrasting alternatives are offered at once, so you can choose the one that fits your specimen. At the end of the choice, you will find a reference number to the next set of alternatives to be considered. Again make a decision and proceed in the same manner until you arrive at the scientific name of the animal or the taxon to which it belongs. This key also has the capacity for reverse use so that you can retrace your steps if you make a mistake. In each couplet, the number in parentheses refers to the number of the couplet from which that couplet was reached. Keep in mind that individual variations exist; keys are based on the average, or "typical," adult specimen, whereas your specimen may be immature or somewhat abnormal. It is often very helpful to examine more than one specimen of a species or group, if available, when a particular descriptive character proves troublesome.

7 CLASSIFICATION PRACTICE Utilize the key to classify the following unknown animals: Indicate phylum or class. PLEASE identify the letter of the specimen you are working with for grading. Also, provide the taxonomic key # sequence used

8

Biologists use a system of classification to organize information about the diversity of living things.

Biologists use a system of classification to organize information about the diversity of living things. Section 1: Biologists use a system of classification to organize information about the diversity of living things. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are

More information

Adv. Biology: Classification Unit Study Guide

Adv. Biology: Classification Unit Study Guide Adv. Biology: Classification Unit Study Guide Chapter 17 and 24.1-24.2 All notes/handouts/activities from class Early taxonomists: Aristotle/Linnaeus o Aristotle (394-32 B.C.) a Greek Philosopher, who

More information

The practice of naming and classifying organisms is called taxonomy.

The practice of naming and classifying organisms is called taxonomy. Chapter 18 Key Idea: Biologists use taxonomic systems to organize their knowledge of organisms. These systems attempt to provide consistent ways to name and categorize organisms. The practice of naming

More information

CHAPTER 10 Taxonomy and Phylogeny of Animals

CHAPTER 10 Taxonomy and Phylogeny of Animals CHAPTER 10 Taxonomy and Phylogeny of Animals 10-1 10-2 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Linnaeus and Taxonomy More than 1.5 million species of

More information

Learning Outcome B1 13/10/2012. Student Achievement Indicators. Taxonomy: Scientific Classification. Student Achievement Indicators

Learning Outcome B1 13/10/2012. Student Achievement Indicators. Taxonomy: Scientific Classification. Student Achievement Indicators Classification of Living Organisms Learning Outcome B1 Learning Outcome B1 Apply the Kingdom System of classification to study the diversity of organisms. Student Achievement Indicators Students who have

More information

Chapter 17A. Table of Contents. Section 1 Categories of Biological Classification. Section 2 How Biologists Classify Organisms

Chapter 17A. Table of Contents. Section 1 Categories of Biological Classification. Section 2 How Biologists Classify Organisms Classification of Organisms Table of Contents Section 1 Categories of Biological Classification Section 1 Categories of Biological Classification Classification Section 1 Categories of Biological Classification

More information

Evolution and Taxonomy Laboratory

Evolution and Taxonomy Laboratory Evolution and Taxonomy Laboratory 1 Introduction Evolution refers to the process by which forms of life have changed through time by what is described as descent with modification. Evolution explains the

More information

CLASSIFICATION OF LIVING THINGS. Chapter 18

CLASSIFICATION OF LIVING THINGS. Chapter 18 CLASSIFICATION OF LIVING THINGS Chapter 18 How many species are there? About 1.8 million species have been given scientific names Nearly 2/3 of which are insects 99% of all known animal species are smaller

More information

Chapter 10. Classification and Phylogeny of Animals. Order in Diversity. Hierarchy of taxa. Table Linnaeus introduced binomial nomenclature

Chapter 10. Classification and Phylogeny of Animals. Order in Diversity. Hierarchy of taxa. Table Linnaeus introduced binomial nomenclature Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 10 Classification and Phylogeny of Animals Order in Diversity History Systematic zoologists have three

More information

Autotrophs capture the light energy from sunlight and convert it to chemical energy they use for food.

Autotrophs capture the light energy from sunlight and convert it to chemical energy they use for food. Prokaryotic Cell Eukaryotic Cell Autotrophs capture the light energy from sunlight and convert it to chemical energy they use for food. Heterotrophs must get energy by eating autotrophs or other heterotrophs.

More information

Chapter 18 Systematics: Seeking Order Amidst Diversity

Chapter 18 Systematics: Seeking Order Amidst Diversity Chapter 18 Systematics: Seeking Order Amidst Diversity Bird Diversity in Indonesia Chapter 18 At a Glance 18.1 How Are Organisms Named and Classified? 18.2 What Are the Domains of Life? 18.1 How Are Organisms

More information

Chapter 17. Organizing Life's Diversity

Chapter 17. Organizing Life's Diversity Chapter 17 Organizing Life's Diversity Key Concepts: Chapter 17 1. List the six kingdoms. 2. Our current system of classification was originally based on structures; scientists now base classification

More information

8/23/2014. Introduction to Animal Diversity

8/23/2014. Introduction to Animal Diversity Introduction to Animal Diversity Chapter 32 Objectives List the characteristics that combine to define animals Summarize key events of the Paleozoic, Mesozoic, and Cenozoic eras Distinguish between the

More information

Taxonomy Lab: An exercise in taxonomy, evolution, and classification, Interdisciplinary... Introduction. Background. The Role of Taxonomy

Taxonomy Lab: An exercise in taxonomy, evolution, and classification, Interdisciplinary... Introduction. Background. The Role of Taxonomy Page 1 of 5 Introduction We use this lab in Patterns and Processes, Evolution of Past & Present Ecosystems, and Tropical Marine Ecology. This exercise illustrates the creativity involved in taxonomy and

More information

Carolus Linnaeus System for Classifying Organisms. Unit 3 Lesson 2

Carolus Linnaeus System for Classifying Organisms. Unit 3 Lesson 2 Carolus Linnaeus System for Classifying Organisms Unit 3 Lesson 2 Students will be able to: Conclude some of the classification benefits and importance. Define what is meant by species. Describe the binomial

More information

SECTION 17-1 REVIEW BIODIVERSITY. VOCABULARY REVIEW Distinguish between the terms in each of the following pairs of terms.

SECTION 17-1 REVIEW BIODIVERSITY. VOCABULARY REVIEW Distinguish between the terms in each of the following pairs of terms. SECTION 17-1 REVIEW BIODIVERSITY VOCABULARY REVIEW Distinguish between the terms in each of the following pairs of terms. 1. taxonomy, taxon 2. kingdom, species 3. phylum, division 4. species name, species

More information

Finding Order in Diversity

Finding Order in Diversity 18.1 Finding order in diversity Binomial Nomenclature In the 1730s, Swedish botanist Carolus Linnaeus developed a two-word naming system called binomial nomenclature. In deciding how to place organisms

More information

v Scientists have identified 1.3 million living species of animals v The definition of an animal

v Scientists have identified 1.3 million living species of animals v The definition of an animal Biosc 41 9/10 Announcements BIOSC 041 v Genetics review: group problem sets Groups of 3-4 Correct answer presented to class = 2 pts extra credit Incorrect attempt = 1 pt extra credit v Lecture: Animal

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Class: _ Date: _ Ch 17 Practice test 1. A segment of DNA that stores genetic information is called a(n) a. amino acid. b. gene. c. protein. d. intron. 2. In which of the following processes does change

More information

Classification Systems. - Taxonomy

Classification Systems. - Taxonomy Classification Systems - Taxonomy Why Classify? 2.5 million kinds of organisms Not complete- 20 million organisms estimated Must divide into manageable groups To work with the diversity of life we need

More information

Outline. v Definition and major characteristics of animals v Dividing animals into groups based on: v Animal Phylogeny

Outline. v Definition and major characteristics of animals v Dividing animals into groups based on: v Animal Phylogeny BIOSC 041 Overview of Animal Diversity: Animal Body Plans Reference: Chapter 32 Outline v Definition and major characteristics of animals v Dividing animals into groups based on: Body symmetry Tissues

More information

Vocabulary Classification the process of arranging organisms into groups based on similarities Taxonomy the science of naming and classifying

Vocabulary Classification the process of arranging organisms into groups based on similarities Taxonomy the science of naming and classifying Classification.. Vocabulary Classification the process of arranging organisms into groups based on similarities Taxonomy the science of naming and classifying organisms trait a characteristic or behavior

More information

Chapter 26 Phylogeny and the Tree of Life

Chapter 26 Phylogeny and the Tree of Life Chapter 26 Phylogeny and the Tree of Life Chapter focus Shifting from the process of how evolution works to the pattern evolution produces over time. Phylogeny Phylon = tribe, geny = genesis or origin

More information

Unit Two: Biodiversity. Chapter 4

Unit Two: Biodiversity. Chapter 4 Unit Two: Biodiversity Chapter 4 A. Classifying Living Things (Ch.4 - page 100) Scientific knowledge is constantly evolving ( changing ): new evidence is discovered laws and theories are tested and possibly

More information

Announcements: 1. Labs meet this week 2. Lab manuals have been ordered 3. Some slides from each lecture will be on the web 4. Study questions will be

Announcements: 1. Labs meet this week 2. Lab manuals have been ordered 3. Some slides from each lecture will be on the web 4. Study questions will be Announcements: 1. Labs meet this week 2. Lab manuals have been ordered 3. Some slides from each lecture will be on the web 4. Study questions will be posted after each lecture Prokaryotes Eukaryotes Protozoa

More information

CLASSIFICATION OF LIVING THINGS

CLASSIFICATION OF LIVING THINGS CLASSIFICATION OF LIVING THINGS 1. Taxonomy The branch of biology that deals with the classification of living organisms About 1.8 million species of plants and animals have been identified. Some scientists

More information

18-1 Finding Order in Diversity Slide 2 of 26

18-1 Finding Order in Diversity Slide 2 of 26 18-1 Finding Order in Diversity 2 of 26 Natural selection and other processes have led to a staggering diversity of organisms. Biologists have identified and named about 1.5 million species so far. They

More information

Taxonomy and Biodiversity

Taxonomy and Biodiversity Chapter 25/26 Taxonomy and Biodiversity Evolutionary biology The major goal of evolutionary biology is to reconstruct the history of life on earth Process: a- natural selection b- mechanisms that change

More information

Classification. Sorting It All Out. section 1. Chapter 9

Classification. Sorting It All Out. section 1. Chapter 9 Classification Chapter 9 Sorting It All Out section 1 1 Why Classify? Classification Is the division of organisms into groups or classes based on common characteristics For thousands of years, humans have

More information

Station 1. Explain how scientists use each item below to determine the evolutionary relationships among organisms. 1. Structural similarities:

Station 1. Explain how scientists use each item below to determine the evolutionary relationships among organisms. 1. Structural similarities: Station 1 Explain how scientists use each item below to determine the evolutionary relationships among organisms. 1. Structural similarities: 2. Breeding behavior: 3. Geographical distribution: 4. Chromosome

More information

What is the purpose of the Classifying System? To allow the accurate identification of a particular organism

What is the purpose of the Classifying System? To allow the accurate identification of a particular organism What is the purpose of the Classifying System? To allow the accurate identification of a particular organism Taxonomy The practice of classifying organisms -Taxonomy was founded nearly 300 years ago by

More information

Outline. Classification of Living Things

Outline. Classification of Living Things Outline Classification of Living Things Chapter 20 Mader: Biology 8th Ed. Taxonomy Binomial System Species Identification Classification Categories Phylogenetic Trees Tracing Phylogeny Cladistic Systematics

More information

Classification of Organisms

Classification of Organisms Classification of Organisms Main Idea *****Chapter 14***** Students should be able to: * Understand why a classification system is important * Understand that there are a variety of ways to classify organisms

More information

Background: Why Is Taxonomy Important?

Background: Why Is Taxonomy Important? Background: Why Is Taxonomy Important? Taxonomy is the system of classifying, or organizing, living organisms into a system based on their similarities and differences. Imagine you are a scientist who

More information

9/19/2012. Chapter 17 Organizing Life s Diversity. Early Systems of Classification

9/19/2012. Chapter 17 Organizing Life s Diversity. Early Systems of Classification Section 1: The History of Classification Section 2: Modern Classification Section 3: Domains and Kingdoms Click on a lesson name to select. Early Systems of Classification Biologists use a system of classification

More information

The Living Environment Unit 4 History of Biological Diversity Unit 17: Organizing the Diversity of Life-class key.

The Living Environment Unit 4 History of Biological Diversity Unit 17: Organizing the Diversity of Life-class key. Name: Period: Chapter 17 assignments Pages/Sections Date Assigned Date Due Topic: The Tree of Life Objective: How may we organize so many different organisms? The Tree of Life o organize organisms by structure

More information

Biosc 41 9/10 Announcements

Biosc 41 9/10 Announcements Biosc 41 9/10 Announcements v Genetics review: group problem sets Groups of 3-4 Correct answer presented to class = 2 pts extra credit Incorrect attempt = 1 pt extra credit v Lecture: Animal Body Plans

More information

Objectives. Classification. Activity. Scientists classify millions of species

Objectives. Classification. Activity. Scientists classify millions of species Objectives Classification Notes 8.1 Summarize classification Describe the evidence used to classify organisms. List the seven levels of classification. Describe and list the six kingdoms of living organisms

More information

Finding Order in Diversity

Finding Order in Diversity Lesson Overview 18.1 Scientists have been trying to identify, name, and find order in the diversity of life for a long time. The first scientific system for naming and grouping organisms was set up long

More information

Zoology. Classification

Zoology. Classification Zoology Zoology involves studying all aspects of organisms belonging to the animal kingdom taxonomy, animal physiology, comparative anatomy, and ecology. Our study of Zoology will be focused on the different

More information

8/23/2014. Phylogeny and the Tree of Life

8/23/2014. Phylogeny and the Tree of Life Phylogeny and the Tree of Life Chapter 26 Objectives Explain the following characteristics of the Linnaean system of classification: a. binomial nomenclature b. hierarchical classification List the major

More information

Revision Based on Chapter 25 Grade 11

Revision Based on Chapter 25 Grade 11 Revision Based on Chapter 25 Grade 11 Biology Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A cell that contains a nucleus and membrane-bound organelles

More information

CLASS XI BIOLOGY NOTES CHAPTER 1: LIVING WORLD

CLASS XI BIOLOGY NOTES CHAPTER 1: LIVING WORLD CLASS XI BIOLOGY NOTES CHAPTER 1: LIVING WORLD Biology is the science of life forms and non-living processes. The living world comprises an amazing diversity of living organisms. In order to facilitate

More information

Microbial Taxonomy and the Evolution of Diversity

Microbial Taxonomy and the Evolution of Diversity 19 Microbial Taxonomy and the Evolution of Diversity Copyright McGraw-Hill Global Education Holdings, LLC. Permission required for reproduction or display. 1 Taxonomy Introduction to Microbial Taxonomy

More information

Classification Systems. Classification is just a fancy word for organization. So this chapter is equivalent to Biology cleaning its room!

Classification Systems. Classification is just a fancy word for organization. So this chapter is equivalent to Biology cleaning its room! Classification Systems Classification is just a fancy word for organization. So this chapter is equivalent to Biology cleaning its room! A Vast Science Biology, the study of life, is no simple science.

More information

Biology Classification Unit 11. CLASSIFICATION: process of dividing organisms into groups with similar characteristics

Biology Classification Unit 11. CLASSIFICATION: process of dividing organisms into groups with similar characteristics Biology Classification Unit 11 11:1 Classification and Taxonomy CLASSIFICATION: process of dividing organisms into groups with similar characteristics TAXONOMY: the science of classifying living things

More information

Classification. 18a. Lab Exercise. Contents. Introduction. Objectives. 18a

Classification. 18a. Lab Exercise. Contents. Introduction. Objectives. 18a Lab Exercise Classification Contents Objectives 1 Introduction 1 Activity.1 Classification of Organisms 4 Activity.2 Phylogenetic Analysis 5 Resutls Section 7 Objectives - To create a classification of

More information

Classification Cladistics & The Three Domains of Life. Biology Mrs. Flannery

Classification Cladistics & The Three Domains of Life. Biology Mrs. Flannery Classification Cladistics & The Three Domains of Life Biology Mrs. Flannery Finding Order in Diversity Earth is over 4.5 billion years old. Life on Earth appeared approximately 3.5 billion years ago and

More information

Organizing Life on Earth

Organizing Life on Earth Organizing Life on Earth Inquire: Organizing Life on Earth Overview Scientists continually obtain new information that helps to understand the evolutionary history of life on Earth. Each group of organisms

More information

Evolution and Biodiversity 5.3- Classification and Biodiversity

Evolution and Biodiversity 5.3- Classification and Biodiversity Essential idea: Species are named and classified using an internationally agreed system. Evolution and Biodiversity 5.3- Classification and Biodiversity Nature of science: Cooperation and collaboration

More information

9.3 Classification. Lesson Objectives. Vocabulary. Introduction. Linnaean Classification

9.3 Classification. Lesson Objectives. Vocabulary. Introduction. Linnaean Classification 9.3 Classification Lesson Objectives Outline the Linnaean classification, and define binomial nomenclature. Describe phylogenetic classification, and explain how it differs from Linnaean classification.

More information

The Road to the Six Kingdoms

The Road to the Six Kingdoms Bio 2201 Unit 2 The Road to the Six Kingdoms A 2011study estimated there are about 8.6 million species on earth. Only 1.8 million species have been identified and named. *Chromista is a sub-kingdom group

More information

Animal Diversity. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers 9/20/2017

Animal Diversity. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers 9/20/2017 Animal Diversity Chapter 32 Which of these organisms are animals? Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers Animals share the same: Nutritional

More information

Chapter 8-9 Intro to Animals. Image from:

Chapter 8-9 Intro to Animals. Image from: Chapter 8-9 Intro to Animals Image from: http://animaldiversity.ummz.umich.edu/index.html Zoology Definition: the scientific study of the behavior, structure, physiology, classification, and distribution

More information

Classification Practice Test

Classification Practice Test Classification Practice Test Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. An organism may have different

More information

Biology 11. The Kingdom Animalia

Biology 11. The Kingdom Animalia Biology 11 The Kingdom Animalia Objectives By the end of the lesson you should be able to: Describe the 5 ways we classify animals Symmetry Germ layers Body plan Segmentation Animal Evolution Hank Video

More information

Organizing Life s Diversity Section 17.1 Classification

Organizing Life s Diversity Section 17.1 Classification Organizing Life s Diversity Section 17.1 Classification Scan Section 1 of your book. Write three questions that come to mind from reading the headings and the illustration captions. 1. 2. 3. Review species

More information

Chapter 18: Classification

Chapter 18: Classification Chapter 18: Classification Dichotomous Key A way to identify unknown organisms Contains major characteristics of groups of organisms Pairs of CONTRASTING descriptions 4. After each description key either

More information

Chapter 26. Phylogeny and the Tree of Life. Lecture Presentations by Nicole Tunbridge and Kathleen Fitzpatrick Pearson Education, Inc.

Chapter 26. Phylogeny and the Tree of Life. Lecture Presentations by Nicole Tunbridge and Kathleen Fitzpatrick Pearson Education, Inc. Chapter 26 Phylogeny and the Tree of Life Lecture Presentations by Nicole Tunbridge and Kathleen Fitzpatrick Investigating the Tree of Life Phylogeny is the evolutionary history of a species or group of

More information

and just what is science? how about this biology stuff?

and just what is science? how about this biology stuff? Welcome to Life on Earth! Rob Lewis 512.775.6940 rlewis3@austincc.edu 1 The Science of Biology Themes and just what is science? how about this biology stuff? 2 1 The Process Of Science No absolute truths

More information

Using Trees for Classifications. Introduction

Using Trees for Classifications. Introduction Using Trees for Classifications The Phylogenetic Cibele Caio Principles and Practice of Phylogenetic Systematics, Spring 2009 Introduction The impusle to characterize and classify species Ancient Aristoteles

More information

A mind is a fire to be kindled, not a vessel to be filled.

A mind is a fire to be kindled, not a vessel to be filled. A mind is a fire to be kindled, not a vessel to be filled. - Mestrius Plutarchus, or Plutarch, a leading thinker in the Golden Age of the Roman Empire (lived ~45 125 A.D.) Lecture 2 Distinction between

More information

CHAPTER 26 PHYLOGENY AND THE TREE OF LIFE Connecting Classification to Phylogeny

CHAPTER 26 PHYLOGENY AND THE TREE OF LIFE Connecting Classification to Phylogeny CHAPTER 26 PHYLOGENY AND THE TREE OF LIFE Connecting Classification to Phylogeny To trace phylogeny or the evolutionary history of life, biologists use evidence from paleontology, molecular data, comparative

More information

Thursday, February 28. Bell Work: On the picture.

Thursday, February 28. Bell Work: On the picture. Thursday, February 28 Bell Work: On the picture. 1 Classification Chapter 17 This is a pangolin. Though it may not look like any other animal that you are familiar with, it is a mammal the same group of

More information

The Classification of Plants and Other Organisms. Chapter 18

The Classification of Plants and Other Organisms. Chapter 18 The Classification of Plants and Other Organisms Chapter 18 LEARNING OBJECTIVE 1 Define taxonomy Explain why the assignment of a scientific name to each species is important for biologists KEY TERMS TAXONOMY

More information

The Classification of Organisms

The Classification of Organisms Biology Chapter 8 The Classification of Organisms 8A - The Necessity of Classifying People group things together for convenience. (spices, pans, tools, instruments in orchestra) Taxonomy (or systematics)

More information

Classification Notes

Classification Notes Name Living Environment Classification Notes Characteristics of Living Things All living things have a cellular organization, contain similar chemicals, use energy, grow and develop, respond to their surroundings,

More information

Plant Names and Classification

Plant Names and Classification Plant Names and Classification Science of Taxonomy Identification (necessary!!) Classification (order out of chaos!) Nomenclature (why not use common names?) Reasons NOT to use common names Theophrastus

More information

Concept Modern Taxonomy reflects evolutionary history.

Concept Modern Taxonomy reflects evolutionary history. Concept 15.4 Modern Taxonomy reflects evolutionary history. What is Taxonomy: identification, naming, and classification of species. Common Names: can cause confusion - May refer to several species (ex.

More information

Prokaryote vs. Eukaryote

Prokaryote vs. Eukaryote DIVERSITY OF LIVING THINGS Prokaryote vs. Eukaryote 1. Test Monday 2. Lab Report Rough Draft (typed) due Wednesday 3. Lab Report Due Friday Oct 7th 4. Letter to MP due Tuesday Oct 11 th CAROLUS LINNAEUS

More information

CLASSIFICATION. Why Classify? 2/18/2013. History of Taxonomy Biodiversity: variety of organisms at all levels from populations to ecosystems.

CLASSIFICATION. Why Classify? 2/18/2013. History of Taxonomy Biodiversity: variety of organisms at all levels from populations to ecosystems. Why Classify? Classification has been around ever since people paid attention to organisms. CLASSIFICATION One primeval system was based on harmful and non-harmful organisms. Life is easier when we organize

More information

Section 4 Professor Donald McFarlane

Section 4 Professor Donald McFarlane Characteristics Section 4 Professor Donald McFarlane Lecture 11 Animals: Origins and Bauplans Multicellular heterotroph Cells lack cell walls Most have nerves, muscles, capacity to move at some point in

More information

Features of the Animal

Features of the Animal Features of the Animal Kingdom Bởi: OpenStaxCollege Even though members of the animal kingdom are incredibly diverse, animals share common features that distinguish them from organisms in other kingdoms.

More information

Characteristics of Life

Characteristics of Life UNIT 2 BIODIVERSITY Chapter 4- Patterns of Life Biology 2201 Characteristics of Life All living things share some basic characteristics: 1) living things are organized systems made up of one or more cells

More information

What makes things alive? CRITERIA FOR LIFE

What makes things alive? CRITERIA FOR LIFE What makes things alive? CRITERIA FOR LIFE Learning Goals I can determine if something is alive based on the criteria for life. I can describe the history of life on Earth. I can describe how organisms

More information

PHYLOGENY AND SYSTEMATICS

PHYLOGENY AND SYSTEMATICS AP BIOLOGY EVOLUTION/HEREDITY UNIT Unit 1 Part 11 Chapter 26 Activity #15 NAME DATE PERIOD PHYLOGENY AND SYSTEMATICS PHYLOGENY Evolutionary history of species or group of related species SYSTEMATICS Study

More information

Workshop: The Evolution of Animalia body symmetry embryonic germ layers ontogenetic origins I. What is an Animal? II. Germ Layers

Workshop: The Evolution of Animalia body symmetry embryonic germ layers ontogenetic origins I. What is an Animal? II. Germ Layers Workshop: The Evolution of Animalia by Dana Krempels Perhaps even more than the other Eukarya, Animalia is characterized by a distinct progression of complexity in form and function as one moves from the

More information

A. Incorrect! Sponges are mostly marine animals. This is a feature of sponges.

A. Incorrect! Sponges are mostly marine animals. This is a feature of sponges. College Biology - Problem Drill 15: The Evolution of Animal Diversity Question No. 1 of 10 1. Which is not a feature of the phyla porifera- sponges? Question #01 (A) Most are marine animals. (B) They have

More information

PHYLOGENY & THE TREE OF LIFE

PHYLOGENY & THE TREE OF LIFE PHYLOGENY & THE TREE OF LIFE PREFACE In this powerpoint we learn how biologists distinguish and categorize the millions of species on earth. Early we looked at the process of evolution here we look at

More information

Unit 5: Taxonomy. KEY CONCEPT Organisms can be classified based on physical similarities.

Unit 5: Taxonomy. KEY CONCEPT Organisms can be classified based on physical similarities. KEY CONCEPT Organisms can be classified based on physical similarities. Linnaeus developed the scientific naming system still used today. Taxonomy is the science of naming and classifying organisms. White

More information

Modern Evolutionary Classification. Section 18-2 pgs

Modern Evolutionary Classification. Section 18-2 pgs Modern Evolutionary Classification Section 18-2 pgs 451-455 Modern Evolutionary Classification In a sense, organisms determine who belongs to their species by choosing with whom they will mate. Taxonomic

More information

Section 18-1 Finding Order in Diversity

Section 18-1 Finding Order in Diversity Name Class Date Section 18-1 Finding Order in Diversity (pages 447-450) Key Concepts How are living things organized for study? What is binomial nomenclature? What is Linnaeus s system of classification?

More information

Chapter 26 Phylogeny and the Tree of Life

Chapter 26 Phylogeny and the Tree of Life Chapter 26 Phylogeny and the Tree of Life Biologists estimate that there are about 5 to 100 million species of organisms living on Earth today. Evidence from morphological, biochemical, and gene sequence

More information

The Life System and Environmental & Evolutionary Biology II

The Life System and Environmental & Evolutionary Biology II The Life System and Environmental & Evolutionary Biology II EESC V2300y / ENVB W2002y Laboratory 1 (01/28/03) Systematics and Taxonomy 1 SYNOPSIS In this lab we will give an overview of the methodology

More information

Finding Order in Diversity

Finding Order in Diversity Finding Order in Diversity Videos Scishow Taxonomy: https://youtu.be/f38bmgpcz_i Bozeman Taxonomy: https://youtu.be/tyl_8gv7rie Terms to Know 1. Radiometric Dating 12. Miller and Urey s 2. Geologic Time

More information

If done properly, is based on evolutionary relationships (at least to some extent). Kingdom -> Phylum -> Class -> Order -> Family -> Genus -> species

If done properly, is based on evolutionary relationships (at least to some extent). Kingdom -> Phylum -> Class -> Order -> Family -> Genus -> species Taxonomy. (Your text makes a real mess of this. Use these notes as a guide through the book.) Study of classifying and naming organisms. Founded by Linnaeus. If done properly, is based on evolutionary

More information

Dendrology FOR 320 Spring Semester 2013

Dendrology FOR 320 Spring Semester 2013 Dendrology FOR 320 Spring Semester 2013 Week 1; Wednesday Introductions - Instructor, TAs, Peer TAs Announcements: Handouts - Syllabus - go over this with class - Web Site -http://webpages.uidaho.edu/dtank/dendrology/dendrology_2013.html

More information

Sorting It All Out. What You Will Learn Explain why and how organisms are classified. List the eight levels of classification.

Sorting It All Out. What You Will Learn Explain why and how organisms are classified. List the eight levels of classification. Sorting It All Out Imagine that you live in a tropical rain forest and must get your own food, shelter, and clothing from the forest. What do you need to know to survive in the forest? What You Will Learn

More information

Animal Diversity. Features shared by all animals. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers

Animal Diversity. Features shared by all animals. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers Animal Diversity Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers Nutritional mode Ingest food and use enzymes in the body to digest Cell structure and

More information

Finding Order in Diversity

Finding Order in Diversity Finding Order in Diversity Key Questions What are the goals of binomial nomenclature and systematics? How did Linnaeus group species into larger taxa? Vocabulary binomial nomenclature genus systematics

More information

Chapter 19 Organizing Information About Species: Taxonomy and Cladistics

Chapter 19 Organizing Information About Species: Taxonomy and Cladistics Chapter 19 Organizing Information About Species: Taxonomy and Cladistics An unexpected family tree. What are the evolutionary relationships among a human, a mushroom, and a tulip? Molecular systematics

More information

Sorting It All Out. Why Classify?

Sorting It All Out. Why Classify? 1 What You Will Learn Scientists use classification to study organisms and how organisms are related to each other. The eight levels of classification are domain, kingdom, phylum, class, order, family,

More information

CLASSIFICATION. Finding Order in Diversity

CLASSIFICATION. Finding Order in Diversity CLASSIFICATION Finding Order in Diversity WHAT IS TAXONOMY? Discipline of classifying organisms and assigning each organism a universally accepted name. WHY CLASSIFY? To study the diversity of life, biologists

More information

First things first: What IS classification and WHY do we do it (or DO we)? How are living things classified? Classification Systems

First things first: What IS classification and WHY do we do it (or DO we)? How are living things classified? Classification Systems How are living things classified? Objective: Describe the system used today to classify organisms (including the seven levels of classification as well as scientific names) First things first: What IS

More information

NAME: DATE: PER: CLASSIFICATION OF LIFE Powerpoint Notes

NAME: DATE: PER: CLASSIFICATION OF LIFE Powerpoint Notes NAME: DATE: PER: CLASSIFICATION OF LIFE Powerpoint Notes 1. Species of Organisms a) There are known species of organisms b) This is only of all organisms that ever lived. c) are still being found and identified.

More information

CHAPTER 2--THE DEVELOPMENT OF EVOLUTIONARY THEORY

CHAPTER 2--THE DEVELOPMENT OF EVOLUTIONARY THEORY CHAPTER 2--THE DEVELOPMENT OF EVOLUTIONARY THEORY Student: 1. In Europe during the Middle Ages, it was believed that. A. all species had evolved from a common ancestor B. evolution was the result of natural

More information

Chapter 17. Table of Contents. Objectives. Taxonomy. Classifying Organisms. Section 1 Biodiversity. Section 2 Systematics

Chapter 17. Table of Contents. Objectives. Taxonomy. Classifying Organisms. Section 1 Biodiversity. Section 2 Systematics Classification Table of Contents Objectives Relatebiodiversity to biological classification. Explainwhy naturalists replaced Aristotle s classification system. Identifythe main criterion that Linnaeus

More information

A. Incorrect! In the binomial naming convention the Kingdom is not part of the name.

A. Incorrect! In the binomial naming convention the Kingdom is not part of the name. Microbiology Problem Drill 08: Classification of Microorganisms No. 1 of 10 1. In the binomial system of naming which term is always written in lowercase? (A) Kingdom (B) Domain (C) Genus (D) Specific

More information

1) Overview: Darwin Introduces a Revolutionary Theory

1) Overview: Darwin Introduces a Revolutionary Theory 1) Overview: Darwin Introduces a Revolutionary Theory A new era of biology began on November 24, 1859, the day Charles Darwin published On the Origin of Species by Means of Natural Selection The Origin

More information

EVOLUTIONARY THEORY Evolution affects EVERY living thing All life is descended from the Original Life Form: Ur-slime DARWIN figured out how it could

EVOLUTIONARY THEORY Evolution affects EVERY living thing All life is descended from the Original Life Form: Ur-slime DARWIN figured out how it could EVOLUTIONARY THEORY Evolution affects EVERY living thing All life is descended from the Original Life Form: Ur-slime DARWIN figured out how it could happen Had 100 years of precedents Natural History Hobby

More information