Chapter 6- An Introduction to Metabolism*

Size: px
Start display at page:

Download "Chapter 6- An Introduction to Metabolism*"

Transcription

1 Chapter 6- An Introduction to Metabolism* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. The Energy of Life The cell can be viewed as a chemical factory it can convert sugars to amino acids, and vice versa; it can make polymers and convert them to monomers, and vice versa. Metabolism is involved in these processes, there is a flow of energy (Figure 6.1). Concept 6.1: An organism s metabolism transforms matter and energy Metabolism is the sum total of the cell s biochemical reactions. Metabolic Pathways A metabolic pathway begins with a specific molecule, which is then converted through a series of steps by the activity of enzymes that then produce products (Diagram pg. 122). Metabolism is broken down into two (2) types of pathways: 1) catabolic pathways break down a molecule in a process called degradative, and releases energy. An example is cellular respiration; 2) anabolic pathways builds molecules and consumes energy to do this in a process called biosynthetic pathways. An example is protein translation. Energy is fundamental to all metabolic processes. Bioenergetics is the study of how energy flows through living organisms. Forms of Energy Energy is the capacity to cause change, to do work. There are different types of energy. Kinetic energy is the energy displayed by moving objects. Heat, or thermal energy is kinetic energy associated with the random movement of atoms or molecules. An object that exists at a particular location in space is called potential energy. Chemical energy (as used in biology) is potential energy that is stored in the chemical bonds of a molecule, such as glucose. Figure 6.2 diagrams the relationship between potential energy and kinetic energy. 1

2 The Laws of Energy Transformation Thermodynamics is the study of energy transformations. In the study of thermodynamics, the object (matter) under study is called the system, everything else outside the system is called the surroundings. An isolated system (also known as a closed system) does not exchange energy with its surroundings. Conversely, an open system can exchange energy and matter with its surroundings. Organisms are open systems. Two (2) laws of thermodynamics govern energy transformations in organisms. The First Law of Thermodynamics The first law of thermodynamics states that energy is neither created nor destroyed. Energy is just converted from one form to another (Figure 6.3a). The Second Law of Thermodynamics During energy transformations, some energy is lost as heat (Figure 6.3b). When usable energy is lost, as a result, disorder can be created. Entropy is a measure of disorder, or randomness. The second law of thermodynamics states that systems tend towards disorder. A process that can occur without the input of energy is called a spontaneous process, meaning that the process is energetically favorable. Biological Order and Disorder Cells create ordered structures from less organized starting materials (Figure 6.4). Concept 6.2: The free-energy change of a reaction tells us whether or not the reaction occurs spontaneously In Biology we want to know which biochemical reactions occur spontaneously, and which ones require an input of energy from outside. Free-Energy Change, G Gibb s free energy of a system is symbolized by the letter G. Free energy is the portion of a system s energy that can perform work when temperature and pressure are uniform throughout the system, as in a living cell. 2

3 The change in free energy, G, can be calculated for a chemical reaction: G = H T S. Once we know the value of G, we can determine if the reaction is energetically favorable, spontaneous. Processes that produce a negative G, ( G <0), are spontaneous, they decrease the free energy. Processes that have a positive G ( G>0), or 0, are never spontaneous. The values indicated which reactions can change without help. Spontaneous changes can be harnessed to perform work. Free Energy, Stability and Equilibrium G can be negative only when the process involves a loss of free energy. Free energy is a measure of a system s instability its tendency to change to a more stable state. Systems tend to move towards greater stability (Figure 6.5). Equilibrium as it relates to chemical equilibrium is when the forward reaction and the reverse reaction occur at the same rate. As the reaction proceeds to equilibrium the free energy of the reactants and products decreases. When the system is at equilibrium G is at its lowest possible value in that system. A process is spontaneous and can perform work only when it is moving towards equilibrium. Free Energy and Metabolism The concept of free energy and how it applies to life. Exergonic and Endergonic Reactions in Metabolism An exergonic reaction (energy outward) proceeds with a net release of free energy (Figure 6.6a). G is negative, therefore the reaction can occur spontaneously. An endergonic reaction (energy inward) absorbs energy from its surroundings (Figure 6.6b). G is positive, therefore the reaction is non-spontaneous. Equilibrium and Metabolism Metabolism in a cell never reaches equilibrium. Energy and matter continuously flow in and out of a cell, an open system. Cells carry out cellular respiration that releases energy. Some of the reactions of cellular respiration are pulled in one direction, therefore never reaching equilibrium (Figure 6.7). Concept 6.3: ATP powers cellular work by coupling exergonic reactions to endergonic reactions 3

4 A cell does three kinds of work: 1) chemical work the synthesis of making polymers from monomers; 2) transport work moving molecules across the cell membrane; 3) mechanical work used for cellular movement. Cells use energy coupling to accomplish these processes linking an exergonic reaction to an endergonic one. ATP is one of the main sources of energy to allow this to happen. The Structure and Hydrolysis of ATP ATP (adenosine triphosphate) has the phosphate functional group, it is used to store energy, and it is a nucleotide in DNA (Figure 6.8). ATP is hydrolyzed by a water molecule with the result being the cleaving of the phosphate bond, from the terminal phosphate end. The reaction is exergonic and releases energy. How the Hydrolysis of ATP Performs Work The use of specific enzymes in the cell is able to use the energy released by ATP hydrolysis directly to drive chemical reactions in the cell. Endergonic reactions in the cell are coupled to ATP hydrolysis, thus the reaction can proceed from reactants to product, such that the overall reaction in exergonic (Figure 6.9). During this process a phosphate group is transferred to one of the reactants creating a phosphorylated intermediate. Transport and mechanical work in the cell are accomplished by the hydrolysis of ATP (Figure 6.10 a and b). The Regeneration of ATP ATP is regenerated from ADP by an addition of a PO4 function group to form ATP. This is a continuous process called the ATP cycle (Figure 6.11). Concept 6.4: Enzymes speed up metabolic reactions by lowering energy barriers The laws of thermodynamics will tell us if a reaction is spontaneous, but it does not tell us the rate of the reaction, meaning, how fast the reaction will occur. An enzyme is a macromolecule (in this case a protein) that 4

5 acts as a catalyst, a chemical agent that speeds up a chemical reaction without being consumed by the reaction. The Activation Energy Barrier The initial energy that is needed to start a chemical reaction is called the activation energy, EA. Activation energy is often supplied in the form of heat. When the molecules have absorbed enough energy to break its bonds, the reactants move to a transition state (Figure 6.12). When the atoms move to the downhill part of the curve, energy is released, thus an exergonic reaction. The activation energy provides a barrier that determines the rate of the reaction. How Enzymes Lower the EA Barrier Organisms use catalysts to speed up reactions in the cell, and not heat. An enzyme catalyzes a reaction by lowering the EA barrier (Figure 6.13). An enzyme does not change the G, it just speeds up the rate of the reaction, how fast it will occur. Enzymes are specific for the chemical reactions they catalyze. Substrate Specificity of Enzymes The reactant for the enzyme is called the substrate. Once the enzyme binds to the substrate, it forms an enzyme-substrate complex (See equation pg. 132). Most names for enzymes end in ase. Enzymes are very specific for the substrate they bind. The active site is a pocket, or groove, on the surface of the enzyme where the substrate binds. It is the site for the catalysis (Figure 6.14a). When the substrate binds to the active site, there is an induced fit of the substrate in the active site (Figure 6.14b). Catalysis in the Enzyme s Active Site The catalytic cycle of the enzyme is its ability to convert substrate to product very rapidly (Figure 6.15). An enzyme can catalyze either the forward and reverse reaction, depending on which direction has the negative G. There are four mechanisms of catalysis: 1) the active site provides a place for substrates to come together in the proper orientation for the reaction to occur; 2) the enzyme can stretch the substrate towards the transition state; 3) the active site can provide a micro-environment that is optimal for catalysis to occur; 4) sometimes the amino acids in the active directly participate in the conversion to product. The enzyme can become saturated with the substrate such that there is always a turn over of substrate to product. 5

6 Effects of Local Conditions on Enzyme Activity The activity of an enzyme is influenced by temperature, ph and different types of chemicals. Effects of Temperature and ph Proteins are sensitive to their environment. The optimal conditions favor the active shape for the enzyme. An above normal temperature for the enzyme can destroy the shape of the enzyme by disturbing the ionic, hydrogen and van der Waals interactions causing the enzyme to denature (Figure 6.16a). Enzymes also have an optimal ph for which they can function (Figure 6.16b). Cofactors Cofactors are nonprotein helpers for the enzyme. Cofactors for some enzymes are inorganic, such as metal ions, like zinc and magnesium. If the cofactor is an organic molecule, it is called a coenzyme, which tend to be vitamin derivatives. Enzyme Inhibitors They inhibit the activity of the enzyme. Competitive inhibitors prevent the natural substrate from binding to the active site (Figure 6.17 a and b). Non-competitive inhibitors do not bind directly in the enzyme s active site, but on another portion of the enzyme. Once this non-competitive inhibitor binds, it changes the shape of the active site so that the natural substrate does not bind (Figure 6.17c). The Evolution of Enzymes Mutations of a gene that codes for an enzyme may have given rise to different enzymes with novel functions. Natural selection would favor the gene of a particular enzyme for an organism s habitat. Concept 6.5: Regulation of enzyme activity helps control metabolism The cell can control when and where its enzymes are active. The cell can control the genetic production of enzymes, or regulate their activity once they are made. 6

7 Allosteric Regulation of Enzymes They function similarly to non-competitive inhibitors. They affect the shape and functioning of the active site by binding elsewhere on the enzyme. Allosteric regulation describes where a protein s function at one site is affected by the binding of a regulatory molecule to a separate site. It can either inhibit or stimulate the enzyme s activity. Allosteric Activation and Inhibition Enzymes that are regulated by this mechanism tend to contain multiple subunits, and the overall enzyme oscillates between an active and inactive shape (Figure 6.18a). An activator will allow the enzyme to function. An inhibitor will prevent the enzyme from functioning. Cooperativity occurs when a substrate binds to a multisubunit enzyme, and once the first substrate binds it allows for the other same substrate to bind to the enzyme easier (Figure 6.18b). Feedback Inhibition The metabolic end product of a pathway inhibits one of the first enzymes in the pathway (Figure 6.19). Organization of Enzymes Within the Cell The eukaryotic cell is compartmentalized. Some enzymes and enzyme complexes have fixed locations within the cell (Figure 6.20). 7

An Introduction to Metabolism

An Introduction to Metabolism An Introduction to Metabolism Chapter 8 Objectives Distinguish between the following pairs of terms: catabolic and anabolic pathways; kinetic and potential energy; open and closed systems; exergonic and

More information

Objectives INTRODUCTION TO METABOLISM. Metabolism. Catabolic Pathways. Anabolic Pathways 3/6/2011. How to Read a Chemical Equation

Objectives INTRODUCTION TO METABOLISM. Metabolism. Catabolic Pathways. Anabolic Pathways 3/6/2011. How to Read a Chemical Equation Objectives INTRODUCTION TO METABOLISM. Chapter 8 Metabolism, Energy, and Life Explain the role of catabolic and anabolic pathways in cell metabolism Distinguish between kinetic and potential energy Distinguish

More information

Chapter 8 Notes. An Introduction to Metabolism

Chapter 8 Notes. An Introduction to Metabolism Chapter 8 Notes An Introduction to Metabolism Describe how allosteric regulators may inhibit or stimulate the activity of an enzyme. Objectives Distinguish between the following pairs of terms: catabolic

More information

An Introduction to Metabolism

An Introduction to Metabolism LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 8 An Introduction to Metabolism

More information

An Introduction to Metabolism

An Introduction to Metabolism An Introduction to Metabolism I. All of an organism=s chemical reactions taken together is called metabolism. A. Metabolic pathways begin with a specific molecule, which is then altered in a series of

More information

9/25/2011. Outline. Overview: The Energy of Life. I. Forms of Energy II. Laws of Thermodynamics III. Energy and metabolism IV. ATP V.

9/25/2011. Outline. Overview: The Energy of Life. I. Forms of Energy II. Laws of Thermodynamics III. Energy and metabolism IV. ATP V. Chapter 8 Introduction to Metabolism Outline I. Forms of Energy II. Laws of Thermodynamics III. Energy and metabolism IV. ATP V. Enzymes Overview: The Energy of Life Figure 8.1 The living cell is a miniature

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 1 An Introduction to Metabolism PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Chapter 8: An Introduction to Metabolism Key Concepts 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 8.2 The free-energy change of a reaction tells us

More information

An Introduction to Metabolism

An Introduction to Metabolism CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 6 An Introduction to Metabolism Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: The Energy of Life The

More information

CHAPTER 8. An Introduction to Metabolism

CHAPTER 8. An Introduction to Metabolism CHAPTER 8 An Introduction to Metabolism WHAT YOU NEED TO KNOW: Examples of endergonic and exergonic reactions. The key role of ATP in energy coupling. That enzymes work by lowering the energy of activation.

More information

BIOLOGY 10/11/2014. An Introduction to Metabolism. Outline. Overview: The Energy of Life

BIOLOGY 10/11/2014. An Introduction to Metabolism. Outline. Overview: The Energy of Life 8 An Introduction to Metabolism CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Outline I. Forms of Energy II. Laws of Thermodynamics III. Energy and metabolism IV. ATP V. Enzymes

More information

An Introduction to Metabolism

An Introduction to Metabolism An Introduction to Metabolism PREFACE The living cell is a chemical factory with thousands of reactions taking place, many of them simultaneously This chapter is about matter and energy flow during life

More information

An Introduction to Metabolism

An Introduction to Metabolism An Introduction to Metabolism PREFACE The living cell is a chemical factory with thousands of reactions taking place, many of them simultaneously This chapter is about matter and energy flow during life

More information

Energy Transformation and Metabolism (Outline)

Energy Transformation and Metabolism (Outline) Energy Transformation and Metabolism (Outline) - Definitions & Laws of Thermodynamics - Overview of energy flow ecosystem - Biochemical processes: Anabolic/endergonic & Catabolic/exergonic - Chemical reactions

More information

General Biology. The Energy of Life The living cell is a miniature factory where thousands of reactions occur; it converts energy in many ways

General Biology. The Energy of Life The living cell is a miniature factory where thousands of reactions occur; it converts energy in many ways Course No: BNG2003 Credits: 3.00 General Biology 5. An Introduction into Cell Metabolism The Energy of Life The living cell is a miniature factory where thousands of reactions occur; it converts energy

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism Edited by Shawn Lester PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

Chapter 6. Ground Rules Of Metabolism

Chapter 6. Ground Rules Of Metabolism Chapter 6 Ground Rules Of Metabolism Alcohol Dehydrogenase An enzyme Breaks down ethanol and other toxic alcohols Allows humans to drink Metabolism Is the totality of an organism s chemical reactions Arises

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Metabolism and Enzymes

Metabolism and Enzymes Energy Basics Metabolism and Enzymes Chapter 5 Pgs. 77 86 Chapter 8 Pgs. 142 162 Energy is the capacity to cause change, and is required to do work. Very difficult to define quantity. Two types of energy:

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

An Introduction to Metabolism

An Introduction to Metabolism CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 6 An Introduction to Metabolism Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION The

More information

An Introduction to Metabolism

An Introduction to Metabolism CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 6 An Introduction to Metabolism Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION The

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism Dr. Wendy Sera Houston Community College Biology 1406 Key Concepts in Chapter 8 1. An organism s metabolism transforms matter and energy, subject to the laws of

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Chapter 8: An Introduction to Metabolism Name Period Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. 2. There are two types

More information

Introduction to Metabolism (Or Energy Management) Chapter 8

Introduction to Metabolism (Or Energy Management) Chapter 8 Introduction to Metabolism (Or Energy Management) Chapter 8 Metabolism of the chemical reactions in the organism Building up molecules Breaking down molecules Managing energy and materials Route to end-product

More information

BIOLOGY. An Introduction to Metabolism CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. An Introduction to Metabolism CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 8 An Introduction to Metabolism Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick The Energy of Life The living

More information

Flow of Energy. Flow of Energy. Energy and Metabolism. Chapter 6

Flow of Energy. Flow of Energy. Energy and Metabolism. Chapter 6 Energy and Metabolism Chapter 6 Flow of Energy Energy: the capacity to do work -kinetic energy: the energy of motion -potential energy: stored energy Energy can take many forms: mechanical electric current

More information

Metabolism and enzymes

Metabolism and enzymes Metabolism and enzymes 4-11-16 What is a chemical reaction? A chemical reaction is a process that forms or breaks the chemical bonds that hold atoms together Chemical reactions convert one set of chemical

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism AP Biology Reading Guide Name Chapter 8: An Introduction to Metabolism Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. 2.

More information

An Introduction to Metabolism

An Introduction to Metabolism LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 8 An Introduction to Metabolism

More information

Chapter 6: Energy Flow in the Life of a Cell

Chapter 6: Energy Flow in the Life of a Cell Chapter 6: Energy Flow in the Life of a Cell What is Energy? Answer: The Capacity to do Work Types of Energy: 1) Kinetic Energy = Energy of movement Light (movement of photons) Heat (movement of particles)

More information

Ground Rules of Metabolism CHAPTER 6

Ground Rules of Metabolism CHAPTER 6 Ground Rules of Metabolism CHAPTER 6 Antioxidants You ve heard the term. What s the big deal? Found naturally in many fruits and vegetables Added to many products What do they actually do? Antioxidants

More information

An Introduction to Metabolism

An Introduction to Metabolism An Introduction to Metabolism The living cell is a microscopic factory where life s giant processes can be performed: -sugars to amino acids to proteins and vise versa -reactions to dismantle polymers

More information

An Introduction to Metabolism. Chapter 8

An Introduction to Metabolism. Chapter 8 An Introduction to Metabolism Chapter 8 METABOLISM I. Introduction All of an organism s chemical reactions Thousands of reactions in a cell Example: digest starch use sugar for energy and to build new

More information

Chapter 8: An Introduction to Metabolism. 1. Energy & Chemical Reactions 2. ATP 3. Enzymes & Metabolic Pathways

Chapter 8: An Introduction to Metabolism. 1. Energy & Chemical Reactions 2. ATP 3. Enzymes & Metabolic Pathways Chapter 8: An Introduction to Metabolism 1. Energy & Chemical Reactions 2. ATP 3. Enzymes & Metabolic Pathways 1. Energy & Chemical Reactions 2 Basic Forms of Energy Kinetic Energy (KE) energy in motion

More information

Chapter 6 Active Reading Guide An Introduction to Metabolism

Chapter 6 Active Reading Guide An Introduction to Metabolism Name: AP Biology Mr. Croft Section 1 1. Define metabolism. Chapter 6 Active Reading Guide An Introduction to Metabolism 2. There are two types of reactions in metabolic pathways: anabolic and catabolic.

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Name Period Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. 2. There are two types of reactions in metabolic pathways: anabolic

More information

*The entropy of a system may decrease, but the entropy of the system plus its surroundings must always increase

*The entropy of a system may decrease, but the entropy of the system plus its surroundings must always increase AP biology Notes: Metabolism Metabolism = totality of an organism's chemical process concerned with managing cellular resources. Metabolic reactions are organized into pathways that are orderly series

More information

Enzyme Enzymes are proteins that act as biological catalysts. Enzymes accelerate, or catalyze, chemical reactions. The molecules at the beginning of

Enzyme Enzymes are proteins that act as biological catalysts. Enzymes accelerate, or catalyze, chemical reactions. The molecules at the beginning of Enzyme Enzyme Enzymes are proteins that act as biological catalysts. Enzymes accelerate, or catalyze, chemical reactions. The molecules at the beginning of the process are called substrates and the enzyme

More information

Energy, Enzymes, and Metabolism. Energy, Enzymes, and Metabolism. A. Energy and Energy Conversions. A. Energy and Energy Conversions

Energy, Enzymes, and Metabolism. Energy, Enzymes, and Metabolism. A. Energy and Energy Conversions. A. Energy and Energy Conversions Energy, Enzymes, and Metabolism Lecture Series 6 Energy, Enzymes, and Metabolism B. ATP: Transferring Energy in Cells D. Molecular Structure Determines Enzyme Fxn Energy is the capacity to do work (cause

More information

Metabolism and Energy. Mrs. Stahl AP Biology

Metabolism and Energy. Mrs. Stahl AP Biology Metabolism and Energy Mrs. Stahl AP Biology The Energy of Life The living cell is a miniature chemical factory where thousands of reactions occur The cell extracts energy stored in sugars and other fuels

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison BIOLOGICAL SCIENCE FIFTH EDITION Freeman Quillin Allison 8 Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge Roadmap 8 In this chapter you will learn how Enzymes use

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism oweroint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Concept 8.1: An organism s metabolism transforms matter and energy, subject to the laws

More information

Chapter 6: Energy Flow in the Life of a Cell

Chapter 6: Energy Flow in the Life of a Cell Chapter 6: Energy Flow in the Life of a Cell What is Energy? Answer: The capacity to do work Types of Energy: 1) Potential Energy = Stored energy Positional (stored in location of object) Chemical (stored

More information

Lecture 7: Enzymes and Energetics

Lecture 7: Enzymes and Energetics Lecture 7: Enzymes and Energetics I. Biological Background A. Biological work requires energy 1. Energy is the capacity to do work a. Energy is expressed in units of work (kilojoules) or heat energy (kilocalories)

More information

Energy Transformation, Cellular Energy & Enzymes (Outline)

Energy Transformation, Cellular Energy & Enzymes (Outline) Energy Transformation, Cellular Energy & Enzymes (Outline) Energy conversions and recycling of matter in the ecosystem. Forms of energy: potential and kinetic energy The two laws of thermodynamic and definitions

More information

Chapter 8 Introduction to Metabolism. Metabolism. The sum total of the chemical reactions that occur in a living thing.

Chapter 8 Introduction to Metabolism. Metabolism. The sum total of the chemical reactions that occur in a living thing. Chapter 8 Introduction to Metabolism Metabolism The sum total of the chemical reactions that occur in a living thing. Think of metabolism as a road map of thousands of different chemical reactions Enzymes

More information

Chapter 6 # METABOLISM PowerPoint Image Slideshow

Chapter 6 # METABOLISM PowerPoint Image Slideshow COLLEGE BIOLOGY PHYSICS Chapter 6 # METABOLISM Chapter Title PowerPoint Image Slideshow Figure 8.1 Metabolism Figure 6.2 Energy from the sun. Plants photosynthesis Herbivores eat those plants Carnivores

More information

Chapter 5. Energy Flow in the Life of a Cell

Chapter 5. Energy Flow in the Life of a Cell Chapter 5 Energy Flow in the Life of a Cell Including some materials from lectures by Gregory Ahearn University of North Florida Ammended by John Crocker Copyright 2009 Pearson Education, Inc.. Review

More information

Chapter 6~ An Introduction to Metabolism

Chapter 6~ An Introduction to Metabolism Chapter 6~ An Introduction to Metabolism Metabolism/Bioenergetics Metabolism: The totality of an organism s chemical processes; managing the material and energy resources of the cell Catabolic pathways:

More information

Chapter 6 An Introduction to Metabolism

Chapter 6 An Introduction to Metabolism Chapter 6 An Introduction to Metabolism Ruey-Hua Lee ( 李瑞花 ) Institute of Tropical Plant Sciences E-mail: shanhua@mail.ncku.edu.tw Tel: 06-5050635 x 3030 Overview: The Energy of Life The living cell is

More information

Metabolism, Energy and Life

Metabolism, Energy and Life BSC 2010 - Exam I Lectures and Text ages I. Intro to Biology (2-29) II. Chemistry of Life Chemistry review (30-46) Water (47-57) Carbon (58-67) Macromolecules (68-91) III. Cells and Membranes Cell structure

More information

The Energy of Life The living cell is a miniature factory where thousands of reactions occur; it converts energy in many ways.

The Energy of Life The living cell is a miniature factory where thousands of reactions occur; it converts energy in many ways. Course No: BNG2003 Credits: 3.00 General Biology 5. An Introduction in to Cell Metabolism The Energy of Life The living cell is a miniature factory where thousands of reactions occur; it converts energy

More information

Activity: Identifying forms of energy

Activity: Identifying forms of energy Activity: Identifying forms of energy INTRODUCTION TO METABOLISM Metabolism Metabolism is the sum of all chemical reactions in an organism Metabolic pathway begins with a specific molecule and ends with

More information

Outline. Metabolism: Energy and Enzymes. Forms of Energy. Chapter 6

Outline. Metabolism: Energy and Enzymes. Forms of Energy. Chapter 6 Metabolism: Energy and Enzymes Chapter 6 Forms of Energy Outline Laws of Thermodynamics Metabolic Reactions ATP Metabolic Pathways Energy of Activation Enzymes Photosynthesis Cellular Respiration 1 2 Forms

More information

Chapter 5 Metabolism: Energy & Enzymes

Chapter 5 Metabolism: Energy & Enzymes Energy Energy is the capacity to do work Kinetic energy Energy of motion Potential energy Stored energy What do you use for energy? Where do you think the energy is stored these molecules? The BONDS! Every

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism Lecture Outline Overview: The Energy of Life Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics The totality

More information

Big Idea #2. Energy. Types of Potential Energy. Kinetic Energy. Chemical Potential Energy. Metabolism

Big Idea #2. Energy. Types of Potential Energy. Kinetic Energy. Chemical Potential Energy. Metabolism Big Idea #2 Biological Systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis Life runs on chemical reactions rearranging atoms transforming

More information

Biology Kevin Dees. Chapter 8 Introduction to Metabolism

Biology Kevin Dees. Chapter 8 Introduction to Metabolism Chapter 8 Introduction to Metabolism Defined as the sum total of the chemical reactions that occur in a living thing. Think of metabolism as a road map of thousands of different chemical reactions regulate

More information

Metabolism. AP Biology Chapter 8

Metabolism. AP Biology Chapter 8 Metabolism AP Biology Chapter 8 Energy Energy management Bioenergetics is the study of how organisms manage their energy resources. Energy is the capacity to do work. Energy exists in various forms Cells

More information

Ch. 8 Metabolism and Energy BIOL 222

Ch. 8 Metabolism and Energy BIOL 222 Ch. 8 Metabolism and Energy BIOL 222 Metabolism Metabolism The totality of an organism s chemical reac:ons Sum of anabolism and catabolism emergent property of life that arises from interac:ons between

More information

An introduction to metabolism

An introduction to metabolism An introduction to metabolism The living cell is (a miniature chemical factory) where thousands of reactions occur; which Make the cell extracts energy and applies energy to perform work. Some organisms

More information

1. Metabolism is the total of all the chemical processes that occur in an organism.

1. Metabolism is the total of all the chemical processes that occur in an organism. ENERGY AND METABOLISM A. ENERGY 1. Metabolism is the total of all the chemical processes that occur in an organism. a. Catabolism is the process of converting complex to simple or simpler molecules with

More information

AN INTRODUCTION TO METABOLISM. Metabolism, Energy, and Life

AN INTRODUCTION TO METABOLISM. Metabolism, Energy, and Life AN INTRODUCTION TO METABOLISM Metabolism, Energy, and Life 1. The chemistry of life is organized into metabolic pathways 2. Organisms transform energy 3. The energy transformations of life are subject

More information

Chapter 5. Directions and Rates of Biochemical Processes

Chapter 5. Directions and Rates of Biochemical Processes Chapter 5 Directions and Rates of Biochemical Processes Key Questions What factors determine which way a reaction will go? What factors determine the rate of a chemical reaction? How do enzymes work? How

More information

I. Flow of Energy in Living Things II. Laws of Thermodynamics & Free Energy III. Activation Energy IV. Enzymes V. Reaction Coupling VI.

I. Flow of Energy in Living Things II. Laws of Thermodynamics & Free Energy III. Activation Energy IV. Enzymes V. Reaction Coupling VI. Chapter 6 Energy & Metabolism I. Flow of Energy in Living Things II. Laws of Thermodynamics & Free Energy III. Activation Energy IV. Enzymes V. Reaction Coupling VI. Metabolism I. Flow of Energy in Living

More information

Enzymes are macromolecules (proteins) that act as a catalyst

Enzymes are macromolecules (proteins) that act as a catalyst Chapter 8.4 Enzymes Enzymes speed up metabolic reactions by lowering energy barriers Even though a reaction is spontaneous (exergonic) it may be incredibly slow Enzymes cause hydrolysis to occur at a faster

More information

2. The study of is the study of behavior (capture, storage, usage) of energy in living systems.

2. The study of is the study of behavior (capture, storage, usage) of energy in living systems. Cell Metabolism 1. Each of the significant properties of a cell, its growth, reproduction, and responsiveness to its environment requires. 2. The study of is the study of behavior (capture, storage, usage)

More information

Activating Strategy. AP Lesson #10. EQ: What is metabolism and what role does energy play in metabolism? How does energy move through an environment?

Activating Strategy. AP Lesson #10. EQ: What is metabolism and what role does energy play in metabolism? How does energy move through an environment? Activating Strategy Belief or Disbelief 1. 1 st Law of thermodynamics states that energy can be created and destroyed. 2. Anabolic reactions are reactions that break bonds between molecules. 3. Exergonic

More information

Without Energy, There Is No Life

Without Energy, There Is No Life Without Energy, There Is No Life 1. The chemistry of life is organized into metabolic pathways What is metabolism?? Metabolic pathways alter molecules in a series of steps, sometimes occurring in a cycle.

More information

Pathways that Harvest and Store Chemical Energy

Pathways that Harvest and Store Chemical Energy 6 Pathways that Harvest and Store Chemical Energy Energy is stored in chemical bonds and can be released and transformed by metabolic pathways. Chemical energy available to do work is termed free energy

More information

3.1 Metabolism and Energy

3.1 Metabolism and Energy 3.1 Metabolism and Energy Metabolism All of the chemical reactions in a cell To transform matter and energy Step-by-step sequences metabolic pathways Metabolic Pathways Anabolic reactions Build large molecules

More information

2054, Chap. 8, page 1

2054, Chap. 8, page 1 2054, Chap. 8, page 1 I. Metabolism: Energetics, Enzymes, and Regulation (Chapter 8) A. Energetics and work 1. overview a. energy = ability to do work (1) chemical, transport, mechanical (2) ultimate source

More information

Ch. 3 Metabolism and Enzymes

Ch. 3 Metabolism and Enzymes Ch. 3 Metabolism and Enzymes Originally prepared by Kim B. Foglia. Revised and adapted by Nhan A. Pham Flow of energy through life Life is built on chemical reactions that enable energy to flow through

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Chapter 6: Energy and Metabolism

Chapter 6: Energy and Metabolism Chapter 6: Energy and Metabolism Student: 1. Oxidation and reduction reactions are chemical processes that result in a gain or loss in A) atoms. B) neutrons. C) electrons. D) molecules. E) protons. 2.

More information

Lecture Series 9 Cellular Pathways That Harvest Chemical Energy

Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Reading Assignments Review Chapter 3 Energy, Catalysis, & Biosynthesis Read Chapter 13 How Cells obtain Energy from Food Read Chapter 14

More information

Ch 4: Cellular Metabolism, Part 1

Ch 4: Cellular Metabolism, Part 1 Developed by John Gallagher, MS, DVM Ch 4: Cellular Metabolism, Part 1 Energy as it relates to Biology Energy for synthesis and movement Energy transformation Enzymes and how they speed reactions Metabolism

More information

Lecture #8 9/21/01 Dr. Hirsh

Lecture #8 9/21/01 Dr. Hirsh Lecture #8 9/21/01 Dr. Hirsh Types of Energy Kinetic = energy of motion - force x distance Potential = stored energy In bonds, concentration gradients, electrical potential gradients, torsional tension

More information

BIOLOGY. An Introduction to Metabolism CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. An Introduction to Metabolism CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 8 An Introduction to Metabolism Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick 2014 Pearson Education, Inc.

More information

(kilo ) or heat energy (kilo ) C. Organisms carry out conversions between potential energy and kinetic energy 1. Potential energy is energy;

(kilo ) or heat energy (kilo ) C. Organisms carry out conversions between potential energy and kinetic energy 1. Potential energy is energy; I. Biological work requires energy A. Energy is the to do work B. Energy is expressed in units of work (kilo ) or heat energy (kilo ) C. Organisms carry out conversions between potential energy and kinetic

More information

Chapter 5 Ground Rules of Metabolism Sections 1-5

Chapter 5 Ground Rules of Metabolism Sections 1-5 Chapter 5 Ground Rules of Metabolism Sections 1-5 5.1 A Toast to Alcohol Dehydrogenase In the liver, the enzyme alcohol dehydrogenase breaks down toxic ethanol to acetaldehyde, an organic molecule even

More information

ATP ATP. The energy needs of life. Living economy. Where do we get the energy from? 9/11/2015. Making energy! Organisms are endergonic systems

ATP ATP. The energy needs of life. Living economy. Where do we get the energy from? 9/11/2015. Making energy! Organisms are endergonic systems Making energy! ATP The energy needs of life rganisms are endergonic systems What do we need energy for? synthesis building biomolecules reproduction movement active transport temperature regulation 2007-2008

More information

Chapter 8: Energy and Metabolism

Chapter 8: Energy and Metabolism Chapter 8: Energy and Metabolism Why do organisms need energy? How do organisms manage their energy needs? Defining terms and issues: energy and thermodynamics metabolic reactions and energy transfers

More information

Unit 7 Part I: Introductions to Biochemistry

Unit 7 Part I: Introductions to Biochemistry Unit 7 Part I: Introductions to Biochemistry Chemical Reactions, Enzymes and ATP 19-Mar-14 Averett 1 Chemical Reactions Chemical Reactions Process by which one set of chemicals is changed into another

More information

Notice that this is an open system!

Notice that this is an open system! Thinking About Energy and Enzymes Case Study: Frank Frank s aldehyde dehydrogenase (ALDH) enzyme has a substitution at position 487. He has the amino acid lysine at this position instead of glutamic acid.

More information

AP Biology Thermodyamics

AP Biology Thermodyamics AP Biology Thermodyamics Introduction to Thermodynamics The living cell is a chemical industry in miniature The totality of an organism s chemical reaction is called metabolism Metabolism involves managing

More information

Biological Chemistry and Metabolic Pathways

Biological Chemistry and Metabolic Pathways Biological Chemistry and Metabolic Pathways 1. Reaction a. Thermodynamics b. Kinetics 2. Enzyme a. Structure and Function b. Regulation of Activity c. Kinetics d. Inhibition 3. Metabolic Pathways a. REDOX

More information

Metabolism: Energy and Enzymes. February 24 th, 2012

Metabolism: Energy and Enzymes. February 24 th, 2012 Metabolism: Energy and Enzymes February 24 th, 2012 1 Outline Forms of Energy Laws of Thermodynamics Metabolic Reactions ATP Metabolic Pathways Energy of Activation Enzymes Photosynthesis Cellular Respiration

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism Lecture Outline Overview: The Energy of Life Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics. The totality

More information

Energy and Cells. Appendix 1. The two primary energy transformations in plants are photosynthesis and respiration.

Energy and Cells. Appendix 1. The two primary energy transformations in plants are photosynthesis and respiration. Energy and Cells Appendix 1 Energy transformations play a key role in all physical and chemical processes that occur in plants. Energy by itself is insufficient to drive plant growth and development. Enzymes

More information

Life Requires FREE ENERGY!

Life Requires FREE ENERGY! Life Requires FREE ENERGY! Ok, so Growth, reproduction and homeostasis of living systems requires free energy To be alive/stay living, you need to use energy. Duh But really, why is energy so important?

More information

What Is Energy? Energy is the capacity to do work. First Law of Thermodynamics. Types of energy

What Is Energy? Energy is the capacity to do work. First Law of Thermodynamics. Types of energy What Is Energy? Energy is the capacity to do work. Synthesizing molecules Moving objects Generating heat and light Types of Kinetic: of movement otential: stored First Law of Thermodynamics Energy cannot

More information

Chapter 8. An Introduction to Metabolism

Chapter 8. An Introduction to Metabolism Chapter 8 An Introduction to Metabolism Overview: The Energy of Life Thousands of reactions occur within the microscopic space of a living cell. Small molecules are assembled into polymers, which are later

More information

Chapter Cells and the Flow of Energy A. Forms of Energy 1. Energy is capacity to do work; cells continually use energy to develop, grow,

Chapter Cells and the Flow of Energy A. Forms of Energy 1. Energy is capacity to do work; cells continually use energy to develop, grow, Chapter 6 6.1 Cells and the Flow of Energy A. Forms of Energy 1. Energy is capacity to do work; cells continually use energy to develop, grow, repair, reproduce, etc. 2. Kinetic energy is energy of motion;

More information

1. Enzymes speed up chemical reactions by reducing how much energy they need

1. Enzymes speed up chemical reactions by reducing how much energy they need 1. Enzymes speed up chemical reactions by reducing how much energy they need Let s define catalyst. Enzyme?? Their name ends in what??? Catabolic?? Anabolic?? Catabolic rxns are exergonic (what in the

More information

Metabolism, Energy and Life - 1

Metabolism, Energy and Life - 1 Metabolism, Energy and Life - 1 Thousands of chemical reactions occur in our cells and tissues to keep us alive (and hopefully healthy). Monomers are assembled into the macromolecules we need for cell

More information

Energy Flow in Cells - 1

Energy Flow in Cells - 1 Energy Flow in Cells - 1 Thousands of chemical reactions occur in our cells and tissues to keep us alive (and hopefully healthy). We have discussed some of the molecules of living organisms (carbohydrates,

More information

AP Biology. Metabolism & Enzymes

AP Biology. Metabolism & Enzymes Metabolism & Enzymes From food webs to the life of a cell energy energy energy Flow of energy through life: Life is built on chemical reactions transforming energy from one form to another organic molecules

More information