Evolution of Steroid Receptor Gene Families. Lesson Today. Evolution of novelty. Gene Duplications. Gene Duplication and Subfunctionalization:

Size: px
Start display at page:

Download "Evolution of Steroid Receptor Gene Families. Lesson Today. Evolution of novelty. Gene Duplications. Gene Duplication and Subfunctionalization:"

Transcription

1 Evolution of Steroid Receptor Gene Families Lesson Today Evolutionary History of Function Gene Duplication leading to evolutionary origins of novel functions How mutations interact to modify function Evolution of novelty Gene Duplication and Subfunctionalization: Examples: Receptors, Enzymes, Developmental genes, etc.: Hox clusters Osmoregulatory ion uptake enzymes (ATPases) Cytp450s (detoxification enzymes) Olfactory genes Opsin genes Hemoglobin Gene Duplications Main source of novel genes Sources of Genetic Variation (type of mutation) Evolution of new functions (and genes) via gene duplications Gene duplications, followed by differentiation End up with gene family : different opsin genes, hemoglobin, ATPases, etc. Loss of function New function Partitioning of function 1

2 What are Steroid Receptors? Steroid Hormone Receptors Transcription factors I am using this as an example to facilitate understanding of the impacts of pesticides and other environmental toxins on animal physiology (next lectures) Intracellular receptors (typically cytoplasmic) that bind to ligands (e.g. steroid hormones) Initiate signal transduction which lead to changes in gene expression Steroid hormones are lipid soluble, bind to cytoplasmic Steroid Hormone Receptors and then enter the nucleus, leading to transcription The estrogen receptor is fairly nonspecific, It is ancestral (phylogeny on next slide), and ancestral receptors tend to be less specific (specificity evolves) It needs to bind to multiple ligands, ~12 estrogens (estradiol, estriol, estrone, etc.) So... many compounds will bind to it, such as pesticides Estrogen receptor alpha ligand-binding domain complexed to estradiol Evolutionary History of Steroid Receptors Baker, ME Adrenal and sex steroid receptor evolution: environmental implications. Journal of Molecular Endocrinology 26: Sex steroid response probably occurred in the early Cambrian Glucocorticoid receptor Mineralocorticoid receptor Progesterone receptor Androgen receptor Estrogen response evolved in jawless fish or tunicates (early chordates) Eel ERβ Human ERβ Trout ERα Xenopus ERα Human ERα Estrogen Receptors the most ancient of the adrenal and sex steroid receptors 2

3 Evolution of Function Bridgham et al Science. 312:97 Example How would an integrated molecular system evolve, such as the functional interaction between a hormone and receptor? For example, how could a hormone evolve if a receptor is not present, and visa versa? Evolution of function of the aldosterone - Mineralocorticoid Receptor (MR) complex How did this ligand-receptor relationship evolve? Aldosterone is thought to be a recently derived hormone, and a tetrapod specific hormone (vertebrates with four feet), absent in more anciently derived species Mineralocorticoid receptor (MR) and the Glucocorticoid receptor (GR) descend from a gene duplication deep in the vertebrate lineage (~450+ mya) and now have distinct signaling functions In most vertebrates, GR is activated by the stress hormone cortisol to regulate metabolism, inflammation, and immunity MR is activated by aldosterone to regulate reabsorption of ions and water and secretion of potassium in the kidneys. MR can also be activated by cortisol 3

4 The gene duplication event leading to MR and GR occurred >450 million yrs ago Background Functional assays indicate that the ancestral (basal) receptors are activated by very low doses of aldosterone, cortisol, and 11-deoxycorticosterone (DOC); they are similar in this respect to MRs of tetrapods and teleosts (Fig. 2 -next slide) The only receptors insensitive to aldosterone are the GRs of tetrapods and teleosts Given these results, the most parsimonious scenario is that AncCR was capable of being activated by aldosterone and that aldosterone sensitivity was lost in the GRs of bony vertebrates (see Fig. 1) How might have the aldosterone-mr partnership have evolved? If the hormone is not yet present, how could selection drive the receptor s affinity for it? Conversely, without the receptor, what selection pressure could guide the evolution of the ligand? Test Hypothesis: Performed gene resurrection to experimentally examine the function of the ancestral corticoid receptor (AncCR) Inferred the maximum likelihood (ML) amino acid sequence of AncCR s ligand-binding domain (see Fig. 1) Synthesized the AncCR-LBD sequence and expressed it in cultured cells; using a reporter assay Results AncCR is a sensitive and effective aldosterone receptor (Fig. 3A) Like the extant CRs and MRs, it is also activated by low doses of DOC and, to a lesser extent, cortisol (Fig. 3A) This result is surprising, because aldosterone has long been considered a tetrapod-specific hormone Aldosterone is absent from the plasma of lamprey and hagfish (more ancient vertebrates) (Fig. 3B) 4

5 WHY would the ancient corticoid receptor respond to a not yet existing hormone (aldosterone)? And how would the specificity between MR and aldosterone evolve? Fig. 4. Evolution of specific aldosterone-mr signaling by molecular exploitation. (A) Synthesis pathway for corticosteroid hormones. Ligands for the ancestral CR and extant MRs are underlined; cortisol, the ligand for the tetrapod GR, is overlined. The terminal addition of aldosterone is in green. Asterisks, steps catalyzed by the cytochrome P bhydroxylase enzyme; only the tetrapod enzyme can catalyze the step marked with a green asterisk. (B) MR s aldosterone sensitivity preceded the emergence of the hormone. The vertebrate ancestor did not synthesize aldosterone (dotted circle), but it did produce other corticosteroids (filled circle); it had a single receptor with affinity for both classes of ligand. A gene duplication (blue) produced separate GR and MR. Two changes in GR s sequence (red) abolished aldosterone activation but maintained cortisol sensitivity [see (C)]. In tetrapods, synthesis of aldosterone emerged due to modification of cytochrome P b-hydroxylase. mya, million years ago. (C) Mechanistic basis for loss of aldosterone sensitivity in the GRs. Phylogenetically diagnostic amino acid changes that occurred during GR evolution were introduced into AncCR-LBD by mutagenesis. Dose-response is shown for aldosterone (green), DOC (blue), and cortisol (red). The double mutant (bottom right) has a GR-like phenotype. Arrows shows evolutionary paths via a nonfunctional (red) or functional (green) intermediate. Extant MRs retain the ancestral phenotype, so the specificity of the MR-aldosterone relationship is actually due to the secondary loss of aldosterone sensitivity in the GR (Fig. 4B), rather than evolution of specificity for MR. Which Mutations? Explored which sequence changes are on the branch where aldosterone sensitivity was lost Which Mutations? Replacement of Serine 106 with Proline (S106P) and Leucine 111 with Glutamine (L111Q) conferred a GRlike phenotype Introduced all four single GR-diagnostic states and all six two-fold combinations into AncCR-LBD using mutagenesis and determined their effect on receptor function 5

6 When each mutation was introduced in isolation, it was discovered that both are required to yield the GR phenotype L111Q alone radically reduces activation by all ligands tested S106P reduces aldosterone (green) and cortisol (red) sensitivity, but this receptor remains highly DOC-sensitive (blue) In the S106P background, L111Q further reduces aldosterone sensitivity but now restores cortisol response to levels characteristic of extant GRs Science 317:1544 But now, let s look more closely at the actual transition where the critical mutations occur These substitutions recapitulate a large portion of the functional shift from AncGR1 to AncGR2 (~420 to 440 Ma), radically reducing aldosterone and DOC response while maintaining moderate sensitivity to cortisol (Fig. 2A) Instead of using the ancestral AncCR, the structures of AncGR1 and AncGR2 were compared to determine the mechanism by which these two substitutions shift function Ancient GR1 and GR2 were reconstructed using homology modeling and energy minimization based on the AncCR and human GR crystal structures Fig. 2. Mechanism for switching AncGR1 s ligand preference from aldosterone to cortisol. (A) Effect of substitutions S106P and L111Q on the resurrected AncGR1 s response to hormones. Dashed lines indicate sensitivity to aldosterone (green), cortisol (purple), and DOC (orange) as the EC50 for reporter gene activation. Green arrow shows probable pathway through a functional intermediate; red arrow, intermediate with radically reduced sensitivity to all hormones. (B) Structural change conferring new ligand specificity. Backbones of helices 6 and 7 from AncGR1 (green) and AncGR2 (yellow) in complex with cortisol are superimposed. Substitution S106P induces a kink in the interhelical loop of AncGR2, repositioning sites 106 and 111 (arrows). In this background, L111Q forms a new hydrogen bond with cortisol s unique C17-hydroxyl (dotted red line). 6

7 The major structural difference between AncGR1 and AncGR2 involves Helix 7 and the loop preceding it, which contain S106P and L111Q and form part of the ligand pocket (Fig. 2B). In AncGR1 and AncCR, the loop s position is stabilized by a hydrogen bond between Ser106 and the backbone carbonyl of Met103. The movement of helix 7 dramatically repositions site 111, bringing it close to the ligand Replacing Ser106 with proline in the derived GRs breaks this H bond and introduces a sharp kink into the backbone, which pulls the loop downward, repositioning and partially unwinding helix 7 In this conformational background, L111Q (leucine to glutamine) generates a hydrogen bond with cortisol s C17- hydroxyl, stabilizing the receptorhormone complex. Aldosterone and DOC lack this hydroxyl, so the new bond is cortisol specific The two substitutions destabilize the receptor complex with aldosterone or DOC Achieves stability with cortisol, switching preference to that hormone This mode of structural evolution is termed conformational epistasis because one substitution remodels the protein backbone and repositions a second site, changing the functional effect of substitution at the second site Fig. 3. Permissive substitutions in the evolution of receptor specificity. (A) Effects of various combinations of historical substitutions on AncGR1 s transcriptional activity and hormonesensitivity in a reporter gene assay. Group Y (L29M, F98I, and S212D) abolishes receptor activity unless groups X (S106P, L111Q) and Z (N26T and Q105L) are present; the XYZ combination yields complete cortisol-specificity. The 95% confidence interval for each EC50 is in parentheses. Dash, no activation. (B) Structural prediction of permissive substitutions. Models of AncGR1 (green) and AncGR2 (yellow) are shown with cortisol. Group X and Y substitutions (circles and rectangles) yield new interactions with the C17-hydroxyl of cortisol (purple) but destabilize receptor regions required for activation. Group Z (underlined) imparts additional stability to the destabilized regions. (C) Restricted evolutionary paths through sequence space. The corners of the cube represent states for residue sets X, Y, and Z. Edges represent pathways from the ancestral sequence (AncGR1) to the cortisol-specific combination (+XYZ). Filled circles at vertices show sensitivity to aldosterone (green), DOC (orange), and cortisol (purple); empty circles, no activation. Red octagons, paths through nonfunctional intermediates; arrows, paths through functional intermediates with no change (white) or switched ligand preference (green). Permissive substitutions stabilized specific structural elements, allowing them to tolerate later destabilizing mutations that conferred a new function Evolutionary trajectories that pass through functional intermediates are more likely than those involving nonfunctional steps, so the only historically likely pathways to AncGR2 are those in which the permissive substitutions of group Z and the large-effect mutations of group X occurred before group Y was complete (Fig. 3C). Fig. 4. Structural identification of an ancient permissive substitution. (A) Comparison of the structures of AncCR (blue) and AncGR2 (yellow). Y27R generates a novel cation-p interaction in AncGR2 (dotted cyan line), replacing the weaker ancestral hydrogen bond (dotted red) and imparting additional stability to helix 3. (B) Y27R is permissive for the substitutions that confer GR function. Reporter gene activation by AncGR1 + XYZ (upper right) is abolished when Y27R is reversed (lower right). (Left) Y27R has negligible effect in the AncCR background (or in AncGR1, fig. S9). Green, orange, and purple lines show aldosterone, DOC, and cortisol responses, respectively. Green arrows, likely pathway through functional intermediates. 7

8 Evolution of specificity of function Structural studies of human GR have shown that these two residues change the architecture of the ligand-binding pocket and alter contacts with steroid in ways that exclude aldosterone and facilitate cortisol activation Results indicate that aldosterone specificity of MR arose from two crucial Amino Acid replacements in the GRs that wiped out ancestral sensitivity to aldosterone These changes result in evolution of a more specific endocrine response, allowing electrolyte homeostasis to be controlled without also triggering the GR stress response Molecular Exploitation Functional interaction between aldosterone and mineralocorticoid receptor evolved by a stepwise selective process Ancestral gene resurrection demonstrates that long before the hormone evolved, the receptor s affinity for aldosterone was present due to its similarity to more ancient ligands (probably DOC) Two amino acid changes in the ancestral sequence resulted in the evolution of present-day receptor specificity Results indicate that tight interactions could evolve by molecular exploitation recruitment of an older molecule, previously constrained for a different role, into a new functional complex 8

Mechanisms for the Evolution of a Derived Function in the Ancestral Glucocorticoid Receptor

Mechanisms for the Evolution of a Derived Function in the Ancestral Glucocorticoid Receptor Mechanisms for the Evolution of a Derived Function in the Ancestral Glucocorticoid Receptor Sean Michael Carroll, Harvard University Eric Ortlund, Emory University Joseph W. Thornton, University of Oregon

More information

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins Advanced Higher Biology Unit 1- Cells and Proteins 2c) Membrane Proteins Membrane Structure Phospholipid bilayer Transmembrane protein Integral protein Movement of Molecules Across Membranes Phospholipid

More information

Protein Architecture V: Evolution, Function & Classification. Lecture 9: Amino acid use units. Caveat: collagen is a. Margaret A. Daugherty.

Protein Architecture V: Evolution, Function & Classification. Lecture 9: Amino acid use units. Caveat: collagen is a. Margaret A. Daugherty. Lecture 9: Protein Architecture V: Evolution, Function & Classification Margaret A. Daugherty Fall 2004 Amino acid use *Proteins don t use aa s equally; eg, most proteins not repeating units. Caveat: collagen

More information

Vestigialization of an Allosteric Switch: Genetic and Structural Mechanisms for the Evolution of Constitutive Activity in a Steroid Hormone Receptor

Vestigialization of an Allosteric Switch: Genetic and Structural Mechanisms for the Evolution of Constitutive Activity in a Steroid Hormone Receptor Vestigialization of an Allosteric Switch: Genetic and Structural Mechanisms for the Evolution of Constitutive Activity in a Steroid Hormone Receptor Jamie T. Bridgham, University of Oregon June Keay, University

More information

Mechanistic approaches to the study of evolution: the functional synthesis

Mechanistic approaches to the study of evolution: the functional synthesis Mechanistic approaches to the study of evolution: the functional synthesis Antony M. Dean* and Joseph W. Thornton Abstract An emerging synthesis of evolutionary biology and experimental molecular biology

More information

18.4 Embryonic development involves cell division, cell differentiation, and morphogenesis

18.4 Embryonic development involves cell division, cell differentiation, and morphogenesis 18.4 Embryonic development involves cell division, cell differentiation, and morphogenesis An organism arises from a fertilized egg cell as the result of three interrelated processes: cell division, cell

More information

5/4/05 Biol 473 lecture

5/4/05 Biol 473 lecture 5/4/05 Biol 473 lecture animals shown: anomalocaris and hallucigenia 1 The Cambrian Explosion - 550 MYA THE BIG BANG OF ANIMAL EVOLUTION Cambrian explosion was characterized by the sudden and roughly simultaneous

More information

LIFE! (A BRIEF snapshot)

LIFE! (A BRIEF snapshot) LIFE! (A BRIEF snapshot) HTTP://WWW.PBS.ORG/WGBH/NOVA/EVOLUTION/ORIGINS-LIFE.HTML Atmospheric Stuff of Life- Coacervates When exactly (what criteria) do we obtain a living cell? Cellular Reproduction

More information

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on Regulation and signaling Overview Cells need to regulate the amounts of different proteins they express, depending on cell development (skin vs liver cell) cell stage environmental conditions (food, temperature,

More information

Gene regulation I Biochemistry 302. Bob Kelm February 25, 2005

Gene regulation I Biochemistry 302. Bob Kelm February 25, 2005 Gene regulation I Biochemistry 302 Bob Kelm February 25, 2005 Principles of gene regulation (cellular versus molecular level) Extracellular signals Chemical (e.g. hormones, growth factors) Environmental

More information

Reception The target cell s detection of a signal coming from outside the cell May Occur by: Direct connect Through signal molecules

Reception The target cell s detection of a signal coming from outside the cell May Occur by: Direct connect Through signal molecules Why Do Cells Communicate? Regulation Cells need to control cellular processes In multicellular organism, cells signaling pathways coordinate the activities within individual cells that support the function

More information

3/8/ Complex adaptations. 2. often a novel trait

3/8/ Complex adaptations. 2. often a novel trait Chapter 10 Adaptation: from genes to traits p. 302 10.1 Cascades of Genes (p. 304) 1. Complex adaptations A. Coexpressed traits selected for a common function, 2. often a novel trait A. not inherited from

More information

RESURRECTING ANCIENT GENES: EXPERIMENTAL ANALYSIS OF EXTINCT MOLECULES

RESURRECTING ANCIENT GENES: EXPERIMENTAL ANALYSIS OF EXTINCT MOLECULES RESURRECTING ANCIENT GENES: EXPERIMENTAL ANALYSIS OF EXTINCT MOLECULES Joseph W. Thornton There are few molecular fossils: with the rare exception of DNA fragments preserved in amber, ice or peat, no physical

More information

SCIENTIFIC EVIDENCE TO SUPPORT THE THEORY OF EVOLUTION. Using Anatomy, Embryology, Biochemistry, and Paleontology

SCIENTIFIC EVIDENCE TO SUPPORT THE THEORY OF EVOLUTION. Using Anatomy, Embryology, Biochemistry, and Paleontology SCIENTIFIC EVIDENCE TO SUPPORT THE THEORY OF EVOLUTION Using Anatomy, Embryology, Biochemistry, and Paleontology Scientific Fields Different fields of science have contributed evidence for the theory of

More information

Gene Control Mechanisms at Transcription and Translation Levels

Gene Control Mechanisms at Transcription and Translation Levels Gene Control Mechanisms at Transcription and Translation Levels Dr. M. Vijayalakshmi School of Chemical and Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 9

More information

A Brief Overview of Biochemistry. And I mean BRIEF!

A Brief Overview of Biochemistry. And I mean BRIEF! A Brief Overview of Biochemistry And I mean BRIEF! Introduction A. Chemistry deals with the composition of substances and how they change. B. A knowledge of chemistry is necessary for the understanding

More information

UoN, CAS, DBSC BIOL102 lecture notes by: Dr. Mustafa A. Mansi. The Phylogenetic Systematics (Phylogeny and Systematics)

UoN, CAS, DBSC BIOL102 lecture notes by: Dr. Mustafa A. Mansi. The Phylogenetic Systematics (Phylogeny and Systematics) - Phylogeny? - Systematics? The Phylogenetic Systematics (Phylogeny and Systematics) - Phylogenetic systematics? Connection between phylogeny and classification. - Phylogenetic systematics informs the

More information

Nature Genetics: doi: /ng Supplementary Figure 1. Icm/Dot secretion system region I in 41 Legionella species.

Nature Genetics: doi: /ng Supplementary Figure 1. Icm/Dot secretion system region I in 41 Legionella species. Supplementary Figure 1 Icm/Dot secretion system region I in 41 Legionella species. Homologs of the effector-coding gene lega15 (orange) were found within Icm/Dot region I in 13 Legionella species. In four

More information

Membranes 2: Transportation

Membranes 2: Transportation Membranes 2: Transportation Steven E. Massey, Ph.D. Associate Professor Bioinformatics Department of Biology University of Puerto Rico Río Piedras Office & Lab: NCN#343B Tel: 787-764-0000 ext. 7798 E-mail:

More information

Viewing and Analyzing Proteins, Ligands and their Complexes 2

Viewing and Analyzing Proteins, Ligands and their Complexes 2 2 Viewing and Analyzing Proteins, Ligands and their Complexes 2 Overview Viewing the accessible surface Analyzing the properties of proteins containing thousands of atoms is best accomplished by representing

More information

UNIT 5. Protein Synthesis 11/22/16

UNIT 5. Protein Synthesis 11/22/16 UNIT 5 Protein Synthesis IV. Transcription (8.4) A. RNA carries DNA s instruction 1. Francis Crick defined the central dogma of molecular biology a. Replication copies DNA b. Transcription converts DNA

More information

Gene Families part 2. Review: Gene Families /727 Lecture 8. Protein family. (Multi)gene family

Gene Families part 2. Review: Gene Families /727 Lecture 8. Protein family. (Multi)gene family Review: Gene Families Gene Families part 2 03 327/727 Lecture 8 What is a Case study: ian globin genes Gene trees and how they differ from species trees Homology, orthology, and paralogy Last tuesday 1

More information

Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. Tuesday, December 27, 16

Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. Tuesday, December 27, 16 Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. Enduring understanding 3.B: Expression of genetic information involves cellular and molecular

More information

Patrick: An Introduction to Medicinal Chemistry 5e Chapter 04

Patrick: An Introduction to Medicinal Chemistry 5e Chapter 04 01) Which of the following statements is not true about receptors? a. Most receptors are proteins situated inside the cell. b. Receptors contain a hollow or cleft on their surface which is known as a binding

More information

From DNA to Diversity

From DNA to Diversity From DNA to Diversity Molecular Genetics and the Evolution of Animal Design Sean B. Carroll Jennifer K. Grenier Scott D. Weatherbee Howard Hughes Medical Institute and University of Wisconsin Madison,

More information

Domain 6: Communication

Domain 6: Communication Domain 6: Communication 6.1: Cell communication processes share common features that reflect a shared evolutionary history. (EK3.D.1) 1. Introduction to Communication Communication requires the generation,

More information

Multiple Choice Review- Eukaryotic Gene Expression

Multiple Choice Review- Eukaryotic Gene Expression Multiple Choice Review- Eukaryotic Gene Expression 1. Which of the following is the Central Dogma of cell biology? a. DNA Nucleic Acid Protein Amino Acid b. Prokaryote Bacteria - Eukaryote c. Atom Molecule

More information

Homeotic Genes and Body Patterns

Homeotic Genes and Body Patterns Homeotic Genes and Body Patterns Every organism has a unique body pattern. Although specialized body structures, such as arms and legs, may be similar in makeup (both are made of muscle and bone), their

More information

METHODS FOR DETERMINING PHYLOGENY. In Chapter 11, we discovered that classifying organisms into groups was, and still is, a difficult task.

METHODS FOR DETERMINING PHYLOGENY. In Chapter 11, we discovered that classifying organisms into groups was, and still is, a difficult task. Chapter 12 (Strikberger) Molecular Phylogenies and Evolution METHODS FOR DETERMINING PHYLOGENY In Chapter 11, we discovered that classifying organisms into groups was, and still is, a difficult task. Modern

More information

Anatomy of a tree. clade is group of organisms with a shared ancestor. a monophyletic group shares a single common ancestor = tapirs-rhinos-horses

Anatomy of a tree. clade is group of organisms with a shared ancestor. a monophyletic group shares a single common ancestor = tapirs-rhinos-horses Anatomy of a tree outgroup: an early branching relative of the interest groups sister taxa: taxa derived from the same recent ancestor polytomy: >2 taxa emerge from a node Anatomy of a tree clade is group

More information

Charged amino acids (side-chains)

Charged amino acids (side-chains) Proteins are composed of monomers called amino acids There are 20 different amino acids Amine Group Central ydrocarbon N C C R Group Carboxyl Group ALL amino acids have the exact same structure except

More information

2: CHEMICAL COMPOSITION OF THE BODY

2: CHEMICAL COMPOSITION OF THE BODY 1 2: CHEMICAL COMPOSITION OF THE BODY CHAPTER OVERVIEW This chapter provides an overview of basic chemical principles that are important to understanding human physiological function and ultimately homeostasis.

More information

Chapter 2. Introduction: Chapter Chemical Basis of Life. Structure of Matter:

Chapter 2. Introduction: Chapter Chemical Basis of Life. Structure of Matter: Chapter 2.1-2.2 Read text 2.1 and describe why chemistry is important in understanding life. Read text 2.2 and discuss how atomic structure determines how atoms interact. Also describe the types of chemical

More information

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype Lecture Series 7 From DNA to Protein: Genotype to Phenotype Reading Assignments Read Chapter 7 From DNA to Protein A. Genes and the Synthesis of Polypeptides Genes are made up of DNA and are expressed

More information

Right click on the link and save the file on the disk (Save link target as...). Then execute this in the command window:

Right click on the link and save the file on the disk (Save link target as...). Then execute this in the command window: Läkemedelsutveckling ht 2005 Copyright 2005 Lars Brive Excercise Analysis of structures of protein ligand complexes In this excercise you will examine the geometrical features of six x ray structures in

More information

Signal Transduction. Dr. Chaidir, Apt

Signal Transduction. Dr. Chaidir, Apt Signal Transduction Dr. Chaidir, Apt Background Complex unicellular organisms existed on Earth for approximately 2.5 billion years before the first multicellular organisms appeared.this long period for

More information

9/25/2011. Outline. Overview: The Energy of Life. I. Forms of Energy II. Laws of Thermodynamics III. Energy and metabolism IV. ATP V.

9/25/2011. Outline. Overview: The Energy of Life. I. Forms of Energy II. Laws of Thermodynamics III. Energy and metabolism IV. ATP V. Chapter 8 Introduction to Metabolism Outline I. Forms of Energy II. Laws of Thermodynamics III. Energy and metabolism IV. ATP V. Enzymes Overview: The Energy of Life Figure 8.1 The living cell is a miniature

More information

Protein Structure. W. M. Grogan, Ph.D. OBJECTIVES

Protein Structure. W. M. Grogan, Ph.D. OBJECTIVES Protein Structure W. M. Grogan, Ph.D. OBJECTIVES 1. Describe the structure and characteristic properties of typical proteins. 2. List and describe the four levels of structure found in proteins. 3. Relate

More information

Chapter 2. Chemical Basis of Life

Chapter 2. Chemical Basis of Life hapter 2 hemical Basis of Life opyright The McGrawill ompanies, Inc. Permission required for reproduction or display. Introduction: A. hemistry deals with the composition of matter and how it changes.

More information

AP Biology Notes Outline Enduring Understanding 1.B. Big Idea 1: The process of evolution drives the diversity and unity of life.

AP Biology Notes Outline Enduring Understanding 1.B. Big Idea 1: The process of evolution drives the diversity and unity of life. AP Biology Notes Outline Enduring Understanding 1.B Big Idea 1: The process of evolution drives the diversity and unity of life. Enduring Understanding 1.B: Organisms are linked by lines of descent from

More information

Piecing It Together. 1) The envelope contains puzzle pieces for 5 vertebrate embryos in 3 different stages of

Piecing It Together. 1) The envelope contains puzzle pieces for 5 vertebrate embryos in 3 different stages of Piecing It Together 1) The envelope contains puzzle pieces for 5 vertebrate embryos in 3 different stages of development. Lay out the pieces so that you have matched up each animal name card with its 3

More information

Potassium channel gating and structure!

Potassium channel gating and structure! Reading: Potassium channel gating and structure Hille (3rd ed.) chapts 10, 13, 17 Doyle et al. The Structure of the Potassium Channel: Molecular Basis of K1 Conduction and Selectivity. Science 280:70-77

More information

Chemical Basis of Life

Chemical Basis of Life Bi100 hapter 2 hemical Basis of Life Introduction: A. hemistry deals with the composition of matter and how it changes. B. A knowledge of chemistry is necessary for the understanding of physiology because

More information

Translation. A ribosome, mrna, and trna.

Translation. A ribosome, mrna, and trna. Translation The basic processes of translation are conserved among prokaryotes and eukaryotes. Prokaryotic Translation A ribosome, mrna, and trna. In the initiation of translation in prokaryotes, the Shine-Dalgarno

More information

Membrane Protein Channels

Membrane Protein Channels Membrane Protein Channels Potassium ions queuing up in the potassium channel Pumps: 1000 s -1 Channels: 1000000 s -1 Pumps & Channels The lipid bilayer of biological membranes is intrinsically impermeable

More information

Lecture 2 and 3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability

Lecture 2 and 3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Lecture 2 and 3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Part I. Review of forces Covalent bonds Non-covalent Interactions: Van der Waals Interactions

More information

Endocrine Physiology. Introduction to Endocrine Principles

Endocrine Physiology. Introduction to Endocrine Principles Endocrine Physiology Introduction to Endocrine Principles There are TWO major groups of hormones Peptide and protein hormones Amine hormones Peptide and protein hormones act through cell membrane receptors

More information

Exploring Evolution & Bioinformatics

Exploring Evolution & Bioinformatics Chapter 6 Exploring Evolution & Bioinformatics Jane Goodall The human sequence (red) differs from the chimpanzee sequence (blue) in only one amino acid in a protein chain of 153 residues for myoglobin

More information

Chapter 18 Lecture. Concepts of Genetics. Tenth Edition. Developmental Genetics

Chapter 18 Lecture. Concepts of Genetics. Tenth Edition. Developmental Genetics Chapter 18 Lecture Concepts of Genetics Tenth Edition Developmental Genetics Chapter Contents 18.1 Differentiated States Develop from Coordinated Programs of Gene Expression 18.2 Evolutionary Conservation

More information

Degeneracy. Two types of degeneracy:

Degeneracy. Two types of degeneracy: Degeneracy The occurrence of more than one codon for an amino acid (AA). Most differ in only the 3 rd (3 ) base, with the 1 st and 2 nd being most important for distinguishing the AA. Two types of degeneracy:

More information

Three different fusions led to three basic ideas: 1) If one fuses a cell in mitosis with a cell in any other stage of the cell cycle, the chromosomes

Three different fusions led to three basic ideas: 1) If one fuses a cell in mitosis with a cell in any other stage of the cell cycle, the chromosomes Section Notes The cell division cycle presents an interesting system to study because growth and division must be carefully coordinated. For many cells it is important that it reaches the correct size

More information

Biophysics 490M Project

Biophysics 490M Project Biophysics 490M Project Dan Han Department of Biochemistry Structure Exploration of aa 3 -type Cytochrome c Oxidase from Rhodobacter sphaeroides I. Introduction: All organisms need energy to live. They

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11524 Supplementary discussion Functional analysis of the sugar porter family (SP) signature motifs. As seen in Fig. 5c, single point mutation of the conserved

More information

Bio 1B Lecture Outline (please print and bring along) Fall, 2007

Bio 1B Lecture Outline (please print and bring along) Fall, 2007 Bio 1B Lecture Outline (please print and bring along) Fall, 2007 B.D. Mishler, Dept. of Integrative Biology 2-6810, bmishler@berkeley.edu Evolution lecture #5 -- Molecular genetics and molecular evolution

More information

Organization of Genes Differs in Prokaryotic and Eukaryotic DNA Chapter 10 p

Organization of Genes Differs in Prokaryotic and Eukaryotic DNA Chapter 10 p Organization of Genes Differs in Prokaryotic and Eukaryotic DNA Chapter 10 p.110-114 Arrangement of information in DNA----- requirements for RNA Common arrangement of protein-coding genes in prokaryotes=

More information

Transmembrane Domains (TMDs) of ABC transporters

Transmembrane Domains (TMDs) of ABC transporters Transmembrane Domains (TMDs) of ABC transporters Most ABC transporters contain heterodimeric TMDs (e.g. HisMQ, MalFG) TMDs show only limited sequence homology (high diversity) High degree of conservation

More information

Biology 20 Chapter 5 Lesson 2 Evidence for Evolution. Today s species that exist have evolved from ancestral ones.

Biology 20 Chapter 5 Lesson 2 Evidence for Evolution. Today s species that exist have evolved from ancestral ones. Biology 20 Chapter 5 Lesson 2 Evidence for Evolution Today s species that exist have evolved from ancestral ones. This theory of evolution is supported by many different types of evidence collected by

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Crystallization. a, Crystallization constructs of the ET B receptor are shown, with all of the modifications to the human wild-type the ET B receptor indicated. Residues interacting

More information

GENETICS - CLUTCH CH.22 EVOLUTIONARY GENETICS.

GENETICS - CLUTCH CH.22 EVOLUTIONARY GENETICS. !! www.clutchprep.com CONCEPT: OVERVIEW OF EVOLUTION Evolution is a process through which variation in individuals makes it more likely for them to survive and reproduce There are principles to the theory

More information

Big Idea 1: The process of evolution drives the diversity and unity of life.

Big Idea 1: The process of evolution drives the diversity and unity of life. Big Idea 1: The process of evolution drives the diversity and unity of life. understanding 1.A: Change in the genetic makeup of a population over time is evolution. 1.A.1: Natural selection is a major

More information

16 CONTROL OF GENE EXPRESSION

16 CONTROL OF GENE EXPRESSION 16 CONTROL OF GENE EXPRESSION Chapter Outline 16.1 REGULATION OF GENE EXPRESSION IN PROKARYOTES The operon is the unit of transcription in prokaryotes The lac operon for lactose metabolism is transcribed

More information

CELL PRACTICE TEST

CELL PRACTICE TEST Name: Date: 1. As a human red blood cell matures, it loses its nucleus. As a result of this loss, a mature red blood cell lacks the ability to (1) take in material from the blood (2) release hormones to

More information

12U Biochemistry Unit Test

12U Biochemistry Unit Test 1 12U Biology: Biochemistry Test 12U Biochemistry Unit Test Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true.

More information

Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut

Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut University-Egypt Phylogenetic analysis Phylogenetic Basics: Biological

More information

An Introduction to Metabolism

An Introduction to Metabolism An Introduction to Metabolism PREFACE The living cell is a chemical factory with thousands of reactions taking place, many of them simultaneously This chapter is about matter and energy flow during life

More information

RNA Synthesis and Processing

RNA Synthesis and Processing RNA Synthesis and Processing Introduction Regulation of gene expression allows cells to adapt to environmental changes and is responsible for the distinct activities of the differentiated cell types that

More information

Understanding Science Through the Lens of Computation. Richard M. Karp Nov. 3, 2007

Understanding Science Through the Lens of Computation. Richard M. Karp Nov. 3, 2007 Understanding Science Through the Lens of Computation Richard M. Karp Nov. 3, 2007 The Computational Lens Exposes the computational nature of natural processes and provides a language for their description.

More information

The following question(s) were incorrectly answered.

The following question(s) were incorrectly answered. Name: Marcie Joseph Module: Cells & chemistry Test topic/animation: My animations/all animations Test type: Multiple choice Score: 48/50 Percent correct: 96% The following question(s) were incorrectly

More information

Enzyme Catalysis & Biotechnology

Enzyme Catalysis & Biotechnology L28-1 Enzyme Catalysis & Biotechnology Bovine Pancreatic RNase A Biochemistry, Life, and all that L28-2 A brief word about biochemistry traditionally, chemical engineers used organic and inorganic chemistry

More information

Chapter 6- An Introduction to Metabolism*

Chapter 6- An Introduction to Metabolism* Chapter 6- An Introduction to Metabolism* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. The Energy of Life

More information

NB-DNJ/GCase-pH 7.4 NB-DNJ+/GCase-pH 7.4 NB-DNJ+/GCase-pH 4.5

NB-DNJ/GCase-pH 7.4 NB-DNJ+/GCase-pH 7.4 NB-DNJ+/GCase-pH 4.5 SUPPLEMENTARY TABLES Suppl. Table 1. Protonation states at ph 7.4 and 4.5. Protonation states of titratable residues in GCase at ph 7.4 and 4.5. Histidine: HID, H at δ-nitrogen; HIE, H at ε-nitrogen; HIP,

More information

Patterns of Evolution

Patterns of Evolution Patterns of Evolution A tree that represents an estimate (hypothesis) of evolutionary relatedness is a phylogeny Classifications can be based on groupings within a phylogeny Groupings can be categorized

More information

Introduction to Comparative Protein Modeling. Chapter 4 Part I

Introduction to Comparative Protein Modeling. Chapter 4 Part I Introduction to Comparative Protein Modeling Chapter 4 Part I 1 Information on Proteins Each modeling study depends on the quality of the known experimental data. Basis of the model Search in the literature

More information

Dr. Amira A. AL-Hosary

Dr. Amira A. AL-Hosary Phylogenetic analysis Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut University-Egypt Phylogenetic Basics: Biological

More information

BIOLOGY STANDARDS BASED RUBRIC

BIOLOGY STANDARDS BASED RUBRIC BIOLOGY STANDARDS BASED RUBRIC STUDENTS WILL UNDERSTAND THAT THE FUNDAMENTAL PROCESSES OF ALL LIVING THINGS DEPEND ON A VARIETY OF SPECIALIZED CELL STRUCTURES AND CHEMICAL PROCESSES. First Semester Benchmarks:

More information

Rex-Family Repressor/NADH Complex

Rex-Family Repressor/NADH Complex Kasey Royer Michelle Lukosi Rex-Family Repressor/NADH Complex Part A The biological sensing protein that we selected is the Rex-family repressor/nadh complex. We chose this sensor because it is a calcium

More information

Gene regulation II Biochemistry 302. February 27, 2006

Gene regulation II Biochemistry 302. February 27, 2006 Gene regulation II Biochemistry 302 February 27, 2006 Molecular basis of inhibition of RNAP by Lac repressor 35 promoter site 10 promoter site CRP/DNA complex 60 Lewis, M. et al. (1996) Science 271:1247

More information

Classification and Phylogeny

Classification and Phylogeny Classification and Phylogeny The diversity of life is great. To communicate about it, there must be a scheme for organization. There are many species that would be difficult to organize without a scheme

More information

Classifications can be based on groupings g within a phylogeny

Classifications can be based on groupings g within a phylogeny Patterns of Evolution A tree that represents an estimate (hypothesis) of evolutionary relatedness is a phylogeny Classifications can be based on groupings g within a phylogeny y Groupings can be categorized

More information

Evaluate evidence provided by data from many scientific disciplines to support biological evolution. [LO 1.9, SP 5.3]

Evaluate evidence provided by data from many scientific disciplines to support biological evolution. [LO 1.9, SP 5.3] Learning Objectives Evaluate evidence provided by data from many scientific disciplines to support biological evolution. [LO 1.9, SP 5.3] Refine evidence based on data from many scientific disciplines

More information

Enzyme Enzymes are proteins that act as biological catalysts. Enzymes accelerate, or catalyze, chemical reactions. The molecules at the beginning of

Enzyme Enzymes are proteins that act as biological catalysts. Enzymes accelerate, or catalyze, chemical reactions. The molecules at the beginning of Enzyme Enzyme Enzymes are proteins that act as biological catalysts. Enzymes accelerate, or catalyze, chemical reactions. The molecules at the beginning of the process are called substrates and the enzyme

More information

Scale in the biological world

Scale in the biological world Scale in the biological world 2 A cell seen by TEM 3 4 From living cells to atoms 5 Compartmentalisation in the cell: internal membranes and the cytosol 6 The Origin of mitochondria: The endosymbion hypothesis

More information

Classification, Phylogeny yand Evolutionary History

Classification, Phylogeny yand Evolutionary History Classification, Phylogeny yand Evolutionary History The diversity of life is great. To communicate about it, there must be a scheme for organization. There are many species that would be difficult to organize

More information

An Introduction to Metabolism

An Introduction to Metabolism An Introduction to Metabolism PREFACE The living cell is a chemical factory with thousands of reactions taking place, many of them simultaneously This chapter is about matter and energy flow during life

More information

Initiation of translation in eukaryotic cells:connecting the head and tail

Initiation of translation in eukaryotic cells:connecting the head and tail Initiation of translation in eukaryotic cells:connecting the head and tail GCCRCCAUGG 1: Multiple initiation factors with distinct biochemical roles (linking, tethering, recruiting, and scanning) 2: 5

More information

Biology Semester 2 Final Review

Biology Semester 2 Final Review Name Period Due Date: 50 HW Points Biology Semester 2 Final Review LT 15 (Proteins and Traits) Proteins express inherited traits and carry out most cell functions. 1. Give examples of structural and functional

More information

Ground Rules of Metabolism CHAPTER 6

Ground Rules of Metabolism CHAPTER 6 Ground Rules of Metabolism CHAPTER 6 Antioxidants You ve heard the term. What s the big deal? Found naturally in many fruits and vegetables Added to many products What do they actually do? Antioxidants

More information

Classification and Phylogeny

Classification and Phylogeny Classification and Phylogeny The diversity it of life is great. To communicate about it, there must be a scheme for organization. There are many species that would be difficult to organize without a scheme

More information

Biology 211 (2) Week 1 KEY!

Biology 211 (2) Week 1 KEY! Biology 211 (2) Week 1 KEY Chapter 1 KEY FIGURES: 1.2, 1.3, 1.4, 1.5, 1.6, 1.7 VOCABULARY: Adaptation: a trait that increases the fitness Cells: a developed, system bound with a thin outer layer made of

More information

Advanced Certificate in Principles in Protein Structure. You will be given a start time with your exam instructions

Advanced Certificate in Principles in Protein Structure. You will be given a start time with your exam instructions BIRKBECK COLLEGE (University of London) Advanced Certificate in Principles in Protein Structure MSc Structural Molecular Biology Date: Thursday, 1st September 2011 Time: 3 hours You will be given a start

More information

Signal Transduction Phosphorylation Protein kinases. Misfolding diseases. Protein Engineering Lysozyme variants

Signal Transduction Phosphorylation Protein kinases. Misfolding diseases. Protein Engineering Lysozyme variants Signal Transduction Phosphorylation Protein kinases Misfolding diseases Protein Engineering Lysozyme variants Cells and Signals Regulation The cell must be able to respond to stimuli Cellular activities

More information

Chapter 27: Evolutionary Genetics

Chapter 27: Evolutionary Genetics Chapter 27: Evolutionary Genetics Student Learning Objectives Upon completion of this chapter you should be able to: 1. Understand what the term species means to biology. 2. Recognize the various patterns

More information

An atom is the smallest unit of an element. It has: A general understanding of chemistry is necessary for understanding human physiology.

An atom is the smallest unit of an element. It has: A general understanding of chemistry is necessary for understanding human physiology. 8/29/11 Chapter 2 I. Atoms, Ions, and Chemical Bonds Chemical Composition of the Body Lecture PowerPoint Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Body

More information

The Characteristics of Life. AP Biology Notes: #1

The Characteristics of Life. AP Biology Notes: #1 The Characteristics of Life AP Biology Notes: #1 Life s Diversity & Unity Life has extensive diversity. Despite its diversity, all living things are composed of the same chemical elements that make-up

More information

UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11

UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11 UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11 REVIEW: Signals that Start and Stop Transcription and Translation BUT, HOW DO CELLS CONTROL WHICH GENES ARE EXPRESSED AND WHEN? First of

More information

Papers listed: Cell2. This weeks papers. Chapt 4. Protein structure and function. The importance of proteins

Papers listed: Cell2. This weeks papers. Chapt 4. Protein structure and function. The importance of proteins 1 Papers listed: Cell2 During the semester I will speak of information from several papers. For many of them you will not be required to read these papers, however, you can do so for the fun of it (and

More information

AP Curriculum Framework with Learning Objectives

AP Curriculum Framework with Learning Objectives Big Ideas Big Idea 1: The process of evolution drives the diversity and unity of life. AP Curriculum Framework with Learning Objectives Understanding 1.A: Change in the genetic makeup of a population over

More information

Overview of ion channel proteins. What do ion channels do? Three important points:

Overview of ion channel proteins. What do ion channels do? Three important points: Overview of ion channel proteins Protein Structure Membrane proteins & channels Specific channels Several hundred distinct types Organization Evolution We need to consider 1. Structure 2. Functions 3.

More information

RNA and Protein Structure Prediction

RNA and Protein Structure Prediction RNA and Protein Structure Prediction Bioinformatics: Issues and Algorithms CSE 308-408 Spring 2007 Lecture 18-1- Outline Multi-Dimensional Nature of Life RNA Secondary Structure Prediction Protein Structure

More information

Comparative Genomics II

Comparative Genomics II Comparative Genomics II Advances in Bioinformatics and Genomics GEN 240B Jason Stajich May 19 Comparative Genomics II Slide 1/31 Outline Introduction Gene Families Pairwise Methods Phylogenetic Methods

More information