Three different fusions led to three basic ideas: 1) If one fuses a cell in mitosis with a cell in any other stage of the cell cycle, the chromosomes

Size: px
Start display at page:

Download "Three different fusions led to three basic ideas: 1) If one fuses a cell in mitosis with a cell in any other stage of the cell cycle, the chromosomes"

Transcription

1 Section Notes The cell division cycle presents an interesting system to study because growth and division must be carefully coordinated. For many cells it is important that it reaches the correct size before divinding, otherwise cells can become too large or too small after repeated divisions. Also, it is important to ensure that chromosomes are fully replicated before segregation to prevent chromosome breakage or mis- segregation. And lastly, cells must maintain a certain growth and division rate or they can proliferate out of control as in cancer. These are just a few of the types of problems the cell cycle must solve. The basic cell cycle can be divided into distinct steps where one step must finish before the next begins. These transitions are coordianted and controlled. The figure below outlines the cell cycle steps as they are often divided. G1 is where growth after division occurs and the transition from G1 to S is one place where growth and divison can be regulated. S phase is where DNA replication occurs and then there is a G2 phase of more growth before mitosis is triggered. When trying to understand a process such as the cell cycle, it is important to decide what types of questions you are interested in answering. In lecture this was described as the level of abstraction. You could take a big picture approach where you try to understand the basic rules that govern a process and general requirements that must be met before steps can occur. Or you can zoom in to the molecular level and try to understand specifically which molecules trigger certain changes and how they are regulated. Each level of abstraction can help contribute to understanding a problem and it is not necessary to understand the zoomed in level before tackling the big picture. For the cell cycle, an early set of cell fusion experiments revealed some basic rules for the cell cycle. The experiment involved fusing cells at different stages of the cell cycle together and seeing what happens to the chromosomes.

2 Three different fusions led to three basic ideas: 1) If one fuses a cell in mitosis with a cell in any other stage of the cell cycle, the chromosomes from the non- mitosis cell replicate and enter mitosis. This indicates that mitosis dominates. 2) If ones fuses a G1 cell with a cell in S phase, the G1 nucleus also enters S phase. This indicates that there is some sort of signal present that can trigger DNA replication. 3) However, fusing an S phase cell with a G2 cell does not induce the G2 nucleus to synthesize its DNA again. This suggests that the cell has a mechanism for determining that the DNA has already been synthesized and there are ways to keep the cell from re- copying it s DNA. When addressing any scientific question, it is important to determine what type of system you want to study. Oftentimes it is helpful to study specialized cells because there aren t as many extraneous things to obstruct what you want to study. For example, eggs are specialized to divide rapidly and the cell cycle is simplified to S and M, or replication and division. Xenopus eggs are a particularly good system because they are large and fertilized externally, thus easy to access. Fully grown oocytes are arrested until they receive a signal (progesterone) that triggers the divisions associated with meiosis I and II. After meiosis II, the cells arrest again until fertilization after which the cells begin to divide without any growth in between the divisions, resulting in small cells after each round.

3 The cell fusion experiments suggested that there is a mitosis promoting factor (MPF) that can trigger mitosis in cells. There are pulses in the levels of MPF that correlate with each entry into mitosis and the reduction in MPF levels seems to regulate the exit from mitosis. Experiments also showed that MPF pulses do not actually depend on the DNA at all as the eggs still show pulses of MPF even after the removal of the nucleus. This suggests that the pulses are not dependent on new DNA transcription since they occur for many cycles even in the absence of the DNA. Even though the DNA is not needed for these pulses, it is known that protein synthesis is required for embryonic mitoses. This is possible in the absence if DNA because of maternal mrnas that are deposited in the egg. An experiment involving sea urchin eggs eventually revealed the peptide responsible for the oscillations. Because maternal proteins are also deposited in an egg, it can be difficult to distinguish proteins that are newly synthesized from those

4 that are maternal. In order to tell them apart, one must label (usually with radioactive methionine) new proteins. If you add 35 S- methionine to the eggs after they have been isolated and fertilized, any newly synthesized proteins will contain 35 S, which can be detected later. Then at different times points (to see what proteins are present at different points in the cell cycle), you remove samples and disrupt the egg membranes with SDS. This releases the proteins which you can then run on an SDS- PAGE gel which separates them purely based on molecular weight. The gel will show you all of the proteins present in the egg, both newly synthesized and maternal, so you then expose it to film which can detect only the radioactive proteins. This experiment revealed a protein that was synthesized and then degraded as the cells progressed through the cycle. Called cyclin, the levels of this protein peak at mitosis and subsequent degradation triggers the transition to interphase. At this point, the hypothesis was that cyclin synthesis drives cells into mitosis and its destruction pushes them out. An experiment with frog egg cytoplasm shows that cyclin is indeed the protein responsible for this transition and that it is the only factor required. This entire cycle of mitosis and interphase can be replicated in a test tube with cytoplasm removed from frog eggs. After removal, you treat the cytoplasm with RNase which destroys any existing mrnas present. Since there is also no DNA present, there is no way for new protein synthesis. You then block the RNase and add in fresh cyclin mrna. Since it is the mrna present, you know that any protein synthesized will be cyclin. You can then watch and see if the cytoplasm generates cycles of interphase and mitosis, which it does. This shows that cyclin is sufficient to trigger this cycle.

5 Once there was a basic understanding of the cell cycle at a high level of abstraction, scientists began to zoom in and look at the molecular level. They wanted to understand the genes responsible for cell cycle control and how they relate to each other. To do this, one uses genetics through the isolation of mutants that exhibit a phenotype of interest. Again, it is important to choose the organism you which to study carefully. In this case, scientists chose yeast because they have well established genetic tools, can replicate sexually or asexually, and also replicate quickly. It can be difficult to study essential genes because, by definition, the cells are dead/non- functional if you remove their function through mutation. One way to tackle this problem is to use temperature sensitive mutants, which means that the cells containing the mutation in the essential gene can grow at one temperature (permissive temp), but will express the phenotype if you switch them to a different temperature. Often the permissive temperature is cooler (such as 20 C) and the restrictive temperature is 37 C though this does not necessarily have to be the case. You find these conditional mutants through a process known as replica plating. You mutagenize the cells (induce mutations with UV radiation or a chemical) and then plate them at 20 C where all of the cells should grow even if they have a temperature sensitive mutation. You then transfer some cells from each colony using velvet to a new plate, maintaining spatial orientation. This just allows you to know which colony corresponds to which on the two plates. You then grow the new plate at the restrictive temperature of 37 C. Most of the colonies from the 20 C plate will also grow at 37 C because they are not temperature sensitive. Any colonies that contain temperature sensitive mutations though will not be present on the 37 C plate. Since these are the mutants you are interested in, you save them from the 20 C plate and discard the rest. Most of the temperature sensitive mutants isolated will have mutations in genes unrelated to the cell cycle, so how do you find the ones you are interested in? You

6 can take populations of cells, both wild type and mutant and when you grow them at the permissive temperature and look at them under the microscope, they will be at all different stages of the cell cycle. When you move the wild type cells to the higher temperature, they are unaffected and will still contain cells at all different stages of the cell cycle. The same thing will occur for any mutants that have mutations in genes unrelated to the cell cycle. However, cell cycle mutants will arrest at a certain stage of the cell cycle when shifted to the restrictive temperature. Each mutant may arrest at a different stage depending on what the mutated gene regulates, but you can identify interesting genes by finding the mutants that have cell cycle arrest at the higher temperature. In this case, there were 148 cdc mutants identified and they affected a total of 32 different genes. The number of genes is lower because you can have different mutations in the same gene. By making double mutants (through mating) and analyzing the results, you can reveal a logic map of the cell cycle. Certain processes must finish before the next step can begin (finish replication and spindle body duplication before mitosis) and some parts don t depend on others (mitosis and DNA replication occur independent of budding or cytokinesis). Haploid yeast can remain haploid and reproduce indefinitely, but they also can mate with yeast of the opposite mating type (a and α) whereby the two cells fuse their nuclei creating a diploid. If you mate cells with two different temperature sensitive mutations, you have a diploid with both mutations. In the diploid stage, you can determine if mutations are recessive or dominant because the cell has one copy of the wild type gene and one with the mutation. Through starvation, you can trigger the diploid cells to sporulate. The products of sporulation are four haploid cells and they are equivalent to the products of meiosis in animals (ex. sperm). There are several combinations of ways the mutations can be transferred to the haploid spores (think meiosis). In some instances, you can have a spore that has received both temperature sensitive mutations. Since it is haploid, both mutations will be expressed and you can investigate the interaction between the two genes.

7 Studying the cdc mutants revealed a logic map of how the different steps of the cell cycle interact and depend on each other (shown below). This map shows that budding, DNA replication, and spindle body duplication are all independent of each other. Meaning that if you have a mutation (ex: cdc24 ) that blocks bud formation, you can still get DNA replication. Mitosis though depends on the successful completion of both DNA synthesis and spindle body duplication, but not budding. So a mutation in cdc7 that blocks DNA replication would result in the cell failing to pass through a checkpoint (in this case at the G2 stage) and thus will not enter mitosis. Early in the cell cycle, there are multiple pathways a yeast cell can take: commit to replicating DNA and entering mitosis, mating or sporulating and arresting due to starvation. If a cell starts to replicate its DNA and enter another round of the cell cycle, it is committed to finishing that round of division. This point where the cell has choices is considered the start point of the cell cycle. One mutant discovered in the screen, cdc28, can block all early cell cycle events (no replication, budding or spindle body duplication).

8 Combining the results obtained from the earlier experiments with frog embryos and the genetic crosses in yeast gives a molecular picture of the feedback loop that generates the cyclin oscillation responsible for entry to and exit from mitosis (shown below). In this scenario, cyclin is continuously produced at a constant rate. Initially, after mitosis, cyclin levels are low and as cyclin is produced it is complexed with Cdk1 to form an active kinase (a protein that can phosphorylate other proteins, altering their activity). Because the activity of Wee1 is very high at this point, almost all of the Cyclin:Cdk1 complex is phosphorylated by Wee1 which inactivates it. As the cyclin levels rise, the amounts of Cyclin:Cdk1 (active) and Cyclin:Cdk1:P (inactive) also rise. Even though the ratio of inactive to active complex is very high, the overall levels of active complex are increasing due to the increasing levels of cyclin. The active Cyclin:Cdk1 complex can inactivate Wee1, halting the inactivation of the Cyclin:Cdk1 complex. It also activates Cdc25 which converts inactive complex into active complex. This creates a powerful positive feedback loop which very quickly shifts the balance towards active Cyclin:Cdk1 complex. This is what triggers mitosis and is associated with increasing cyclin levels. At the same time, the active complex activates the APC complex (through phosphorylation) and this complex, once active, can promote the degredation of cyclin through ubiquitination. Thus the more active complex you have, the more degredation of cyclin you get which then reduces the level of cyclin in the cell and pushes you out of mitosis. Because cyclin is constantly synthesized, the cycle starts again.

9

16 The Cell Cycle. Chapter Outline The Eukaryotic Cell Cycle Regulators of Cell Cycle Progression The Events of M Phase Meiosis and Fertilization

16 The Cell Cycle. Chapter Outline The Eukaryotic Cell Cycle Regulators of Cell Cycle Progression The Events of M Phase Meiosis and Fertilization The Cell Cycle 16 The Cell Cycle Chapter Outline The Eukaryotic Cell Cycle Regulators of Cell Cycle Progression The Events of M Phase Meiosis and Fertilization Introduction Self-reproduction is perhaps

More information

7.06 Problem Set #4, Spring 2005

7.06 Problem Set #4, Spring 2005 7.06 Problem Set #4, Spring 2005 1. You re doing a mutant hunt in S. cerevisiae (budding yeast), looking for temperaturesensitive mutants that are defective in the cell cycle. You discover a mutant strain

More information

Life Sciences 1a: Section 3B. The cell division cycle Objectives Understand the challenges to producing genetically identical daughter cells

Life Sciences 1a: Section 3B. The cell division cycle Objectives Understand the challenges to producing genetically identical daughter cells Life Sciences 1a: Section 3B. The cell division cycle Objectives Understand the challenges to producing genetically identical daughter cells Understand how a simple biochemical oscillator can drive the

More information

Name 8 Cell Cycle and Meiosis Test Date Study Guide You must know: The structure of the replicated chromosome. The stages of mitosis.

Name 8 Cell Cycle and Meiosis Test Date Study Guide You must know: The structure of the replicated chromosome. The stages of mitosis. Name 8 Cell Cycle and Meiosis Test Date Study Guide You must know: The structure of the replicated chromosome. The stages of mitosis. The role of kinases and cyclin in the regulation of the cell cycle.

More information

Science 9 Unit 2 pack: Reproduction

Science 9 Unit 2 pack: Reproduction Science 9 Unit 2 pack: Reproduction Name Ch 4: The Nucleus Ch 5: Mitosis Ch 6: Meiosis Students will develop an understanding of the processes of cell division as they pertain to reproduction. 0 Section

More information

Unit 2: Cellular Chemistry, Structure, and Physiology Module 5: Cellular Reproduction

Unit 2: Cellular Chemistry, Structure, and Physiology Module 5: Cellular Reproduction Unit 2: Cellular Chemistry, Structure, and Physiology Module 5: Cellular Reproduction NC Essential Standard: 1.2.2 Analyze how cells grow and reproduce in terms of interphase, mitosis, and cytokinesis

More information

Lecture Series 5 Cell Cycle & Cell Division

Lecture Series 5 Cell Cycle & Cell Division Lecture Series 5 Cell Cycle & Cell Division Reading Assignments Read Chapter 18 Cell Cycle & Cell Division Read Chapter 19 pages 651-663 663 only (Benefits of Sex & Meiosis sections these are in Chapter

More information

5.1 Cell Division and the Cell Cycle

5.1 Cell Division and the Cell Cycle 5.1 Cell Division and the Cell Cycle Lesson Objectives Contrast cell division in prokaryotes and eukaryotes. Identify the phases of the eukaryotic cell cycle. Explain how the cell cycle is controlled.

More information

True or false? Comprehension Section The nucleolus directs and controls all of the cell s activities.

True or false? Comprehension Section The nucleolus directs and controls all of the cell s activities. Use with textbook pages 131 132. True or false? Comprehension Section 4.1 Read the statements given below. If the statement is true, write T on the line in front of the statement. If it is false, write

More information

Mitosis & Meiosis Practice Test

Mitosis & Meiosis Practice Test Name: DO NOT WRITE ON THIS TEST Class: ALL ID: A Mitosis & Meiosis Practice Test Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make

More information

Unit 6 Test: The Cell Cycle

Unit 6 Test: The Cell Cycle Name Date Class Mrs. Knight Biology EHS Unit 6 Test: The Cell Cycle 1. What are the four main stages of the cell cycle (correct order)? A. G 1, S, G 0, M C. G 2, S, G 1, M B. G 1, S, G 2, M D. M, G 2,

More information

Cell Division: the process of copying and dividing entire cells The cell grows, prepares for division, and then divides to form new daughter cells.

Cell Division: the process of copying and dividing entire cells The cell grows, prepares for division, and then divides to form new daughter cells. Mitosis & Meiosis SC.912.L.16.17 Compare and contrast mitosis and meiosis and relate to the processes of sexual and asexual reproduction and their consequences for genetic variation. 1. Students will describe

More information

Lesson Overview Meiosis

Lesson Overview Meiosis 11.4 THINK ABOUT IT As geneticists in the early 1900s applied Mendel s laws, they wondered where genes might be located. They expected genes to be carried on structures inside the cell, but which structures?

More information

Plant Molecular and Cellular Biology Lecture 8: Mechanisms of Cell Cycle Control and DNA Synthesis Gary Peter

Plant Molecular and Cellular Biology Lecture 8: Mechanisms of Cell Cycle Control and DNA Synthesis Gary Peter Plant Molecular and Cellular Biology Lecture 8: Mechanisms of Cell Cycle Control and DNA Synthesis Gary Peter 9/10/2008 1 Learning Objectives Explain why a cell cycle was selected for during evolution

More information

Essential Knowledge: In eukaryotes, heritable information is passed to the next generation via processes that include the cell cycle and mitosis OR

Essential Knowledge: In eukaryotes, heritable information is passed to the next generation via processes that include the cell cycle and mitosis OR Essential Knowledge: In eukaryotes, heritable information is passed to the next generation via processes that include the cell cycle and mitosis OR meiosis plus fertilization Objective: You will be able

More information

Name Chapter 10: Chromosomes, Mitosis, and Meiosis Mrs. Laux Take home test #7 DUE: MONDAY, NOVEMBER 16, 2009 MULTIPLE CHOICE QUESTIONS

Name Chapter 10: Chromosomes, Mitosis, and Meiosis Mrs. Laux Take home test #7 DUE: MONDAY, NOVEMBER 16, 2009 MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. A bacterial chromosome consists of: A. a linear DNA molecule many times larger than the cell. B. a circular DNA molecule many times larger than the cell. C. a circular DNA

More information

Chapter 4 and Chapter 5. Chapter 5

Chapter 4 and Chapter 5. Chapter 5 Chapter 4 and Chapter 5 Summary Chapter 4 The nucleus controls the functions of life. Chromosomes found within the nucleus contain the genes that store the information to make proteins. (4.1) Genetic information

More information

CHAPTER 12 - THE CELL CYCLE (pgs )

CHAPTER 12 - THE CELL CYCLE (pgs ) CHAPTER 12 - THE CELL CYCLE (pgs. 228-245) CHAPTER SEVEN TARGETS I. Describe the importance of mitosis in single-celled and multi-cellular organisms. II. Explain the organization of DNA molecules and their

More information

Cell division / Asexual reproduction

Cell division / Asexual reproduction Cell division / Asexual reproduction Mitosis produces cells with same information identical daughter cells exact copies clones same amount of DNA same number of chromosomes same genetic information Asexual

More information

3.a.2- Cell Cycle and Meiosis

3.a.2- Cell Cycle and Meiosis Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. 3.a.2- Cell Cycle and Meiosis EU 3.A: Heritable information provides for continuity of life.

More information

Cell Division: the process of copying and dividing entire cells The cell grows, prepares for division, and then divides to form new daughter cells.

Cell Division: the process of copying and dividing entire cells The cell grows, prepares for division, and then divides to form new daughter cells. Mitosis & Meiosis SC.912.L.16.17 Compare and contrast mitosis and meiosis and relate to the processes of sexual and asexual reproduction and their consequences for genetic variation. 1. Students will describe

More information

Reading Assignments. A. Systems of Cell Division. Lecture Series 5 Cell Cycle & Cell Division

Reading Assignments. A. Systems of Cell Division. Lecture Series 5 Cell Cycle & Cell Division Lecture Series 5 Cell Cycle & Cell Division Reading Assignments Read Chapter 18 Cell Cycle & Cell Death Read Chapter 19 Cell Division Read Chapter 20 pages 659-672 672 only (Benefits of Sex & Meiosis sections)

More information

Lecture Series 5 Cell Cycle & Cell Division

Lecture Series 5 Cell Cycle & Cell Division Lecture Series 5 Cell Cycle & Cell Division Reading Assignments Read Chapter 18 Cell Cycle & Cell Death Read Chapter 19 Cell Division Read Chapter 20 pages 659-672 672 only (Benefits of Sex & Meiosis sections)

More information

Cell Growth and Division

Cell Growth and Division Cell Growth and Division Why do cells divide* Life and reproduction require cell division You require constant cell reproduction to live Mitosis: development (a) mitotic cell division (b) mitotic cell

More information

Meiosis. Two distinct divisions, called meiosis I and meiosis II

Meiosis. Two distinct divisions, called meiosis I and meiosis II Meiosis A process in which the number of chromosomes per cell is cut in half through the separation of homologous chromosomes to form gametes, or sex cells Two distinct divisions, called meiosis I and

More information

CELL REPRODUCTION NOTES

CELL REPRODUCTION NOTES CELL REPRODUCTION NOTES CELL GROWTH AND DIVISION The adult human body produces roughly cells every day. WHY DO CELLS REPRODUCE? So that the organism can and As multicellular organisms grow larger, its

More information

Cellular Growth & Reproduction. Biology 1B Ms. Morris

Cellular Growth & Reproduction. Biology 1B Ms. Morris Cellular Growth & Reproduction Biology 1B Ms. Morris Friday, February 7, 2014 Warm Up: Look around at the other people in the classroom. What types of variation (differences) do you see? What similarities

More information

Cell Division and Reproduction

Cell Division and Reproduction Cell Division and Reproduction What do you think this picture shows? If you guessed that it s a picture of two cells, you are right. In fact, the picture shows human cancer cells, and they are nearing

More information

ACCELERATE ITS BIOCHEMICAL PROCESSES WHICH WERE SLOWED DOWN BY MITOSIS. THE LENGTH OF THE G1 PHASE CREATES THE DIFFERENCE BETWEEN FAST DIVIDING

ACCELERATE ITS BIOCHEMICAL PROCESSES WHICH WERE SLOWED DOWN BY MITOSIS. THE LENGTH OF THE G1 PHASE CREATES THE DIFFERENCE BETWEEN FAST DIVIDING CHAPTER 1: OVERVIEW OF THE CELL CYCLE THE THREE STAGES OF INTERPHASE: INTERPHASE BEFORE A CELL CAN ENTER CELL DIVISION, IT NEEDS TO PREPARE ITSELF BY REPLICATING ITS GENETIC INFORMATION AND ALL OF THE

More information

Answer Key. Cell Growth and Division

Answer Key. Cell Growth and Division Cell Growth and Division Answer Key SECTION 1. THE CELL CYCLE Cell Cycle: (1) Gap1 (G 1): cells grow, carry out normal functions, and copy their organelles. (2) Synthesis (S): cells replicate DNA. (3)

More information

A Few Terms: When and where do you want your cells to divide?

A Few Terms: When and where do you want your cells to divide? Today: - Lab 4 Debrief - Mitosis - Lunch -Meiosis Other: Blood Drive Today! TIME: 11:00am 1:00pm + 2:00pm 5:00pm PLACE: Baxter Events Center Thinking About Mitosis When and where do you want your cells

More information

The cell cycle entails an ordered series of macromolecular

The cell cycle entails an ordered series of macromolecular 21 REGULATING THE EUKARYOTIC CELL CYCLE This cultured rat kidney cell in metaphase shows condensed chromosomes (blue), microtubules of the spindle apparatus (red), and the inner nuclear envelope protein

More information

9-4 Meiosis Meiosis. Slide 1 of 35

9-4 Meiosis Meiosis. Slide 1 of 35 9-4 Meiosis 11-4 Meiosis 1 of 35 11-4 Meiosis Each organism must inherit a single copy of every gene from each of its parents. Gametes are formed by a process that separates the two sets of genes so that

More information

11-4 Meiosis Meiosis. Slide 1 of 35. Copyright Pearson Prentice Hall

11-4 Meiosis Meiosis. Slide 1 of 35. Copyright Pearson Prentice Hall 11-4 Meiosis 1 of 35 Each organism must inherit a single copy of every gene from each of its parents. Gametes are formed by a process that separates the two sets of genes so that each gamete ends up with

More information

AP Biology Unit 6 Practice Test 1. A group of cells is assayed for DNA content immediately following mitosis and is found to have an average of 8

AP Biology Unit 6 Practice Test 1. A group of cells is assayed for DNA content immediately following mitosis and is found to have an average of 8 AP Biology Unit 6 Practice Test Name: 1. A group of cells is assayed for DNA content immediately following mitosis and is found to have an average of 8 picograms of DNA per nucleus. How many picograms

More information

Lecture 10: Cyclins, cyclin kinases and cell division

Lecture 10: Cyclins, cyclin kinases and cell division Chem*3560 Lecture 10: Cyclins, cyclin kinases and cell division The eukaryotic cell cycle Actively growing mammalian cells divide roughly every 24 hours, and follow a precise sequence of events know as

More information

Biology Notes 2. Mitosis vs Meiosis

Biology Notes 2. Mitosis vs Meiosis Biology Notes 2 Mitosis vs Meiosis Diagram Booklet Cell Cycle (bottom corner draw cell in interphase) Mitosis Meiosis l Meiosis ll Cell Cycle Interphase Cell spends the majority of its life in this phase

More information

Human biology Laboratory. Cell division. Lecturer Maysam A Mezher

Human biology Laboratory. Cell division. Lecturer Maysam A Mezher Human biology Laboratory Cell division Lecturer Maysam A Mezher CHROMOSOME STRUCTURE 1. During nuclear division, the DNA (as chromatin) in a Eukaryotic cell's nucleus is coiled into very tight compact

More information

Topic 8 Mitosis & Meiosis Ch.12 & 13. The Eukaryotic Genome. The Eukaryotic Genome. The Eukaryotic Genome

Topic 8 Mitosis & Meiosis Ch.12 & 13. The Eukaryotic Genome. The Eukaryotic Genome. The Eukaryotic Genome Topic 8 Mitosis & Meiosis Ch.12 & 13 The Eukaryotic Genome pp. 244-245,268-269 Genome All of the genes in a cell. Eukaryotic cells contain their DNA in long linear pieces. In prokaryotic cells, there is

More information

Cellular Reproduction

Cellular Reproduction Cellular Reproduction Ratio of Surface Area to Volume As the cell grows, its volume increases much more rapidly than the surface area. The cell might have difficulty supplying nutrients and expelling enough

More information

Bio 102 Practice Problems Cell Cycle and Cell Division

Bio 102 Practice Problems Cell Cycle and Cell Division Bio 102 Practice Problems Cell Cycle and Cell Division Multiple choice: Unless otherwise directed, circle the one best answer: 1. Which one of the following events does NOT occur during prophase of mitosis?

More information

Lesson Overview 11.4 Meiosis

Lesson Overview 11.4 Meiosis Lesson Overview 11.4 Meiosis THINK ABOUT IT As geneticists in the early 1900s applied Mendel s laws, they wondered where genes might be located. They expected genes to be carried on structures inside the

More information

Mitosis and Meiosis. 2. The distribution of chromosomes in one type of cell division is shown in the diagram below.

Mitosis and Meiosis. 2. The distribution of chromosomes in one type of cell division is shown in the diagram below. Name: Date: 1. Jack bought a small turtle. Three months later, the turtle had grown to twice its original size. Which of the following statements best describes why Jack s turtle got bigger? A. Parts of

More information

Biology: Life on Earth

Biology: Life on Earth Biology: Life on Earth Eighth Edition Lecture for Chapter 11 The Continuity of Life: Cellular Reproduction Cellular Reproduction Intracellular activity between one cell division to the next is the cell

More information

5.3 Reproduction and Meiosis

5.3 Reproduction and Meiosis 5.3 Reproduction and Meiosis Lesson Objectives Compare and contrast asexual and sexual reproduction. Give an overview of sexual reproduction, and outline the phases of meiosis. Explain why sexual reproduction

More information

Mitosis & Meiosis. PPT Questions. 4. Why must each new cell get a complete copy of the original cell s DNA?

Mitosis & Meiosis. PPT Questions. 4. Why must each new cell get a complete copy of the original cell s DNA? 1. From where do new cells arise? Mitosis & Meiosis PPT Questions 2. Why does the body constantly make new cells? 3. Is cell division the same in all cells? Explain. 4. Why must each new cell get a complete

More information

biology Slide 1 of 35 End Show Copyright Pearson Prentice Hall

biology Slide 1 of 35 End Show Copyright Pearson Prentice Hall biology 1 of 35 Do Now: Turn in mitosis worksheet Write down your homework http://www.richannel.org/collection s/2013/chromosome#/chromosome -2 http://www.richannel.org/collection s/2013/chromosome#/chromosome

More information

Meiosis and Sexual Reproduction. Chapter 9

Meiosis and Sexual Reproduction. Chapter 9 Meiosis and Sexual Reproduction Chapter 9 9.1 Genes and Alleles Genes Sequences of DNA that encode heritable traits Alleles Slightly different forms of the same gene Each specifies a different version

More information

Honors Biology Test Chapter 8 Mitosis and Meiosis

Honors Biology Test Chapter 8 Mitosis and Meiosis Honors Biology Test Chapter 8 Mitosis and Meiosis 1. In mitosis, if a parent cell has 16 chromosomes, each daughter cell will have how many chromosomes? a. 64 b. 32 c. 16 d. 8 e. 4 2. Chromatids that are

More information

Lecture #13 10/3 Dr. Wormington

Lecture #13 10/3 Dr. Wormington Lecture #13 10/3 Dr. Wormington The Molecular "Logic" of the Cell Cycle Recap 1. Cdks generally present throughout cell cycle but are inactive w/o cyclin subunits. 2. Cyclin subunits synthesized in discrete

More information

THINK ABOUT IT. Lesson Overview. Meiosis. As geneticists in the early 1900s applied Mendel s laws, they wondered where genes might be located.

THINK ABOUT IT. Lesson Overview. Meiosis. As geneticists in the early 1900s applied Mendel s laws, they wondered where genes might be located. Notes THINK ABOUT IT As geneticists in the early 1900s applied Mendel s laws, they wondered where genes might be located. They expected genes to be carried on structures inside the cell, but which structures?

More information

Meiosis and Life Cycles - 1

Meiosis and Life Cycles - 1 Meiosis and Life Cycles - 1 We have just finished looking at the process of mitosis, a process that produces cells genetically identical to the original cell. Mitosis ensures that each cell of an organism

More information

CHAPTER 15 LECTURE SLIDES

CHAPTER 15 LECTURE SLIDES CHAPTER 15 LECTURE SLIDES Prepared by Brenda Leady University of Toledo To run the animations you must be in Slideshow View. Use the buttons on the animation to play, pause, and turn audio/text on or off.

More information

Cell Growth, Division, and Reproduction

Cell Growth, Division, and Reproduction Cell Growth, Division, and Reproduction Human Development: Mitosis and Meiosis Division of the Cell Before a cell grows too large, it divides into two new daughter cells in a process called cell division.

More information

THE CELL CYCLE & MITOSIS. Asexual Reproduction: Production of genetically identical offspring from a single parent.

THE CELL CYCLE & MITOSIS. Asexual Reproduction: Production of genetically identical offspring from a single parent. THE CELL CYCLE & MITOSIS Asexual Reproduction: Production of genetically identical offspring from a single parent. Sexual Reproduction: The fusion of two separate parent cells that produce offspring with

More information

Notes Chapter 4 Cell Reproduction. That cell divided and becomes two, two become, four become eight, and so on.

Notes Chapter 4 Cell Reproduction. That cell divided and becomes two, two become, four become eight, and so on. Notes Chapter 4 Cell Reproduction 4.1 Cell Division and Mitosis Many organisms start as. That cell divided and becomes two, two become, four become eight, and so on. Many-celled organisms, including you,

More information

Parents can produce many types of offspring. Families will have resemblances, but no two are exactly alike. Why is that?

Parents can produce many types of offspring. Families will have resemblances, but no two are exactly alike. Why is that? Parents can produce many types of offspring Families will have resemblances, but no two are exactly alike. Why is that? Meiosis and Genetic Linkage Objectives Recognize the significance of meiosis to sexual

More information

Cell Division Review Game Page 1

Cell Division Review Game Page 1 ell ivision Review Game Page 1 1 "Mitosis" is the biological name for the process of cell division. True False 2 In what phase of mitosis does the spindle begin to form? prophase anaphase telophase 3 Which

More information

Anaphase, Telophase. Animal cells divide their cytoplasm by forming? Cleavage furrow. Bacteria, Paramecium, Amoeba, etc. reproduce by...

Anaphase, Telophase. Animal cells divide their cytoplasm by forming? Cleavage furrow. Bacteria, Paramecium, Amoeba, etc. reproduce by... The 4 phases of mitosis Animal cells divide their cytoplasm by forming? Bacteria, Paramecium, Amoeba, etc. reproduce by... Cell which after division is identical to the original is called a Prophase, Metaphase,

More information

Cell Reproduction Review

Cell Reproduction Review Name Date Period Cell Reproduction Review Explain what is occurring in each part of the cell cycle --- G 0, G1, S, G2, and M. 1 CELL DIVISION Label all parts of each cell in the cell cycle and explain

More information

Chapter 5: Mitosis is the Basis of Asexual Reproduction

Chapter 5: Mitosis is the Basis of Asexual Reproduction Chapter 5: Mitosis is the Basis of Asexual Reproduction Section 5.1: The Cell Cycle and Mitosis Living things must be able to reproduce. For unicellular organisms, cell reproduction is necessary to maintain

More information

CELL REPRODUCTION VOCABULARY- CHAPTER 8 (33 words)

CELL REPRODUCTION VOCABULARY- CHAPTER 8 (33 words) CELL REPRODUCTION- CHAPTER 8 CELL REPRODUCTION VOCABULARY- CHAPTER 8 (33 words) 1. Chromosome 2. histone 3. chromatid 4. Centromere 5. chromatin 6. autosome 7. Sex chromosome 8. homologous chromosome 9.

More information

11-4 Meiosis Chromosome Number Slide 1 of 35

11-4 Meiosis Chromosome Number Slide 1 of 35 Each organism must inherit a single copy of every gene from each of its parents. Gametes are formed by a process that separates the two sets of genes so that each gamete ends up with just one set. Chromosome

More information

The Cell Cycle & Cell Division

The Cell Cycle & Cell Division The Cell Cycle & Cell Division http://www.nobel.se/medicine/laureates/2001/press.html The Cell Cycle Animated Cycle http://www.cellsalive.com/cell_cycle.htm MITOSIS Mitosis The process of cell division

More information

Cell Cycle (mitosis and meiosis) Test Review

Cell Cycle (mitosis and meiosis) Test Review Cell Cycle (mitosis and meiosis) Test Review Name: Chapter 10 1. What problems are caused when a cell becomes too large? When a cell becomes too large the cell is strained and has a hard time moving enough

More information

Lesson Overview Meiosis

Lesson Overview Meiosis 11.4 As geneticists in the early 1900s applied Mendel s laws, they wondered where genes might be located. They expected genes to be carried on structures inside the cell, but which structures? What cellular

More information

Chapter 11: The Continuity of Life: Cellular Reproduction. What is Cellular Reproduction?

Chapter 11: The Continuity of Life: Cellular Reproduction. What is Cellular Reproduction? Chapter 11: The Continuity of Life: Cellular Reproduction What is Cellular Reproduction? Answer: The division of a parent cell into two daughter cells Requirements of Each Daughter Cell: 1) Necessary genomic

More information

CELL REPRODUCTION. Unit 20 LEARNING OBJECTIVES:

CELL REPRODUCTION. Unit 20 LEARNING OBJECTIVES: Unit 20 CELL REPRODUCTION LEARNING OBJECTIVES: 1. Be able to distinguish the differences between mitotic and meiotic cell division. 2. Learn the role that both mitotic and meiotic types of cell division

More information

Mitosis and Meiosis for AP Biology

Mitosis and Meiosis for AP Biology Mitosis and Meiosis for AP Biology by Mark Anestis Practice problems for these concepts can be found at : Cell Division Review Questions for AP Biology Mitosis During mitosis, the fourth stage of the cell

More information

Biology Unit 6 Chromosomes and Mitosis

Biology Unit 6 Chromosomes and Mitosis Biology Unit 6 Chromosomes and Mitosis 6:1 Chromosomes DNA GENES CHROMATIN/CHROMOSOMES CHROMOSOMES/CHROMATIN are made of units called GENES. GENES are made of a compound called deoxyribonucleic acid or

More information

GENERAL SAFETY: Follow your teacher s directions. Do not work in the laboratory without your teacher s supervision.

GENERAL SAFETY: Follow your teacher s directions. Do not work in the laboratory without your teacher s supervision. Name: Bio AP Lab: Cell Division B: Mitosis & Meiosis (Modified from AP Biology Investigative Labs) BACKGROUND: One of the characteristics of living things is the ability to replicate and pass on genetic

More information

Cell Division. Genetic info must be copied. Each cell gets a complete copy of that info. It occurs in two main stages:

Cell Division. Genetic info must be copied. Each cell gets a complete copy of that info. It occurs in two main stages: 10-2 Cell Division Key Questions: 1)What is the role of chromosomes in cell division? 2) What are the main events of the cell cycle? 3) What events occur during each of the four phases of mitosis? 4) How

More information

Notes Chapter 4 Cell Reproduction. That cell divided and becomes two, two become four, four become eight, and so on.

Notes Chapter 4 Cell Reproduction. That cell divided and becomes two, two become four, four become eight, and so on. 4.1 Cell Division and Mitosis Many organisms start as one cell. Notes Chapter 4 Cell Reproduction That cell divided and becomes two, two become four, four become eight, and so on. Many-celled organisms,

More information

5.1. Cells have distinct phases of growth, reproduction, and normal functions. G 1. Cell Growth and Division CHAPTER 5 THE CELL CYCLE KEY CONCEPT

5.1. Cells have distinct phases of growth, reproduction, and normal functions. G 1. Cell Growth and Division CHAPTER 5 THE CELL CYCLE KEY CONCEPT SECTION 5.1 THE CELL CYCLE Study Guide KEY CONCEPT Cells have distinct phases of growth, reproduction, and normal functions. VOCABULARY cell cycle mitosis cytokinesis The cell cycle has four main stages.

More information

Study Guide A. Answer Key. Cell Growth and Division. SECTION 1. THE CELL CYCLE 1. a; d; b; c 2. gaps 3. c and d 4. c 5. b and d 6.

Study Guide A. Answer Key. Cell Growth and Division. SECTION 1. THE CELL CYCLE 1. a; d; b; c 2. gaps 3. c and d 4. c 5. b and d 6. Cell Growth and Division Answer Key SECTION 1. THE CELL CYCLE 1. a; d; b; c 2. gaps 3. c and d 4. c 5. b and d 6. G 1 7. G 0 8. c 9. faster; too large 10. volume 11. a and b 12. repeating pattern or repetition

More information

Cell Division. Mitosis

Cell Division. Mitosis Cell division consists of two phases, nuclear division followed by cytokinesis. Nuclear division divides the genetic material in the nucleus, while cytokinesis divides the cytoplasm. There are two kinds

More information

Chapter 12: The Cell Cycle. 2. What is the meaning of genome? Compare your genome to that of a prokaryotic cell.

Chapter 12: The Cell Cycle. 2. What is the meaning of genome? Compare your genome to that of a prokaryotic cell. Name: AP Bio Chapter 12: The Cell Cycle 12.1 Cell division results in genetically identical daughter cells 1. What is meant by the cell cycle? 2. What is the meaning of genome? Compare your genome to that

More information

Getting In and Out of Mitosis*

Getting In and Out of Mitosis* Open Access NOBEL LAUREATE PERSPECTIVE Rambam Maimonides Medical Journal Getting In and Out of Mitosis* Tim Hunt, Ph.D., F.R.S. Nobel Laureate in Physiology or Medicine, 2001; Cancer Research UK, London

More information

Cell Division and Reproduction Worksheets

Cell Division and Reproduction Worksheets Cell Division and Reproduction Worksheets CK12 Editor Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other

More information

Chapter 6: Cell Growth and Reproduction Lesson 6.1: The Cell Cycle and Mitosis

Chapter 6: Cell Growth and Reproduction Lesson 6.1: The Cell Cycle and Mitosis Chapter 6: Cell Growth and Reproduction Lesson 6.1: The Cell Cycle and Mitosis No matter the type of cell, all cells come from preexisting cells through the process of cell division. The cell may be the

More information

2:1 Chromosomes DNA Genes Chromatin Chromosomes CHROMATIN: nuclear material in non-dividing cell, composed of DNA/protein in thin uncoiled strands

2:1 Chromosomes DNA Genes Chromatin Chromosomes CHROMATIN: nuclear material in non-dividing cell, composed of DNA/protein in thin uncoiled strands Human Heredity Chapter 2 Chromosomes, Mitosis, and Meiosis 2:1 Chromosomes DNA Genes Chromatin Chromosomes CHROMATIN: nuclear material in non-dividing cell, composed of DNA/protein in thin uncoiled strands

More information

Chapter 12: The Cell Cycle

Chapter 12: The Cell Cycle Name Period Chapter 12: The Cell Cycle Overview: 1. What are the three key roles of cell division? State each role, and give an example. Key Role Example 2. What is meant by the cell cycle? Concept 12.1

More information

Meiosis. What is meiosis? How is it different from mitosis? Stages Genetic Variation

Meiosis. What is meiosis? How is it different from mitosis? Stages Genetic Variation Meiosis What is meiosis? How is it different from mitosis? Stages Genetic Variation Reproduction Asexual reproduction resulting from mitosis (or a similar process) that involves only one parent; the offspring

More information

Learning Objectives LO 3.7 The student can make predictions about natural phenomena occurring during the cell cycle. [See SP 6.4]

Learning Objectives LO 3.7 The student can make predictions about natural phenomena occurring during the cell cycle. [See SP 6.4] Big Ideas 3.A.2: In eukaryotes, heritable information is passed to the next generation via processes that include the cell cycle and mitosis or meiosis plus fertilization. CHAPTER 13 MEIOSIS AND SEXUAL

More information

MITOSIS AND MEIOSIS STUDY GUIDE CREATED BY : Alistaire Rauch (Mr. Galego s Class) Definition of Mitosis and Meiosis (Basic):

MITOSIS AND MEIOSIS STUDY GUIDE CREATED BY : Alistaire Rauch (Mr. Galego s Class) Definition of Mitosis and Meiosis (Basic): MITOSIS AND MEIOSIS STUDY GUIDE CREATED BY : Alistaire Rauch (Mr. Galego s Class) Definition of Mitosis and Meiosis (Basic): Mitosis and Meiosis are basically cycles of cells but they are different in

More information

Foldable. You need 6 pieces of printer paper. Stagger the pages about 1cm (width of pinky finger) DO NOT make the tabs too large!!!!!

Foldable. You need 6 pieces of printer paper. Stagger the pages about 1cm (width of pinky finger) DO NOT make the tabs too large!!!!! Meiosis Notes Foldable You need 6 pieces of printer paper Stagger the pages about 1cm (width of pinky finger) DO NOT make the tabs too large!!!!! Fold the stack of pages to make the foldable as diagramed

More information

Sexual Reproduction. The two parent cells needed for sexual reproduction are called gametes. They are formed during a process known as meiosis.

Sexual Reproduction. The two parent cells needed for sexual reproduction are called gametes. They are formed during a process known as meiosis. Sexual Reproduction Recall that asexual reproduction involves only one parent cell. This parent cell divides to produce two daughter cells that are genetically identical to the parent. Sexual reproduction,

More information

Chapter 6: Mendel and Meiosis Meiosis Gamete Production Lecture Guide

Chapter 6: Mendel and Meiosis Meiosis Gamete Production Lecture Guide Chromosomes and Meiosis Specialized cells in the body Chromosomes 2 types: Chapter 6: Mendel and Meiosis Meiosis Gamete Production Lecture Guide (body cells) Makes up your DNA in your body cells passed

More information

CELL CYCLE AND DIFFERENTIATION

CELL CYCLE AND DIFFERENTIATION CELL CYCLE AND DIFFERENTIATION Dewajani Purnomosari Department of Histology and Cell Biology Faculty of Medicine Universitas Gadjah Mada d.purnomosari@ugm.ac.id WHAT IS CELL CYCLE? 09/12/14 d.purnomosari@ugm.ac.id

More information

Cell Reproduction Page #1. Warm Up. Where are your genes located?

Cell Reproduction Page #1. Warm Up. Where are your genes located? Cell Reproduction Page #1 Warm Up Where are your genes located? http://people.na.infn.it/~nicodem/research/cell_genes.jpg DURING MOST OF THE CELL S LIFE, DNA FORMS A TANGLED MASS CALLED CHROMATIN. CHROMATIN

More information

The Cell Cycle/Le Cycle cellulaire SMC6052/BIM6028 IRCM

The Cell Cycle/Le Cycle cellulaire SMC6052/BIM6028 IRCM The Cell Cycle/Le Cycle cellulaire SMC6052/BIM6028 IRCM 1 février 2018 Benjamin H. Kwok, Ph.D. Chercheur principal, Institut de recherche en immunologie et en cancérologie Professeur sous octroi agrégé,

More information

Name: Period: EOC Review Part F Outline

Name: Period: EOC Review Part F Outline Name: Period: EOC Review Part F Outline Mitosis and Meiosis SC.912.L.16.17 Compare and contrast mitosis and meiosis and relate to the processes of sexual and asexual reproduction and their consequences

More information

Key Concepts. n Cell Cycle. n Interphase. n Mitosis. n Cytokinesis

Key Concepts. n Cell Cycle. n Interphase. n Mitosis. n Cytokinesis The Cell Cycle B-2.6: Summarize the characteristics of the cell cycle: interphase (G 1, S, G 2 ); the phases of mitosis (prophase, metaphase, anaphase, telophase); and plant and animal cytokinesis. Key

More information

#2 How do organisms grow?

#2 How do organisms grow? #2 How do organisms grow? Why doesn t a cell keep growing larger and larger? The larger a cell becomes the more demands the cell places on its DNA. The cell also has trouble moving enough nutrients and

More information

BIOLOGY 111. CHAPTER 5: Chromosomes and Inheritance

BIOLOGY 111. CHAPTER 5: Chromosomes and Inheritance BIOLOGY 111 CHAPTER 5: Chromosomes and Inheritance Chromosomes and Inheritance Learning Outcomes 5.1 Differentiate between sexual and asexual reproduction in terms of the genetic variation of the offspring.

More information

Meiosis. Two distinct divisions, called meiosis I and meiosis II

Meiosis. Two distinct divisions, called meiosis I and meiosis II Meiosis A process in which the number of chromosomes per cell is cut in half through the separation of homologous chromosomes to form gametes, or sex cells Two distinct divisions, called meiosis I and

More information

Cell Division: the process of copying and dividing entire cells The cell grows, prepares for division, and then divides to form new daughter cells.

Cell Division: the process of copying and dividing entire cells The cell grows, prepares for division, and then divides to form new daughter cells. Mitosis & Meiosis SC.912.L.16.17 Compare and contrast mitosis and meiosis and relate to the processes of sexual and asexual reproduction and their consequences for genetic variation. 1. Students will describe

More information

Meiosis. Bởi: OpenStaxCollege

Meiosis. Bởi: OpenStaxCollege Meiosis Bởi: OpenStaxCollege Sexual reproduction requires fertilization, a union of two cells from two individual organisms. If those two cells each contain one set of chromosomes, then the resulting cell

More information

What is mitosis? -Process in which a cell divides, creating TWO complete Sets of the original cell with the same EXACT genetic Material (DNA)

What is mitosis? -Process in which a cell divides, creating TWO complete Sets of the original cell with the same EXACT genetic Material (DNA) What is mitosis? -Process in which a cell divides, creating TWO complete Sets of the original cell with the same EXACT genetic Material (DNA) Cell Division Produces CLONES with the same # of chromosomes

More information

Why do we have to cut our hair, nails, and lawn all the time?

Why do we have to cut our hair, nails, and lawn all the time? Chapter 5 Cell Reproduction Mitosis Think about this Why do we have to cut our hair, nails, and lawn all the time? EQ: Why is cell division necessary for the growth & development of living organisms? Section

More information