Resting-state fmri and DTI

Size: px
Start display at page:

Download "Resting-state fmri and DTI"

Transcription

1 Resting-state fmri and DTI David C. Zhu, Ph.D. Associate Professor of Radiology and Psychology Cognitive Imaging Research Center Michigan State University, East Lansing, Michigan, USA

2 Facts The rain is only aout 2% of total ody mass. But it consumes aout 20% of the ody s total energy at rest. Engaging in active tasks increases neuronal metaolism less than 5%. What is this energy at rest consumed y? The on-going spontaneous neuronal activity

3 Huettel SA, Song AW, McCarthy G. Functional Magnetic Resonance Imaging.

4 Oxygenated and deoxygenated hemogloin (H)

5 Two Main Paths of BOLD (Blood Oxygen Level-Dependent) fmri First 1-2 seconds Later seconds Stimulation Neuronal Activity CMR glucose CMR O2 Cereral Blood Flow (CBF) Blood Oxygen Level Blood Oxygen Level Deoxygenated hemogloin: paramagnetic Blood Magnetic Susceptiility Effects Oxygenated hemogloin: diamagnetic Blood Magnetic Susceptiility Effects T 2 * decay T 2 * decay fmri Image Signal Intensity fmri Image Signal Intensity

6 Resting-state fmri ased functional connectivity analyses Assumptions Strong BOLD fmri temporal correlation Strong neuronal synchronous activity Strong functional connectivity Same/intact network A B C D E

7 Two popular methods of processing for resting-state fmri 1. Correlation analysis 2. Independent component analysis (ICA)

8 Seed-ased correlation analysis seed EPI S measure =S intrinsic +S random

9 Time courses of correlated and uncorrelated regions Seed pc/rsp Left et MeFG Right MTG Left IPL

10 Resting-state tt fmri pre-processing steps 1. Slice-timing and motion correction. 2. Remove aseline, linear and quadratic system trends. 3. Spatial lurring. 4. Remove Nuisance signals of (a) Gloal mean () CSF (c) White matter 5. Band-pass filtering: Hz 0.08 Hz

11 Seed Region #1: pc/rsp (posterior cingulate/retrosplenial cortex) Group Integration (17 sujects): Whole-rain corrected P < Mean structural t normalized connectivity distriution > pc/rsp MeFC/ACC (Medial Frontal Cortex/ Anterior Cingulate Cortex) Zhu DC, Majumdar S. Integration of resting-state fmri and diffusion-weighted MRI connectivity analyses of the human rain: limitations and improvement. J Neuroimaging Mar-Apr;24(2):

12 Seed Region #2 : Right SPL (superior parietal a loule) Group Integration (17 sujects): Whole-rain corrected tdp P < Mean structural normalized connectivity distriution > Right SPL Left SPL

13 Seed Region #3: Left Cuneus Group Integration (17 sujects): Whole-rain corrected P < Mean structural normalized connectivity distriution > Left cuneus Right cuneus

14 Independent Component Analysis

15

16 ICA example results with MELODIC in FSL IC 1: Default Mode Network

17 IC 25: Visual Network

18 Medial temporal loe (MeTL) Default-Mode Network Medial prefrontal cortex (MePFC) (hippocampus, parahippocampal gyrus, (Medial frontal cortex, anterior cingulate entorhinal gyrus) cortex, superior frontal cortex) (memory processing) (facilitation) Structural connectivity (diffusion MRI fier tracking) Posterior cingulate cortex/retrosplenial cortex (PCC/RSC) (Integration) temporoparietal junction cortices (TPJC): (angular gyrus, superior/middle temporal gyrus, parietal loule, supramarginal gyrus) Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The rain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124, 1-38.

19 Alzheimer s disease and amnestic mild cognitive impairment weaken connections within the default-mode network Zhu DC, Majumdar S, Korolev IO, Berger KL, Bozoki AC. Alzheimer s disease and amnestic mild cognitive impairment weaken connections within the default-mode network: a multi-modal imaging study. J Alzheimer's Dis. 2013;34(4):

20 7 minute resting-state fmri EPI scan (relax and eyes open in dim-light condition): 38 contiguous 3-mm axial slices, 22 cm 22 cm FOV, matrix size, 27.7 ms TE, 2500 ms TR, 80 flip angle, 164 time points.

21 Seed location Normal Amnestic mild cognitive impairment Alzheimer s disease GM seed L TPJC R cingulum R MeFG (a) WM seed R TPJC R isthmus of cingulate GM seed R TPJC L cingulum L MeFG () WM seed L TPJC Li isthmus of cingulate Thresholds: whole-rain corrected p for functional connectivity and mean connectivity distriution of > 1000 for structural connectivity. Green: functional connection only. Orange: structural connection only. Red: coexistence of oth connections. GM: gray matter. WM: white matter. R = right. L = left. MeFG = medial frontal gyrus. TPJC = temporoparietal junction cortices.

22 Functional connectivity with seed region at the right isthmus of cingulate cortex (Normal > AD) PET R STG/MTG R precuneus L precuneus L AG LMTG R AG/IPL L CG (a) R TPJC () PCC/RSC (c) L TPJC (d) PET: NC > AD

23 Structural connectivity with the seed region in the associated white matter of the right isthmus of cingulate cortex NC > AD NC > amci

24 A potential iomarker in sports-related related concussion: rain functional connectivity alteration of the default-mode network measured with longitudinal resting-state state fmri over 30 days. Zhu DC, Covassin T, Nogle S, Doyle S, Russell D, Pearson RL, Zhu DC, Covassin T, Nogle S, Doyle S, Russell D, Pearson RL, Monroe J, Liszewski CM, DeMarco JK, Kaufman DI. J Neurotrauma Mar 1;32(5):

25 The DMN Network R IPL/AG L PCC R PCC L IPL/AG L SFG R SFG R ACC/MeFC L ACC/MeFC L Hippo

26 MN Con nnectivit ty (R) Ov verall D Mean default-mode network connectivity (7 concussed, 11 control) Day 1 Day 7 Day 30 Concussed Control

27 DMN after concussion (n = 7) (Node # 1 = left PCC, 2 = left ACC/MeFC, 3 = left SFG, 4 = left IPL/AG, 5 = left hippocampus, 6 = right PCC, 7 = right ACC/MeFC, 8 = right SFG, 9 = right IPL/AG, 10 = right hippocampus) Node Mean correlation R on Day 1 Node Node Mean correlation R on Day Mean correlation R on Day 30 R value Node t test of Day 1 vs. Day 7 Node t test of Day 7 vs. Day 30 Node t test of Day 1 vs. Day 30 p value

28 DMN of control sujects (n=11) (Node # 1 = left PCC, 2 = left ACC/MeFC, 3 = left SFG, 4 = left IPL/AG, 5 = left hippocampus, 6 = right PCC, 7 = right ACC/MeFC, 8 = right SFG, 9 = right IPL/AG, 10 = right hippocampus) Node Mean correlation R on Day 1 Node Node Mean correlation R on Day Mean correlation R on Day 30 R value Node t test of Day 1 vs. Day 7 Node t test of Day 7 vs. Day 30 Node t test of Day 1 vs. Day 30 p value

29 The mean functional connectivity to left isthmus of cingulate cortex (ICC) of the concussed group (correlation R > 0.25, n = 7) Day 1 () ANOVA: Day 1 vs. Day 7 (n = 8) Day 7 Day 30 (c) ANOVA: Day 1 vs. Day 30 (n = 7)

30 Case study The functional and structural connectivity to left isthmus of cingulate cortex of a concussed suject over one month (correlation R > 0.4 and connectivity distriution > 1000). Seed regions Day 1 Day 7 Day 30 structural functional Green: functional seed Orange: structural seed Red: overlap regions. The aove functional connectivity it reduction from Day 1 to Day 7 was seen in 8 of our 9 concussed cases.

31 Resting-state fmri ased functional connectivity analyses Assumptions? Strong BOLD fmri temporal correlation Vascular confound Strong neuronal synchronous activity it Why? Strong functional connectivity Same/intact network The underlying cellular and molecular ases A B C D E

32 Introduction to Diffusion Tensor Imaging (DTI)

33 Fick s Law descries particle movement Net flux (mole mm 2 /s): J = D ΔC C Δx Diffusion coefficient D is in mm 2 /sec ΔC Δx = concentration gradient in mole/mm 4 High concentration J Low concentration

34 Figure 5.20 Diffusion

35 Stejskal-Tanner Diffusion-weighted Sequence G

36 Isotropic Diffusion Signal attenuation due to diffusion coefficient D A = S S 0 = e D Where = commonly called factor, which characterizes the gradient pulses (timing, amplitude, shape) = clinical practice, 1000 s/mm 2

37 Stejskal-Tanner Diffusion-weighted Sequence G = γ G δ ( Δ δ ) δ

38 Anisotropic Case (for example, axons) D D A = e D D D yz yy yx xz xy xx = zz zy zx yz yy yx xz xy xx D D D D D D D D D D = diffusion tensor = zz zy zx zz zy zx ) ( D D D D D D ) ( yz yz xz xz xy xy zz zz yy yy xx xx D D D D D D e A =

39 Diagnolization DE = EΛ E = eigen vector (unit vector) Λ = eigen value = λ λ λ 3 z x x y Laoratory frame y λ λ 2 λ 3 z λ 1 Diffusion ellipsoid

40 Mean diffusivity = λ mean = (λ 1 + λ 2 +λ 3 )/3 The level of tissue constraint Fractional lanisotropy = FA = 2 2 3[( λ 1 λ mean) + ( λ 2 λ mean) + ( λ 3 λ ( λ + λ + λ ) mean ) 2 ] the directionality of diffusion Axon fier integrity Mean diffusivity map FA map

41 Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human rain. Radiology Dec;201(3):

42 Fier Tracking

43 Deterministic approach: Answer Yes/no. Software: (1) DTI Studio (2) MedINRIA Proailistic approach: How proale two voxels/regions connected together Software: FSL

44 Proailistic tracking at Right Fornix

45 Data Acquisition GE 3T Signa HDx MR scanner with an 8-channel head coil. 12 minute and 6 second DTI scan (full-rain coverage): Dual spin echo EPI sequence, mm axial slices, 22 cm 22 cm FOV, , 2 NEX, 75 ms TE, 13.7 s TR, parallel imaging acceleration factor = 2, = 1000 s/mm 2, 25 directions

46 DTI Analysis with the Diffusion Toolox (FDT v2.0) in FSL software package Eddy-current distortion and motion correction. Applied Bayesian Estimation of Diffusion Parameters Otained using Sampling Techniques with the crossing fiers (n = 2) modeled d (BEDPOSTX). Applied proailistic tractography (PROBTRACKX) to each seed region to calculate the corresponding connectivity distriutions. The connectivity distriutions were then normalized y the total numer of generated tracts from the seed region. Behrens TE, Berg HJ, Jadi S, Rushworth MF, Woolrich MW. NeuroImage 2007, 34:

47 Integration Resting-state fmri allows the examination of rain function connectivity (1). Diffusion tensor imaging (DTI) fier tracking allows the evaluation of structural connection etween cortical regions (2). 1 F MD R i hl ME N t R N i Fox MD, Raichle ME. Nat Rev Neurosci. 2007; 8: Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chariat H. J Magn Reson Imaging. 2001;13:

48 Left PCC Left ACC Test oth functional and structural connectivity.

49 Case study The functional and structural connectivity to left isthmus of cingulate cortex of a concussed suject over one month (correlation R > 0.4 and connectivity distriution > 1000). Seed regions Day 1 Day 7 Day 30 structural functional Green: functional seed Orange: structural seed Red: overlap regions. The aove functional connectivity it reduction from Day 1 to Day 7 was seen in 8 of our 9 concussed cases.

50 Volumetric Analysis and Segmentation with FreeSurfer

51 Time point 0 Time point 1 % change Left-Putamen Left-Pallidum

52

53 Region Time 0 (cc) Time 1 (cc) % change lh_postcentral_volume lh_precentral_volume lh_p precuneus_ volume

54

Diffusion Weighted MRI. Zanqi Liang & Hendrik Poernama

Diffusion Weighted MRI. Zanqi Liang & Hendrik Poernama Diffusion Weighted MRI Zanqi Liang & Hendrik Poernama 1 Outline MRI Quick Review What is Diffusion MRI? Detecting Diffusion Stroke and Tumor Detection Presenting Diffusion Anisotropy and Diffusion Tensor

More information

Diffusion Tensor Imaging (DTI): An overview of key concepts

Diffusion Tensor Imaging (DTI): An overview of key concepts Diffusion Tensor Imaging (DTI): An overview of key concepts (Supplemental material for presentation) Prepared by: Nadia Barakat BMB 601 Chris Conklin Thursday, April 8 th 2010 Diffusion Concept [1,2]:

More information

One patient and one control were unable to complete the TOMM. An additional HC had abnormally low scores

One patient and one control were unable to complete the TOMM. An additional HC had abnormally low scores Ling et al. 2013-1 Supplemental Methods Participants One patient and one control were unable to complete the TOMM. An additional HC had abnormally low scores on the TOMM only (T-score < 0), and was not

More information

Quantitative Susceptibility Mapping and Susceptibility Tensor Imaging. Magnetization and Susceptibility

Quantitative Susceptibility Mapping and Susceptibility Tensor Imaging. Magnetization and Susceptibility Quantitative Susceptibility Mapping and Susceptibility Tensor Imaging 1, Chunlei Liu, Ph.D. 1 Brain Imaging and Analysis Center Department of Radiology Duke University, Durham, NC, USA 1 Magnetization

More information

Basic MRI physics and Functional MRI

Basic MRI physics and Functional MRI Basic MRI physics and Functional MRI Gregory R. Lee, Ph.D Assistant Professor, Department of Radiology June 24, 2013 Pediatric Neuroimaging Research Consortium Objectives Neuroimaging Overview MR Physics

More information

Tracking whole-brain connectivity dynamics in the resting-state

Tracking whole-brain connectivity dynamics in the resting-state Tracking whole-brain connectivity dynamics in the resting-state Supplementary Table. Peak Coordinates of ICNs ICN regions BA t max Peak (mm) (continued) BA t max Peak (mm) X Y Z X Y Z Subcortical networks

More information

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam (closed book, 1 sheets of notes double sided allowed, no calculator or other electronic devices allowed) 1. Ultrasound Physics (15 pt) A) (9

More information

醫用磁振學 MRM 擴散張量影像 擴散張量影像原理. 本週課程內容 MR Diffusion 擴散張量造影原理 擴散張量造影應用 盧家鋒助理教授國立陽明大學生物醫學影像暨放射科學系

醫用磁振學 MRM 擴散張量影像 擴散張量影像原理. 本週課程內容   MR Diffusion 擴散張量造影原理 擴散張量造影應用 盧家鋒助理教授國立陽明大學生物醫學影像暨放射科學系 本週課程內容 http://www.ym.edu.tw/~cflu 擴散張量造影原理 擴散張量造影應用 醫用磁振學 MRM 擴散張量影像 盧家鋒助理教授國立陽明大學生物醫學影像暨放射科學系 alvin4016@ym.edu.tw MRI The Basics (3rd edition) Chapter 22: Echo Planar Imaging MRI in Practice, (4th edition)

More information

Diffusion Tensor Imaging (DTI) e Neurite Orientation Dispersion and Density Imaging (NODDI)

Diffusion Tensor Imaging (DTI) e Neurite Orientation Dispersion and Density Imaging (NODDI) Diffusion Tensor Imaging (DTI) e Neurite Orientation Dispersion and Density Imaging (NODDI) Claudia AM Gandini Wheeler-Kingshott, PhD Prof. of MRI Physics Overview Diffusion and microstructure NODDI theoretical

More information

Bayesian multi-tensor diffusion MRI and tractography

Bayesian multi-tensor diffusion MRI and tractography Bayesian multi-tensor diffusion MRI and tractography Diwei Zhou 1, Ian L. Dryden 1, Alexey Koloydenko 1, & Li Bai 2 1 School of Mathematical Sciences, Univ. of Nottingham 2 School of Computer Science and

More information

Diffusion tensor imaging (DTI):

Diffusion tensor imaging (DTI): Diffusion tensor imaging (DTI): A basic introduction to data acquisition and analysis Matthew Cykowski, MD Postdoctoral fellow Research Imaging Center UTHSCSA Room 2.320 cykowski@uthscsa.edu PART I: Acquiring

More information

Applications of Spin Echo and Gradient Echo: Diffusion and Susceptibility Contrast

Applications of Spin Echo and Gradient Echo: Diffusion and Susceptibility Contrast Applications of Spin Echo and Gradient Echo: Diffusion and Susceptibility Contrast Chunlei Liu, PhD Department of Electrical Engineering & Computer Sciences and Helen Wills Neuroscience Institute University

More information

Diffusion imaging of the brain: technical considerations and practical applications

Diffusion imaging of the brain: technical considerations and practical applications Diffusion imaging of the brain: technical considerations and practical applications David G. Norris FC Donders Centre for Cognitive Neuroimaging Nijmegen Sustaining the physiologist in measuring the atomic

More information

Supplementary Information. Brain networks involved in tactile speed classification of moving dot patterns: the. effects of speed and dot periodicity

Supplementary Information. Brain networks involved in tactile speed classification of moving dot patterns: the. effects of speed and dot periodicity Supplementary Information Brain networks involved in tactile speed classification of moving dot patterns: the effects of speed and dot periodicity Jiajia Yang, Ryo Kitada *, Takanori Kochiyama, Yinghua

More information

Diffusion Imaging II. By: Osama Abdullah

Diffusion Imaging II. By: Osama Abdullah iffusion Imaging II By: Osama Abdullah Review Introduction. What is diffusion? iffusion and signal attenuation. iffusion imaging. How to capture diffusion? iffusion sensitizing gradients. Spin Echo. Gradient

More information

Contrast Mechanisms in MRI. Michael Jay Schillaci

Contrast Mechanisms in MRI. Michael Jay Schillaci Contrast Mechanisms in MRI Michael Jay Schillaci Overview Image Acquisition Basic Pulse Sequences Unwrapping K-Space Image Optimization Contrast Mechanisms Static and Motion Contrasts T1 & T2 Weighting,

More information

Introduction to MRI Acquisition

Introduction to MRI Acquisition Introduction to MRI Acquisition James Meakin FMRIB Physics Group FSL Course, Bristol, September 2012 1 What are we trying to achieve? 2 What are we trying to achieve? Informed decision making: Protocols

More information

Outlines: (June 11, 1996) Instructor:

Outlines: (June 11, 1996) Instructor: Magnetic Resonance Imaging (June 11, 1996) Instructor: Tai-huang Huang Institute of Biomedical Sciences Academia Sinica Tel. (02) 2652-3036; Fax. (02) 2788-7641 E. mail: bmthh@ibms.sinica.edu.tw Reference:

More information

Advanced Topics and Diffusion MRI

Advanced Topics and Diffusion MRI Advanced Topics and Diffusion MRI Slides originally by Karla Miller, FMRIB Centre Modified by Mark Chiew (mark.chiew@ndcn.ox.ac.uk) Slides available at: http://users.fmrib.ox.ac.uk/~mchiew/teaching/ MRI

More information

DIFFUSION MAGNETIC RESONANCE IMAGING

DIFFUSION MAGNETIC RESONANCE IMAGING DIFFUSION MAGNETIC RESONANCE IMAGING from spectroscopy to imaging apparent diffusion coefficient ADC-Map anisotropy diffusion tensor (imaging) DIFFUSION NMR - FROM SPECTROSCOPY TO IMAGING Combining Diffusion

More information

Cortical diffusion imaging

Cortical diffusion imaging Cortical diffusion imaging Alard Roebroeck Maastricht Brain Imaging Center (MBIC) Dept. of Cognitive Neuroscience Faculty of Psychology & Neuroscience Maastricht University Diffusion MRI In vivo & Ex vivo

More information

Basics of Diffusion Tensor Imaging and DtiStudio

Basics of Diffusion Tensor Imaging and DtiStudio Basics of Diffusion Tensor Imaging and DtiStudio DTI Basics 1 DTI reveals White matter anatomy Gray matter White matter DTI uses water diffusion as a probe for white matter anatomy Isotropic diffusion

More information

Diffusion Tensor Imaging tutorial

Diffusion Tensor Imaging tutorial NA-MIC http://na-mic.org Diffusion Tensor Imaging tutorial Sonia Pujol, PhD Surgical Planning Laboratory Harvard University DTI tutorial This tutorial is an introduction to the advanced Diffusion MR capabilities

More information

A Neurosurgeon s Perspectives of Diffusion Tensor Imaging(DTI) Diffusion Tensor MRI (DTI) Background and Relevant Physics.

A Neurosurgeon s Perspectives of Diffusion Tensor Imaging(DTI) Diffusion Tensor MRI (DTI) Background and Relevant Physics. A Neurosurgeon s Perspectives of Diffusion Tensor Imaging(DTI) Kalai Arasu Muthusamy, D.Phil(Oxon) Senior Lecturer & Consultant Neurosurgeon. Division of Neurosurgery. University Malaya Medical Centre.

More information

Introduction to functional MRI in humans. Michael Hallquist University of Pittsburgh

Introduction to functional MRI in humans. Michael Hallquist University of Pittsburgh Introduction to functional MRI in humans Michael Hallquist University of Pittsburgh Goals of human neuroimaging Localization of brain function (mapping) Understanding large-scale functional integration

More information

Imaging Brain Structure and Function

Imaging Brain Structure and Function Imaging Brain Structure and Function Thomas J. Grabowski, Jr., MD Professor, Radiology and Neurology (joint) Director, UW Integrated Brain Imaging Center Director, UW Alzheimer s Disease Research Center

More information

Diffusion MRI. Outline. Biology: The Neuron. Brain connectivity. Biology: Brain Organization. Brain connections and fibers

Diffusion MRI. Outline. Biology: The Neuron. Brain connectivity. Biology: Brain Organization. Brain connections and fibers Outline Diffusion MRI Alfred Anwander Download of Slides: www.cbs.mpg.de/events/ teaching/brainsignals1112 password: mpi-brain CBSWIKI: Cornet/DiffusionMRI Neuroanatomy Diffusion MRI Diffusion Tensor Imaging

More information

Diffusion Tensor Imaging I: The basics. Jennifer Campbell

Diffusion Tensor Imaging I: The basics. Jennifer Campbell Diffusion Tensor Imaging I: The basics Jennifer Campbell Diffusion Tensor Imaging I: The basics Jennifer Campbell Diffusion Imaging MRI: many different sources of contrast T1W T2W PDW Perfusion BOLD DW

More information

Integrative Methods for Functional and Structural Connectivity

Integrative Methods for Functional and Structural Connectivity Integrative Methods for Functional and Structural Connectivity F. DuBois Bowman Department of Biostatistics Columbia University SAMSI Challenges in Functional Connectivity Modeling and Analysis Research

More information

Connectomics analysis and parcellation of the brain based on diffusion-weighted fiber tractography

Connectomics analysis and parcellation of the brain based on diffusion-weighted fiber tractography Connectomics analysis and parcellation of the brain based on diffusion-weighted fiber tractography Alfred Anwander Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany What is the

More information

Quantitative Metrics for White Matter Integrity Based on Diffusion Tensor MRI Data. Stephanie Lee

Quantitative Metrics for White Matter Integrity Based on Diffusion Tensor MRI Data. Stephanie Lee Quantitative Metrics for White Matter Integrity Based on Diffusion Tensor MRI Data Stephanie Lee May 5, 2005 Quantitative Metrics for White Matter Integrity Based on Diffusion Tensor MRI Data ABSTRACT

More information

MRI Physics II: Gradients, Imaging. Douglas C. Noll, Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor

MRI Physics II: Gradients, Imaging. Douglas C. Noll, Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor MRI Physics II: Gradients, Imaging Douglas C., Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor Magnetic Fields in MRI B 0 The main magnetic field. Always on (0.5-7 T) Magnetizes

More information

Outline. Superconducting magnet. Magnetic properties of blood. Physiology BOLD-MRI signal. Magnetic properties of blood

Outline. Superconducting magnet. Magnetic properties of blood. Physiology BOLD-MRI signal. Magnetic properties of blood Magnetic properties of blood Physiology BOLD-MRI signal Aart Nederveen Department of Radiology AMC a.j.nederveen@amc.nl Outline Magnetic properties of blood Moses Blood oxygenation BOLD fmri Superconducting

More information

Field trip: Tuesday, Feb 5th

Field trip: Tuesday, Feb 5th Pulse Sequences Field trip: Tuesday, Feb 5th Hardware tour of VUIIIS Philips 3T Meet here at regular class time (11.15) Complete MRI screening form! Chuck Nockowski Philips Service Engineer Reminder: Project/Presentation

More information

The effect of different number of diffusion gradients on SNR of diffusion tensor-derived measurement maps

The effect of different number of diffusion gradients on SNR of diffusion tensor-derived measurement maps J. Biomedical Science and Engineering, 009,, 96-101 The effect of different number of diffusion gradients on SNR of diffusion tensor-derived measurement maps Na Zhang 1, Zhen-Sheng Deng 1*, Fang Wang 1,

More information

A CENTRAL FRONTIER FOR PHYSICS RESEARCH: THE HUMAN BRAIN STRUCTURE AND FUNCTION

A CENTRAL FRONTIER FOR PHYSICS RESEARCH: THE HUMAN BRAIN STRUCTURE AND FUNCTION XCVI Congresso Nazionale Società Italiana di Fisica Bologna, 20-24 Settembre 2010 A CENTRAL FRONTIER FOR PHYSICS RESEARCH: THE HUMAN BRAIN STRUCTURE AND FUNCTION Bruno Maraviglia Department of Physics,

More information

On Signal to Noise Ratio Tradeoffs in fmri

On Signal to Noise Ratio Tradeoffs in fmri On Signal to Noise Ratio Tradeoffs in fmri G. H. Glover April 11, 1999 This monograph addresses the question of signal to noise ratio (SNR) in fmri scanning, when parameters are changed under conditions

More information

Diffusion-Weighted MRI may be used to measure the apparent diffusion coefficient of water in tissue.

Diffusion-Weighted MRI may be used to measure the apparent diffusion coefficient of water in tissue. Specialty Area: MR Physics for Physicists Speaker: Jennifer A. McNab, Ph.D. Assistant Professor, Radiology, Stanford University () Highlights The Bloch-Torrey equation is a generalization of the Bloch

More information

CIND Pre-Processing Pipeline For Diffusion Tensor Imaging. Overview

CIND Pre-Processing Pipeline For Diffusion Tensor Imaging. Overview CIND Pre-Processing Pipeline For Diffusion Tensor Imaging Overview The preprocessing pipeline of the Center for Imaging of Neurodegenerative Diseases (CIND) prepares diffusion weighted images (DWI) and

More information

Diffusion Tensor Imaging I. Jennifer Campbell

Diffusion Tensor Imaging I. Jennifer Campbell Diffusion Tensor Imaging I Jennifer Campbell Diffusion Imaging Molecular diffusion The diffusion tensor Diffusion weighting in MRI Alternatives to the tensor Overview of applications Diffusion Imaging

More information

Dynamic Causal Modelling for fmri

Dynamic Causal Modelling for fmri Dynamic Causal Modelling for fmri André Marreiros Friday 22 nd Oct. 2 SPM fmri course Wellcome Trust Centre for Neuroimaging London Overview Brain connectivity: types & definitions Anatomical connectivity

More information

Introduction to the Physics of NMR, MRI, BOLD fmri

Introduction to the Physics of NMR, MRI, BOLD fmri Pittsburgh, June 13-17, 2011 Introduction to the Physics of NMR, MRI, BOLD fmri (with an orientation toward the practical aspects of data acquisition) Pittsburgh, June 13-17, 2001 Functional MRI in Clinical

More information

IEICE TRANS. INF. & SYST., VOL.E96 D, NO.6 JUNE

IEICE TRANS. INF. & SYST., VOL.E96 D, NO.6 JUNE 1387 PAPER An Explanation of Signal Changes in DW-fMRI: Monte Carlo Simulation Study of Restricted Diffusion of Water Molecules Using 3D and Two-Compartment Cortical Cell Models Shizue NAGAHARA, a), Student

More information

Effect of Bulk Tissue Motion on Quantitative Perfusion and Diffusion Magnetic Resonance Imaging *

Effect of Bulk Tissue Motion on Quantitative Perfusion and Diffusion Magnetic Resonance Imaging * MAGNETIC RESONANCE IN MEDICINE 19,261-265 (1991) Effect of Bulk Tissue Motion on Quantitative Perfusion and Diffusion Magnetic Resonance Imaging * THOMAS L. CHENEVERT AND JAMES G. PIPE University of Michigan

More information

M R I Physics Course. Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia

M R I Physics Course. Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia M R I Physics Course Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia M R I Physics Course Spin Echo Imaging Hahn Spin Echo

More information

Part III: Sequences and Contrast

Part III: Sequences and Contrast Part III: Sequences and Contrast Contents T1 and T2/T2* Relaxation Contrast of Imaging Sequences T1 weighting T2/T2* weighting Contrast Agents Saturation Inversion Recovery JUST WATER? (i.e., proton density

More information

The Diffusion Tensor Imaging Toolbox

The Diffusion Tensor Imaging Toolbox 7418 The Journal of Neuroscience, May 30, 2012 32(22):7418 7428 Toolbox Editor s Note: Toolboxes are intended to describe and evaluate methods that are becoming widely relevant to the neuroscience community

More information

The Basics of Magnetic Resonance Imaging

The Basics of Magnetic Resonance Imaging The Basics of Magnetic Resonance Imaging Nathalie JUST, PhD nathalie.just@epfl.ch CIBM-AIT, EPFL Course 2013-2014-Chemistry 1 Course 2013-2014-Chemistry 2 MRI: Many different contrasts Proton density T1

More information

Statistical Analysis Aspects of Resting State Functional Connectivity

Statistical Analysis Aspects of Resting State Functional Connectivity Statistical Analysis Aspects of Resting State Functional Connectivity Biswal s result (1995) Correlations between RS Fluctuations of left and right motor areas Why studying resting state? Human Brain =

More information

Diffusion Tensor Imaging in Humans: Practical Implications for Neuroanatomy

Diffusion Tensor Imaging in Humans: Practical Implications for Neuroanatomy Diffusion Tensor Imaging in Humans: Practical Implications for Neuroanatomy Collaborators Center for Morphometric Analysis: Nikos Makris Andy Worth Verne S. Caviness George Papadimitriou MGH-NMR Center

More information

Two-step Anomalous Diffusion Tensor Imaging

Two-step Anomalous Diffusion Tensor Imaging Two-step Anomalous Diffusion Tensor Imain Thomas R. Barrick 1, Matthew G. Hall 2 1 Centre for Stroke and Dementia, Division of Cardiac and Vascular Sciences, St. Geore s University of London, 2 Department

More information

PhD THESIS. prepared at INRIA Sophia Antipolis

PhD THESIS. prepared at INRIA Sophia Antipolis PhD THESIS prepared at INRIA Sophia Antipolis and presented at the University of Nice-Sophia Antipolis Graduate School of Information and Communication Sciences A dissertation submitted in partial satisfaction

More information

RS-fMRI analysis in healthy subjects confirms gender based differences

RS-fMRI analysis in healthy subjects confirms gender based differences RS-fMRI analysis in healthy subjects confirms gender based differences Alberto A. Vergani (aavergani@uninsubria.it) PhD student in Computer Science and Computational Mathematics University of Insubria

More information

Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori

Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori Enseignant-chercheur Equipe IMAGES - Télécom ParisTech pietro.gori@telecom-paristech.fr September 20, 2017 P. Gori BIOMED 20/09/2017 1 / 76

More information

Morphometrics with SPM12

Morphometrics with SPM12 Morphometrics with SPM12 John Ashburner Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK. What kind of differences are we looking for? Usually, we try to localise regions of difference.

More information

Physics of MR Image Acquisition

Physics of MR Image Acquisition Physics of MR Image Acquisition HST-583, Fall 2002 Review: -MRI: Overview - MRI: Spatial Encoding MRI Contrast: Basic sequences - Gradient Echo - Spin Echo - Inversion Recovery : Functional Magnetic Resonance

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Ordinary Least Squares and its applications

Ordinary Least Squares and its applications Ordinary Least Squares and its applications Dr. Mauro Zucchelli University Of Verona December 5, 2016 Dr. Mauro Zucchelli Ordinary Least Squares and its applications December 5, 2016 1 / 48 Contents 1

More information

From Pixels to Brain Networks: Modeling Brain Connectivity and Its Changes in Disease. Polina Golland

From Pixels to Brain Networks: Modeling Brain Connectivity and Its Changes in Disease. Polina Golland From Pixels to Brain Networks: Modeling Brain Connectivity and Its Changes in Disease Polina Golland MIT Computer Science and Artificial Intelligence Laboratory Joint work with Archana Venkataraman C.-F.

More information

Cambridge University Press MRI from A to Z: A Definitive Guide for Medical Professionals Gary Liney Excerpt More information

Cambridge University Press MRI from A to Z: A Definitive Guide for Medical Professionals Gary Liney Excerpt More information Main glossary Aa AB systems Referring to molecules exhibiting multiply split MRS peaks due to spin-spin interactions. In an AB system, the chemical shift between the spins is of similar magnitude to the

More information

Introduction to Biomedical Imaging

Introduction to Biomedical Imaging Alejandro Frangi, PhD Computational Imaging Lab Department of Information & Communication Technology Pompeu Fabra University www.cilab.upf.edu MRI advantages Superior soft-tissue contrast Depends on among

More information

Regularization of Diffusion Tensor Field Using Coupled Robust Anisotropic Diffusion Filters

Regularization of Diffusion Tensor Field Using Coupled Robust Anisotropic Diffusion Filters Regularization of Diffusion Tensor Field Using Coupled Robust Anisotropic Diffusion Filters Songyuan Tang a, Yong Fan a, Hongtu Zhu b, Pew-Thian Yap a Wei Gao a, Weili Lin a, and Dinggang Shen a a Department

More information

Artefact Correction in DTI

Artefact Correction in DTI Artefact Correction in DTI (ACID) Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London Siawoosh Mohammadi Motivation High-end DTI: tractography Potential problems

More information

Tensor Visualization. CSC 7443: Scientific Information Visualization

Tensor Visualization. CSC 7443: Scientific Information Visualization Tensor Visualization Tensor data A tensor is a multivariate quantity Scalar is a tensor of rank zero s = s(x,y,z) Vector is a tensor of rank one v = (v x,v y,v z ) For a symmetric tensor of rank 2, its

More information

III, Diffusion, and Susceptibility. August 25, Departments of Mathematics and Applied Math and Computational Science University of Pennsylvania

III, Diffusion, and Susceptibility. August 25, Departments of Mathematics and Applied Math and Computational Science University of Pennsylvania III,, and Departments of Mathematics and Applied Math and Computational Science University of Pennsylvania August 25, 2010 Copyright Page All material in this lecture, except as noted within the text,

More information

How Many Gradients are Sufficient in High-Angular Resolution Diffusion Imaging (HARDI)?

How Many Gradients are Sufficient in High-Angular Resolution Diffusion Imaging (HARDI)? How Many Gradients are Sufficient in High-Angular Resolution Diffusion Imaging (HARDI)? Liang Zhan 1, Ming-Chang Chiang 1, Alex D. Leow 1, Siwei Zhu 2, Marina Barysheva 1, Arthur W. Toga 1, Katie L. McMahon

More information

MRI in Review: Simple Steps to Cutting Edge Part I

MRI in Review: Simple Steps to Cutting Edge Part I MRI in Review: Simple Steps to Cutting Edge Part I DWI is now 2 years old... Mike Moseley Radiology Stanford DWI, b = 1413 T2wt, 28/16 ASN 21 San Francisco + Disclosures: Funding NINDS, NCRR, NCI 45 minutes

More information

2015 U N I V E R S I T I T E K N O L O G I P E T R O N A S

2015 U N I V E R S I T I T E K N O L O G I P E T R O N A S Multi-Modality based Diagnosis: A way forward by Hafeez Ullah Amin Centre for Intelligent Signal and Imaging Research (CISIR) Department of Electrical & Electronic Engineering 2015 U N I V E R S I T I

More information

Noise considerations in the determination of diffusion tensor anisotropy

Noise considerations in the determination of diffusion tensor anisotropy Magnetic Resonance Imaging () 659 669 Noise considerations in the determination of diffusion tensor anisotropy Stefan Skare a,b, *, Tie-Qiang Li c, Bo Nordell a,b, Martin Ingvar a a MR Center, Karolinska

More information

Improved Correspondence for DTI Population Studies via Unbiased Atlas Building

Improved Correspondence for DTI Population Studies via Unbiased Atlas Building Improved Correspondence for DTI Population Studies via Unbiased Atlas Building Casey Goodlett 1, Brad Davis 1,2, Remi Jean 3, John Gilmore 3, and Guido Gerig 1,3 1 Department of Computer Science, University

More information

From Diffusion Data to Bundle Analysis

From Diffusion Data to Bundle Analysis From Diffusion Data to Bundle Analysis Gabriel Girard gabriel.girard@epfl.ch Computational Brain Connectivity Mapping Juan-les-Pins, France 20 November 2017 Gabriel Girard gabriel.girard@epfl.ch CoBCoM2017

More information

Functional Connectivity and Network Methods

Functional Connectivity and Network Methods 18/Sep/2013" Functional Connectivity and Network Methods with functional magnetic resonance imaging" Enrico Glerean (MSc), Brain & Mind Lab, BECS, Aalto University" www.glerean.com @eglerean becs.aalto.fi/bml

More information

How is it different from conventional MRI? What is MR Spectroscopy? How is it different from conventional MRI? MR Active Nuclei

How is it different from conventional MRI? What is MR Spectroscopy? How is it different from conventional MRI? MR Active Nuclei What is MR Spectroscopy? MR-Spectroscopy (MRS) is a technique to measure the (relative) concentration of certain chemical or biochemical molecules in a target volume. MR-Spectroscopy is an in vivo (in

More information

Tissue Parametric Mapping:

Tissue Parametric Mapping: Tissue Parametric Mapping: Contrast Mechanisms Using SSFP Sequences Jongho Lee Department of Radiology University of Pennsylvania Tissue Parametric Mapping: Contrast Mechanisms Using bssfp Sequences Jongho

More information

Advanced MRI: Diffusion MRI 1: DTI and k-space

Advanced MRI: Diffusion MRI 1: DTI and k-space k y Advanced MRI: Diffusion MRI 1: DTI and k-space k X Eric Sigmund, PhD February 26th, 2013 LECTURE 1 Neuro Diffusion MRI 3-5 m White matter axons Body 15 m Renal medulla Musculoskeletal 50 m Skeletal

More information

Hierarchical Clustering Identifies Hub Nodes in a Model of Resting-State Brain Activity

Hierarchical Clustering Identifies Hub Nodes in a Model of Resting-State Brain Activity WCCI 22 IEEE World Congress on Computational Intelligence June, -5, 22 - Brisbane, Australia IJCNN Hierarchical Clustering Identifies Hub Nodes in a Model of Resting-State Brain Activity Mark Wildie and

More information

Generalizing Diffusion Tensor Model Using Probabilistic Inference in Markov Random Fields

Generalizing Diffusion Tensor Model Using Probabilistic Inference in Markov Random Fields Generalizing Diffusion Tensor Model Using Probabilistic Inference in Markov Random Fields Çağatay Demiralp and David H. Laidlaw Brown University Providence, RI, USA Abstract. We give a proof of concept

More information

NCNC FAU. Modeling the Network Architecture of the Human Brain

NCNC FAU. Modeling the Network Architecture of the Human Brain NCNC 2010 - FAU Modeling the Network Architecture of the Human Brain Olaf Sporns Department of Psychological and Brain Sciences Indiana University, Bloomington, IN 47405 http://www.indiana.edu/~cortex,

More information

Bloch Equations & Relaxation UCLA. Radiology

Bloch Equations & Relaxation UCLA. Radiology Bloch Equations & Relaxation MRI Systems II B1 I 1 I ~B 1 (t) I 6 ~M I I 5 I 4 Lecture # Learning Objectives Distinguish spin, precession, and nutation. Appreciate that any B-field acts on the the spin

More information

First published NMR (MRI) image of the brain: A shadow of the brain

First published NMR (MRI) image of the brain: A shadow of the brain Neuroimaging Structural magnetic resonance imaging measuring volumes of brain and brain regions Functional MRI measuring brain activity during cognitive tasks Diffusion MRI measuring motion of water molecules

More information

BMB 601 MRI. Ari Borthakur, PhD. Assistant Professor, Department of Radiology Associate Director, Center for Magnetic Resonance & Optical Imaging

BMB 601 MRI. Ari Borthakur, PhD. Assistant Professor, Department of Radiology Associate Director, Center for Magnetic Resonance & Optical Imaging BMB 601 MRI Ari Borthakur, PhD Assistant Professor, Department of Radiology Associate Director, Center for Magnetic Resonance & Optical Imaging University of Pennsylvania School of Medicine A brief history

More information

Observation of Microscopic Diffusion Anisotropy in the Spinal Cord Using Double-Pulsed Gradient Spin Echo MRI

Observation of Microscopic Diffusion Anisotropy in the Spinal Cord Using Double-Pulsed Gradient Spin Echo MRI Magnetic Resonance in Medicine 59:803 809 (2008) Observation of Microscopic Diffusion Anisotropy in the Spinal Cord Using Double-Pulsed Gradient Spin Echo MRI M.E. Komlosh, 1 * M.J. Lizak, 2 F. Horkay,

More information

The ASL signal. Parenchy mal signal. Venous signal. Arterial signal. Input Function (Label) Dispersion: (t e -kt ) Relaxation: (e -t/t1a )

The ASL signal. Parenchy mal signal. Venous signal. Arterial signal. Input Function (Label) Dispersion: (t e -kt ) Relaxation: (e -t/t1a ) Lecture Goals Other non-bold techniques (T2 weighted, Mn contrast agents, SSFP, Dynamic Diffusion, ASL) Understand Basic Principles in Spin labeling : spin inversion, flow vs. perfusion ASL variations

More information

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics Magnetic Resonance Imaging Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics pal.e.goa@ntnu.no 1 Why MRI? X-ray/CT: Great for bone structures and high spatial resolution Not so great

More information

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»

More information

Diffusion Magnetic Resonance Imaging Part 1: Theory & Methods

Diffusion Magnetic Resonance Imaging Part 1: Theory & Methods Diffusion Magnetic Resonance Imaging Part 1: Theory & Methods Benjamin M. Ellingson, Ph.D. Assistant Professor of Radiology, Biomedical Physics and Bioengineering Dept. of Radiological Sciences UCLA Neuro-Oncology

More information

Exam 8N080 - Introduction to MRI

Exam 8N080 - Introduction to MRI Exam 8N080 - Introduction to MRI Friday April 10 2015, 18.00-21.00 h For this exam you may use an ordinary calculator (not a graphical one). In total there are 5 assignments and a total of 50 points can

More information

NMR Advanced methodologies to investigate water diffusion in materials and biological systems

NMR Advanced methodologies to investigate water diffusion in materials and biological systems NMR Advanced methodologies to investigate water diffusion in materials and biological systems PhD Candidate _Silvia De Santis PhD Supervisors _dott. Silvia Capuani _prof. Bruno Maraviglia Outlook Introduction:

More information

New Machine Learning Methods for Neuroimaging

New Machine Learning Methods for Neuroimaging New Machine Learning Methods for Neuroimaging Gatsby Computational Neuroscience Unit University College London, UK Dept of Computer Science University of Helsinki, Finland Outline Resting-state networks

More information

腦網路連結分析 A Course of MRI

腦網路連結分析 A Course of MRI 本週課程內容 腦網路連結 (connectivity & network) 結構性與功能性連結關係 (structural/functional connectivity) 腦網路連結分析 A Course of MRI 盧家鋒助理教授國立陽明大學物理治療暨輔助科技學系 alvin01@ym.edu.tw 複雜網路 : 圖學理論 (graph theory) Brain networks Larger

More information

Diffusion tensor imaging: brain pathway reconstruction

Diffusion tensor imaging: brain pathway reconstruction Neda Sepasian, Jan ten Thije Boonkkamp, Anna Vilanova Diffusion tensor imaging: brain pathway reconstruction NAW 5/6 nr. 4 december 205 259 Neda Sepasian Department of Biomedical Engineering Eindhoven

More information

Human Brain Networks. Aivoaakkoset BECS-C3001"

Human Brain Networks. Aivoaakkoset BECS-C3001 Human Brain Networks Aivoaakkoset BECS-C3001" Enrico Glerean (MSc), Brain & Mind Lab, BECS, Aalto University" www.glerean.com @eglerean becs.aalto.fi/bml enrico.glerean@aalto.fi" Why?" 1. WHY BRAIN NETWORKS?"

More information

Modelling temporal structure (in noise and signal)

Modelling temporal structure (in noise and signal) Modelling temporal structure (in noise and signal) Mark Woolrich, Christian Beckmann*, Salima Makni & Steve Smith FMRIB, Oxford *Imperial/FMRIB temporal noise: modelling temporal autocorrelation temporal

More information

Shape Anisotropy: Tensor Distance to Anisotropy Measure

Shape Anisotropy: Tensor Distance to Anisotropy Measure Shape Anisotropy: Tensor Distance to Anisotropy Measure Yonas T. Weldeselassie, Saba El-Hilo and M. Stella Atkins Medical Image Analysis Lab, School of Computing Science, Simon Fraser University ABSTRACT

More information

Introduction to the Course and the Techniques. Jeffry R. Alger, PhD Ahmanson-Lovelace Brain Mapping Center Department of Neurology

Introduction to the Course and the Techniques. Jeffry R. Alger, PhD Ahmanson-Lovelace Brain Mapping Center Department of Neurology Introduction to the Course and the Techniques Jeffry R. Alger, PhD Ahmanson-Lovelace Brain Mapping Center Department of Neurology (jralger@ucla.edu) CTSI Neuroimaging April 2013 Rationale for the Course

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Application of diffusion MRI to cancer, heart and brain connectome imaging

Application of diffusion MRI to cancer, heart and brain connectome imaging Colloquium @ Department of Physics, NTU Application of diffusion MRI to cancer, heart and brain connectome imaging March 11, 2014 Wen-Yih Isaac Tseng MD, PhD Advanced Biomedical MRI Lab Center for Optoelectronic

More information

University of Minnesota. Kâmil Uğurbil

University of Minnesota. Kâmil Uğurbil University of Minnesota Kâmil Uğurbil MGH CMRR, U Minn Title Kwong et al 1992 PNAS Ogawa et al PNAS 1992: Figure 2 images superimposed Submillimeter scale neuronal ensembles WHOLE BRAIN Orientation Domains

More information

Higher Order Cartesian Tensor Representation of Orientation Distribution Functions (ODFs)

Higher Order Cartesian Tensor Representation of Orientation Distribution Functions (ODFs) Higher Order Cartesian Tensor Representation of Orientation Distribution Functions (ODFs) Yonas T. Weldeselassie (Ph.D. Candidate) Medical Image Computing and Analysis Lab, CS, SFU DT-MR Imaging Introduction

More information

Anisotropic Interpolation of DT-MRI

Anisotropic Interpolation of DT-MRI Anisotropic Interpolation of DT-MRI Carlos A. Castaño-Moraga 1, Miguel A. Rodriguez-Florido 1, Luis Alvarez 2, Carl-Fredrik Westin 3, and Juan Ruiz-Alzola 1,3 1 Medical Technology Center, Signals & Communications

More information