RS-fMRI analysis in healthy subjects confirms gender based differences

Size: px
Start display at page:

Download "RS-fMRI analysis in healthy subjects confirms gender based differences"

Transcription

1 RS-fMRI analysis in healthy subjects confirms gender based differences Alberto A. Vergani PhD student in Computer Science and Computational Mathematics University of Insubria Department of Theoretical and Applied Science, Varese, Italy Co-authors of the work: E. Binaghi, S. Strocchi and G. Gonella

2 RS-fMRI analysis in healthy subjects confirms gender based differences

3 RS-fMRI analysis in healthy subjects confirms gender based differences RS = Resting State fmri = functiona Magnetic Resonance Imaging

4 RS-fMRI analysis in healthy subjects confirms gender based differences RS = Resting State fmri = functiona Magnetic Resonance Imaging

5 RS-fMRI analysis in healthy subjects confirms gender based differences RS = Resting State fmri = functiona Magnetic Resonance Imaging In vivo and not invasive techinque Measures haemodynamic response to neural activity Intrinsic contrast (BOLD) = Blood Oxigen Level Dependent signal

6 RS-fMRI analysis in healthy subjects confirms gender based differences RS = Resting State fmri = functiona Magnetic Resonance Imaging In vivo and not invasive techinque Measures haemodynamic response to neural activity Intrinsic contrast (BOLD) = Blood Oxigen Level Dependent signal

7 RS-fMRI analysis in healthy subjects confirms gender based differences RS = Resting State

8 RS-fMRI analysis in healthy subjects confirms gender based differences RS = Resting State Functional connectivity research has revealed a number of networks which are consistently found in healthy subjects, different stages of consciousness and across species, and represent specific patterns of synchronous activity (Biswal 2010 and Raichle 2015)

9 Outline Goals, Data and Methods Results (A, B, C) Conclusions, next analysis and their extension Alberto A. Vergani Genova

10 Goals, Data and Methods / goals RS-fMRI data from 1,414 volunteers collected independently at 35 international centers. We demonstrate a universal architecture of positive and negative functional connections, as well as consistent loci of inter-individual variability. Age and sex emerged as significant determinants ( ). (Biswal et al, PNAS, 2010) Alberto A. Vergani (aavergani@uninsubria.it) Genova

11 Goals, Data and Methods / goals RS-fMRI data from 1,414 volunteers collected independently at 35 international centers. We demonstrate a universal architecture of positive and negative functional connections, as well as consistent loci of inter-individual variability. Age and sex emerged as significant determinants ( ). (Biswal et al, PNAS, 2010) Alberto A. Vergani (aavergani@uninsubria.it) Genova

12 Goals, Data and Methods / goals Compute analysis on data collected in a shared RS-fMRI repository, looking how our results match literature. Alberto A. Vergani (aavergani@uninsubria.it) Genova

13 Goals, Data and Methods / data Alberto A. Vergani (aavergani@uninsubria.it) Genova

14 Goals, Data and Methods / data Alberto A. Vergani (aavergani@uninsubria.it) Genova

15 Goals, Data and Methods / data Alberto A. Vergani (aavergani@uninsubria.it) Genova

16 Goals, Data and Methods / data Alberto A. Vergani (aavergani@uninsubria.it) Genova

17 Goals, Data and Methods / methods Alberto A. Vergani (aavergani@uninsubria.it) Genova

18 Goals, Data and Methods / methods Preprocessing / spatial smoothing, temporal filtering, motion correction and standard registration Alberto A. Vergani (aavergani@uninsubria.it) Genova

19 Goals, Data and Methods / methods Preprocessing / spatial smoothing, temporal filtering, motion correction and standard registration Data reduction / extraction of time series based on the ROIs of Harvard-Oxford atlas Alberto A. Vergani (aavergani@uninsubria.it) Genova

20 Goals, Data and Methods / methods Preprocessing / spatial smoothing, temporal filtering, motion correction and standard registration Data reduction / extraction of time series based on the ROIs of Harvard-Oxford atlas Statistics / compute mean and variance of whole brain activation to test difference between gender signal Alberto A. Vergani (aavergani@uninsubria.it) Genova

21 Goals, Data and Methods / methods Preprocessing / spatial smoothing, temporal filtering, motion correction and standard registration Data reduction / extraction of time series based on the ROIs of Harvard-Oxford atlas Statistics / compute mean and variance of whole brain activation to test difference between gender signal Algebra / compute Euclidean metric of exams to test within gender distance Alberto A. Vergani (aavergani@uninsubria.it) Genova

22 Goals, Data and Methods / methods Preprocessing / spatial smoothing, temporal filtering, motion correction and standard registration Data reduction / extraction of time series based on the ROIs of Harvard-Oxford atlas Statistics / compute mean and variance of whole brain activation to test difference between gender signal Algebra / compute Euclidean metric of exams to test within gender distance Functional Connectivity / compute correlation coefficient to investigate Precuneus relations Alberto A. Vergani (aavergani@uninsubria.it) Genova

23 Goals, Data and Methods / methods Preprocessing / spatial smoothing, temporal filtering, motion correction and standard registration Data reduction / extraction of time series based on the ROIs of Harvard-Oxford atlas Statistics / compute mean and variance of whole brain activation to test difference between gender signal Algebra / compute Euclidean metric of exams to test within gender distance Functional Connectivity / compute correlation coefficient to investigate Precuneus relations Alberto A. Vergani (aavergani@uninsubria.it) Genova

24 Outline Goals, Data and Methods Results (A, B, C) Conclusions, Next analysis and their extension Alberto A. Vergani Genova

25 Result A / significant gender differences in BOLD whole brain signal Alberto A. Vergani (aavergani@uninsubria.it) Genova

26 Result A / significant gender differences in BOLD whole brain signal Alberto A. Vergani (aavergani@uninsubria.it) Genova

27 Result A / significant gender differences in BOLD whole brain signal Alberto A. Vergani (aavergani@uninsubria.it) Genova

28 Result A / significant gender differences in BOLD whole brain signal Alberto A. Vergani (aavergani@uninsubria.it) Genova

29 Result A / significant gender differences in BOLD whole brain signal Alberto A. Vergani (aavergani@uninsubria.it) Genova

30 Result A / significant gender differences in BOLD whole brain signal Alberto A. Vergani (aavergani@uninsubria.it) Genova

31 Result A / significant gender differences in BOLD whole brain signal Alberto A. Vergani (aavergani@uninsubria.it) Genova

32 Result B / greater distance within males than females Alberto A. Vergani (aavergani@uninsubria.it) Genova

33 Result B / greater distance within males than females Alberto A. Vergani (aavergani@uninsubria.it) Genova

34 Result B / greater distance within males than females Alberto A. Vergani (aavergani@uninsubria.it) Genova

35 Result B / greater distance within males than females Alberto A. Vergani (aavergani@uninsubria.it) Genova

36 Result B / greater distance within males than females Alberto A. Vergani (aavergani@uninsubria.it) Genova

37 Result B / greater distance within males than females Alberto A. Vergani (aavergani@uninsubria.it) Genova

38 Result C / functional connectivity of Precuneus in the DMN. Alberto A. Vergani (aavergani@uninsubria.it) Genova

39 Result C / functional connectivity of Precuneus in the DMN. Alberto A. Vergani (aavergani@uninsubria.it) Genova

40 Result C / functional connectivity of Precuneus in the DMN. Alberto A. Vergani (aavergani@uninsubria.it) Genova

41 Result C / functional connectivity of Precuneus in the DMN. FEMALE LEFT PRECUNEUS ROIs LABELS Left Precuneous Cortex Right Precuneous Cortex Left Cingulate Gyrus, posterior division Right Cingulate Gyrus, posterior division FEMALE RIGHT PRECUNEUS ROIs LABELS Right Precuneous Cortex Left Precuneous Cortex Right Cingulate Gyrus, posterior division Left Cingulate Gyrus, posterior division Alberto A. Vergani (aavergani@uninsubria.it) Genova

42 Result C / functional connectivity of Precuneus in the DMN. FEMALE LEFT PRECUNEUS ROIs LABELS Left Precuneous Cortex Right Precuneous Cortex Left Cingulate Gyrus, posterior division Right Cingulate Gyrus, posterior division FEMALE RIGHT PRECUNEUS ROIs LABELS Right Precuneous Cortex Left Precuneous Cortex Right Cingulate Gyrus, posterior division Left Cingulate Gyrus, posterior division MALE LEFT PRECUNEUS ROIs LABELS Left Precuneous Cortex Right Precuneous Cortex Left Cingulate Gyrus, posterior division Right Cingulate Gyrus, posterior division MALE RIGHT PRECUNEUS ROIs LABELS Right Precuneous Cortex Left Precuneous Cortex Right Cingulate Gyrus, posterior division Left Cingulate Gyrus, posterior division Alberto A. Vergani (aavergani@uninsubria.it) Genova

43 Outline Goals, Data and Methods Results (A, B, C) Conclusions, Next analysis and their extension Alberto A. Vergani Genova

44 Conclusions, next analysis and their extension Alberto A. Vergani Genova

45 Conclusions, next analysis and their extension A / Dynamics. There are significant differences in the mean and in the variance among males and females functional time series (BOLD signal). B / Patterns. The distance within males is greater than in the females. C / Connectivity. Precuneus has the higher correlations (CC > 0.80) with its controlateral part and with the posterior division of cingulate gyrus. Next analysis / clustering of time series and subcortical analysis Extension / using other datasets belongs to NITRC repository Thank you ;-) Alberto A. Vergani (aavergani@uninsubria.it) Genova

46 Conclusions, next analysis and their extension A / Dynamics. There are significant differences in the mean and in the variance among males and females functional time series (BOLD signal). B / Patterns. The distance within males is greater than in the females. C / Connectivity. Precuneus has the higher correlations (CC > 0.80) with its controlateral part and with the posterior division of cingulate gyrus. Next analysis / clustering of time series and subcortical analysis Extension / using other datasets belongs to NITRC repository Thank you ;-) Alberto A. Vergani (aavergani@uninsubria.it) Genova

47 Conclusions, next analysis and their extension A / Dynamics. There are significant differences in the mean and in the variance among males and females functional time series (BOLD signal). B / Patterns. The distance within males is greater than in the females. C / Connectivity. Precuneus has the higher correlations (CC > 0.80) with its controlateral part and with the posterior division of cingulate gyrus. Next analysis / clustering of time series and subcortical analysis Extension / using other datasets belongs to NITRC repository Thank you ;-) Alberto A. Vergani (aavergani@uninsubria.it) Genova

48 Conclusions, next analysis and their extension A / Dynamics. There are significant differences in the mean and in the variance among males and females functional time series (BOLD signal) B / Patterns. The distance within males is greater than in the females. C / Connectivity. Precuneus has the higher correlations (CC > 0.80) with its controlateral part and with the posterior division of cingulate gyrus. Next analysis / clustering of time series and subcortical analysis Extension / using other datasets belongs to NITRC repository Thank you ;-) Alberto A. Vergani (aavergani@uninsubria.it) Genova

49 Conclusions, next analysis and their extension A / Dynamics. There are significant differences in the mean and in the variance among males and females functional time series (BOLD signal) B / Patterns. The distance within males is greater than in the females. C / Connectivity. Precuneus has the higher correlations (CC > 0.80) with its controlateral part and with the posterior division of cingulate gyrus. Next analysis / clustering of time series and subcortical analysis Extension / using other datasets belongs to NITRC repository Thank you ;-) Alberto A. Vergani (aavergani@uninsubria.it) Genova

50 Conclusions, next analysis and their extension A / Dynamics. There are significant differences in the mean and in the variance among males and females functional time series (BOLD signal) B / Patterns. The distance within males is greater than in the females. C / Connectivity. Precuneus has the higher correlations (CC > 0.80) with its controlateral part and with the posterior division of cingulate gyrus. Next analysis / clustering of time series and subcortical analysis Extension / using other datasets belongs to NITRC repository Thank you ;-) Alberto A. Vergani (aavergani@uninsubria.it) Genova

RESTING STATE FMRI FUNCTIONAL CONNECTIVITY ANALYSIS USING SOFT COMPETITIVE LEARNING ALGORITHMS

RESTING STATE FMRI FUNCTIONAL CONNECTIVITY ANALYSIS USING SOFT COMPETITIVE LEARNING ALGORITHMS 15 th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and 3 rd Conference on Imaging and Visualization CMBBE 2018 P. R. Fernandes and J. M. Tavares (Editors) RESTING

More information

Self-Evaluation Across Adolescence: A Longitudinal fmri Study. Dani Cosme

Self-Evaluation Across Adolescence: A Longitudinal fmri Study. Dani Cosme Self-Evaluation Across Adolescence: A Longitudinal fmri Study Dani Cosme Background Adolescence is a formative period for the development of identity and self-concept (Pfeifer & Peake, 2012) Self-referential

More information

Tracking whole-brain connectivity dynamics in the resting-state

Tracking whole-brain connectivity dynamics in the resting-state Tracking whole-brain connectivity dynamics in the resting-state Supplementary Table. Peak Coordinates of ICNs ICN regions BA t max Peak (mm) (continued) BA t max Peak (mm) X Y Z X Y Z Subcortical networks

More information

Functional Connectivity and Network Methods

Functional Connectivity and Network Methods 18/Sep/2013" Functional Connectivity and Network Methods with functional magnetic resonance imaging" Enrico Glerean (MSc), Brain & Mind Lab, BECS, Aalto University" www.glerean.com @eglerean becs.aalto.fi/bml

More information

ROI analysis of pharmafmri data: an adaptive approach for global testing

ROI analysis of pharmafmri data: an adaptive approach for global testing ROI analysis of pharmafmri data: an adaptive approach for global testing Giorgos Minas, John A.D. Aston, Thomas E. Nichols and Nigel Stallard Abstract Pharmacological fmri (pharmafmri) is a new highly

More information

Integrative Methods for Functional and Structural Connectivity

Integrative Methods for Functional and Structural Connectivity Integrative Methods for Functional and Structural Connectivity F. DuBois Bowman Department of Biostatistics Columbia University SAMSI Challenges in Functional Connectivity Modeling and Analysis Research

More information

Statistical Analysis Aspects of Resting State Functional Connectivity

Statistical Analysis Aspects of Resting State Functional Connectivity Statistical Analysis Aspects of Resting State Functional Connectivity Biswal s result (1995) Correlations between RS Fluctuations of left and right motor areas Why studying resting state? Human Brain =

More information

Discovering the Human Connectome

Discovering the Human Connectome Networks and Complex Systems 2012 Discovering the Human Connectome Olaf Sporns Department of Psychological and Brain Sciences Indiana University, Bloomington, IN 47405 http://www.indiana.edu/~cortex, osporns@indiana.edu

More information

Human Brain Networks. Aivoaakkoset BECS-C3001"

Human Brain Networks. Aivoaakkoset BECS-C3001 Human Brain Networks Aivoaakkoset BECS-C3001" Enrico Glerean (MSc), Brain & Mind Lab, BECS, Aalto University" www.glerean.com @eglerean becs.aalto.fi/bml enrico.glerean@aalto.fi" Why?" 1. WHY BRAIN NETWORKS?"

More information

Hierarchical Clustering Identifies Hub Nodes in a Model of Resting-State Brain Activity

Hierarchical Clustering Identifies Hub Nodes in a Model of Resting-State Brain Activity WCCI 22 IEEE World Congress on Computational Intelligence June, -5, 22 - Brisbane, Australia IJCNN Hierarchical Clustering Identifies Hub Nodes in a Model of Resting-State Brain Activity Mark Wildie and

More information

From Pixels to Brain Networks: Modeling Brain Connectivity and Its Changes in Disease. Polina Golland

From Pixels to Brain Networks: Modeling Brain Connectivity and Its Changes in Disease. Polina Golland From Pixels to Brain Networks: Modeling Brain Connectivity and Its Changes in Disease Polina Golland MIT Computer Science and Artificial Intelligence Laboratory Joint work with Archana Venkataraman C.-F.

More information

Modelling temporal structure (in noise and signal)

Modelling temporal structure (in noise and signal) Modelling temporal structure (in noise and signal) Mark Woolrich, Christian Beckmann*, Salima Makni & Steve Smith FMRIB, Oxford *Imperial/FMRIB temporal noise: modelling temporal autocorrelation temporal

More information

ALZHEIMER S disease (AD) is the most common type of

ALZHEIMER S disease (AD) is the most common type of 576 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 61, NO. 2, FEBRUARY 2014 Integration of Network Topological and Connectivity Properties for Neuroimaging Classification Biao Jie, Daoqiang Zhang, Wei

More information

Human! Brain! Networks!

Human! Brain! Networks! Human! Brain! Networks! estimated with functional connectivity" Enrico Glerean (MSc), Brain & Mind Lab, BECS, Aalto University" www.glerean.com @eglerean becs.aalto.fi/bml enrico.glerean@aalto.fi" Why?"

More information

NCNC FAU. Modeling the Network Architecture of the Human Brain

NCNC FAU. Modeling the Network Architecture of the Human Brain NCNC 2010 - FAU Modeling the Network Architecture of the Human Brain Olaf Sporns Department of Psychological and Brain Sciences Indiana University, Bloomington, IN 47405 http://www.indiana.edu/~cortex,

More information

Piotr Majer Risk Patterns and Correlated Brain Activities

Piotr Majer Risk Patterns and Correlated Brain Activities Alena My²i ková Piotr Majer Song Song Alena Myšičková Peter N. C. Mohr Peter N. C. Mohr Wolfgang K. Härdle Song Song Hauke R. Heekeren Wolfgang K. Härdle Hauke R. Heekeren C.A.S.E. Centre C.A.S.E. for

More information

Linear & Non-Linear Discriminant Analysis! Hugh R. Wilson

Linear & Non-Linear Discriminant Analysis! Hugh R. Wilson Linear & Non-Linear Discriminant Analysis! Hugh R. Wilson PCA Review! Supervised learning! Fisher linear discriminant analysis! Nonlinear discriminant analysis! Research example! Multiple Classes! Unsupervised

More information

Review of Lecture 1. Across records. Within records. Classification, Clustering, Outlier detection. Associations

Review of Lecture 1. Across records. Within records. Classification, Clustering, Outlier detection. Associations Review of Lecture 1 This course is about finding novel actionable patterns in data. We can divide data mining algorithms (and the patterns they find) into five groups Across records Classification, Clustering,

More information

Metric Learning with Spectral Graph Convolutions on Brain Connectivity Networks

Metric Learning with Spectral Graph Convolutions on Brain Connectivity Networks Metric Learning with Spectral Graph Convolutions on Brain Connectivity Networks Sofia Ira Ktena a,, Sarah Parisot a, Enzo Ferrante a,b, Martin Rajchl a, Matthew Lee a, Ben Glocker a, Daniel Rueckert a

More information

General linear model: basic

General linear model: basic General linear model: basic Introducing General Linear Model (GLM): Start with an example Proper>es of the BOLD signal Linear Time Invariant (LTI) system The hemodynamic response func>on (Briefly) Evalua>ng

More information

Functional brain imaging has provided an important window

Functional brain imaging has provided an important window Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus Yvette I. Sheline a,b,c,1, Joseph L. Price d, Zhizi Yan b, and Mark A. Mintun a,b Departments

More information

New Machine Learning Methods for Neuroimaging

New Machine Learning Methods for Neuroimaging New Machine Learning Methods for Neuroimaging Gatsby Computational Neuroscience Unit University College London, UK Dept of Computer Science University of Helsinki, Finland Outline Resting-state networks

More information

Supplementary Information. Brain networks involved in tactile speed classification of moving dot patterns: the. effects of speed and dot periodicity

Supplementary Information. Brain networks involved in tactile speed classification of moving dot patterns: the. effects of speed and dot periodicity Supplementary Information Brain networks involved in tactile speed classification of moving dot patterns: the effects of speed and dot periodicity Jiajia Yang, Ryo Kitada *, Takanori Kochiyama, Yinghua

More information

Outlines: (June 11, 1996) Instructor:

Outlines: (June 11, 1996) Instructor: Magnetic Resonance Imaging (June 11, 1996) Instructor: Tai-huang Huang Institute of Biomedical Sciences Academia Sinica Tel. (02) 2652-3036; Fax. (02) 2788-7641 E. mail: bmthh@ibms.sinica.edu.tw Reference:

More information

- Supplementary information -

- Supplementary information - Influence of FKBP5 polymorphism and DNA methylation on structural changes of the brain in major depressive disorder - Supplementary information - Kyu-Man Han MD a*, Eunsoo Won, MD, PhD a*, Youngbo Sim,

More information

A MULTIVARIATE MODEL FOR COMPARISON OF TWO DATASETS AND ITS APPLICATION TO FMRI ANALYSIS

A MULTIVARIATE MODEL FOR COMPARISON OF TWO DATASETS AND ITS APPLICATION TO FMRI ANALYSIS A MULTIVARIATE MODEL FOR COMPARISON OF TWO DATASETS AND ITS APPLICATION TO FMRI ANALYSIS Yi-Ou Li and Tülay Adalı University of Maryland Baltimore County Baltimore, MD Vince D. Calhoun The MIND Institute

More information

MEG and fmri for nonlinear estimation of neural activity

MEG and fmri for nonlinear estimation of neural activity Copyright 2009 SS&C. Published in the Proceedings of the Asilomar Conference on Signals, Systems, and Computers, November 1-4, 2009, Pacific Grove, California, USA MEG and fmri for nonlinear estimation

More information

Longitudinal growth analysis of early childhood brain using deformation based morphometry

Longitudinal growth analysis of early childhood brain using deformation based morphometry Longitudinal growth analysis of early childhood brain using deformation based morphometry Junki Lee 1, Yasser Ad-Dab'bagh 2, Vladimir Fonov 1, Alan C. Evans 1 and the Brain Development Cooperative Group

More information

REVEALING THE INFLUENCE OF DEFINITE BRAIN REGIONS UPON THE EMERGENCE OF SPATIAL AND TEMPORAL PATTERNS IN THE RESTING-STATE BRAIN ACTIVITY

REVEALING THE INFLUENCE OF DEFINITE BRAIN REGIONS UPON THE EMERGENCE OF SPATIAL AND TEMPORAL PATTERNS IN THE RESTING-STATE BRAIN ACTIVITY REVEALING THE INFLUENCE OF DEFINITE BRAIN REGIONS UPON THE EMERGENCE OF SPATIAL AND TEMPORAL PATTERNS IN THE RESTING-STATE BRAIN ACTIVITY By Sergei D. Verzilin THESIS Submitted in partial fulfillment of

More information

Quantitative Susceptibility Mapping and Susceptibility Tensor Imaging. Magnetization and Susceptibility

Quantitative Susceptibility Mapping and Susceptibility Tensor Imaging. Magnetization and Susceptibility Quantitative Susceptibility Mapping and Susceptibility Tensor Imaging 1, Chunlei Liu, Ph.D. 1 Brain Imaging and Analysis Center Department of Radiology Duke University, Durham, NC, USA 1 Magnetization

More information

Signal Processing for Functional Brain Imaging: General Linear Model (2)

Signal Processing for Functional Brain Imaging: General Linear Model (2) Signal Processing for Functional Brain Imaging: General Linear Model (2) Maria Giulia Preti, Dimitri Van De Ville Medical Image Processing Lab, EPFL/UniGE http://miplab.epfl.ch/teaching/micro-513/ March

More information

Morphometrics with SPM12

Morphometrics with SPM12 Morphometrics with SPM12 John Ashburner Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK. What kind of differences are we looking for? Usually, we try to localise regions of difference.

More information

! Dimension Reduction

! Dimension Reduction ! Dimension Reduction Pamela K. Douglas NITP Summer 2013 Overview! What is dimension reduction! Motivation for performing reduction on your data! Intuitive Description of Common Methods! Applications in

More information

S pat i o - t e m p o r a l m o d e l l i n g o f f M R I data

S pat i o - t e m p o r a l m o d e l l i n g o f f M R I data S pat i o - t e m p o r a l m o d e l l i n g o f f M R I data T h o r d i s L i n da T h o r a r i n s d o t t i r P h D T h e s i s D e pa rt m e n t o f M at h e m at i c a l S c i e n c e s U n i v

More information

Cortical Shape Analysis using the Anisotropic Global Point Signature

Cortical Shape Analysis using the Anisotropic Global Point Signature Cortical Shape Analysis using the Anisotropic Global Point Signature Anand A Joshi 1,3, Syed Ashrafulla 1, David W Shattuck 2, Hanna Damasio 3 and Richard M Leahy 1 1 Signal and Image Processing Institute,

More information

Multivariate Statistical Analysis of Deformation Momenta Relating Anatomical Shape to Neuropsychological Measures

Multivariate Statistical Analysis of Deformation Momenta Relating Anatomical Shape to Neuropsychological Measures Multivariate Statistical Analysis of Deformation Momenta Relating Anatomical Shape to Neuropsychological Measures Nikhil Singh, Tom Fletcher, Sam Preston, Linh Ha, J. Stephen Marron, Michael Wiener, and

More information

Experimental design of fmri studies

Experimental design of fmri studies Methods & Models for fmri Analysis 2017 Experimental design of fmri studies Sara Tomiello With many thanks for slides & images to: Sandra Iglesias, Klaas Enno Stephan, FIL Methods group, Christian Ruff

More information

Network Modeling and Functional Data Methods for Brain Functional Connectivity Studies. Kehui Chen

Network Modeling and Functional Data Methods for Brain Functional Connectivity Studies. Kehui Chen Network Modeling and Functional Data Methods for Brain Functional Connectivity Studies Kehui Chen Department of Statistics, University of Pittsburgh Nonparametric Statistics Workshop, Ann Arbor, Oct 06,

More information

Supplementary Material & Data. Younger vs. Older Subjects. For further analysis, subjects were split into a younger adult or older adult group.

Supplementary Material & Data. Younger vs. Older Subjects. For further analysis, subjects were split into a younger adult or older adult group. 1 1 Supplementary Material & Data 2 Supplemental Methods 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Younger vs. Older Subjects For further analysis, subjects were split into a younger adult

More information

Research Article Thalamus Segmentation from Diffusion Tensor Magnetic Resonance Imaging

Research Article Thalamus Segmentation from Diffusion Tensor Magnetic Resonance Imaging Biomedical Imaging Volume 2007, Article ID 90216, 5 pages doi:10.1155/2007/90216 Research Article Thalamus Segmentation from Diffusion Tensor Magnetic Resonance Imaging Ye Duan, Xiaoling Li, and Yongjian

More information

ABTEKNILLINEN KORKEAKOULU

ABTEKNILLINEN KORKEAKOULU Two-way analysis of high-dimensional collinear data 1 Tommi Suvitaival 1 Janne Nikkilä 1,2 Matej Orešič 3 Samuel Kaski 1 1 Department of Information and Computer Science, Helsinki University of Technology,

More information

Bayesian modelling of fmri time series

Bayesian modelling of fmri time series Bayesian modelling of fmri time series Pedro A. d. F. R. Højen-Sørensen, Lars K. Hansen and Carl Edward Rasmussen Department of Mathematical Modelling, Building 321 Technical University of Denmark DK-28

More information

Higher Order Cartesian Tensor Representation of Orientation Distribution Functions (ODFs)

Higher Order Cartesian Tensor Representation of Orientation Distribution Functions (ODFs) Higher Order Cartesian Tensor Representation of Orientation Distribution Functions (ODFs) Yonas T. Weldeselassie (Ph.D. Candidate) Medical Image Computing and Analysis Lab, CS, SFU DT-MR Imaging Introduction

More information

Parts 2. Modeling chromosome segregation

Parts 2. Modeling chromosome segregation Genome 371, Autumn 2017 Quiz Section 2 Meiosis Goals: To increase your familiarity with the molecular control of meiosis, outcomes of meiosis, and the important role of crossing over in generating genetic

More information

DEPARTMENT OF COMPUTER SCIENCE Autumn Semester MACHINE LEARNING AND ADAPTIVE INTELLIGENCE

DEPARTMENT OF COMPUTER SCIENCE Autumn Semester MACHINE LEARNING AND ADAPTIVE INTELLIGENCE Data Provided: None DEPARTMENT OF COMPUTER SCIENCE Autumn Semester 203 204 MACHINE LEARNING AND ADAPTIVE INTELLIGENCE 2 hours Answer THREE of the four questions. All questions carry equal weight. Figures

More information

NONPARAMETRIC BAYESIAN INFERENCE ON PLANAR SHAPES

NONPARAMETRIC BAYESIAN INFERENCE ON PLANAR SHAPES NONPARAMETRIC BAYESIAN INFERENCE ON PLANAR SHAPES Author: Abhishek Bhattacharya Coauthor: David Dunson Department of Statistical Science, Duke University 7 th Workshop on Bayesian Nonparametrics Collegio

More information

腦網路連結分析 A Course of MRI

腦網路連結分析 A Course of MRI 本週課程內容 腦網路連結 (connectivity & network) 結構性與功能性連結關係 (structural/functional connectivity) 腦網路連結分析 A Course of MRI 盧家鋒助理教授國立陽明大學物理治療暨輔助科技學系 alvin01@ym.edu.tw 複雜網路 : 圖學理論 (graph theory) Brain networks Larger

More information

Stochastic Dynamic Causal Modelling for resting-state fmri

Stochastic Dynamic Causal Modelling for resting-state fmri Stochastic Dynamic Causal Modelling for resting-state fmri Ged Ridgway, FIL, Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London Overview Connectivity in the brain Introduction to

More information

HST 583 FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA ANALYSIS AND ACQUISITION A REVIEW OF STATISTICS FOR FMRI DATA ANALYSIS

HST 583 FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA ANALYSIS AND ACQUISITION A REVIEW OF STATISTICS FOR FMRI DATA ANALYSIS HST 583 FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA ANALYSIS AND ACQUISITION A REVIEW OF STATISTICS FOR FMRI DATA ANALYSIS EMERY N. BROWN AND CHRIS LONG NEUROSCIENCE STATISTICS RESEARCH LABORATORY DEPARTMENT

More information

171:162 Design and Analysis of Biomedical Studies, Summer 2011 Exam #3, July 16th

171:162 Design and Analysis of Biomedical Studies, Summer 2011 Exam #3, July 16th Name 171:162 Design and Analysis of Biomedical Studies, Summer 2011 Exam #3, July 16th Use the selected SAS output to help you answer the questions. The SAS output is all at the back of the exam on pages

More information

Morphometry. John Ashburner. Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK. Voxel-Based Morphometry

Morphometry. John Ashburner. Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK. Voxel-Based Morphometry Morphometry John Ashburner Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK. Overview Voxel-Based Morphometry Morphometry in general Volumetrics VBM preprocessing followed by SPM Tissue

More information

Generative classifiers: The Gaussian classifier. Ata Kaban School of Computer Science University of Birmingham

Generative classifiers: The Gaussian classifier. Ata Kaban School of Computer Science University of Birmingham Generative classifiers: The Gaussian classifier Ata Kaban School of Computer Science University of Birmingham Outline We have already seen how Bayes rule can be turned into a classifier In all our examples

More information

Basic MRI physics and Functional MRI

Basic MRI physics and Functional MRI Basic MRI physics and Functional MRI Gregory R. Lee, Ph.D Assistant Professor, Department of Radiology June 24, 2013 Pediatric Neuroimaging Research Consortium Objectives Neuroimaging Overview MR Physics

More information

Statistics 5100 Spring 2018 Exam 1

Statistics 5100 Spring 2018 Exam 1 Statistics 5100 Spring 2018 Exam 1 Directions: You have 60 minutes to complete the exam. Be sure to answer every question, and do not spend too much time on any part of any question. Be concise with all

More information

Testing for group differences in brain functional connectivity

Testing for group differences in brain functional connectivity Testing for group differences in brain functional connectivity Junghi Kim, Wei Pan, for ADNI Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455 Banff Feb

More information

Parts 2. Modeling chromosome segregation

Parts 2. Modeling chromosome segregation Genome 371, Autumn 2018 Quiz Section 2 Meiosis Goals: To increase your familiarity with the molecular control of meiosis, outcomes of meiosis, and the important role of crossing over in generating genetic

More information

CHAPTER 10. Regression and Correlation

CHAPTER 10. Regression and Correlation CHAPTER 10 Regression and Correlation In this Chapter we assess the strength of the linear relationship between two continuous variables. If a significant linear relationship is found, the next step would

More information

What is NIRS? First-Level Statistical Models 5/18/18

What is NIRS? First-Level Statistical Models 5/18/18 First-Level Statistical Models Theodore Huppert, PhD (huppertt@upmc.edu) University of Pittsburgh Departments of Radiology and Bioengineering What is NIRS? Light Intensity SO 2 and Heart Rate 2 1 5/18/18

More information

FUNCTIONAL CONNECTIVITY ANALYSIS OF FMRI TIME-SERIES DATA

FUNCTIONAL CONNECTIVITY ANALYSIS OF FMRI TIME-SERIES DATA FUNCTIONAL CONNECTIVITY ANALYSIS OF FMRI TIME-SERIES DATA by Dongli Zhou B.S. in Statistics, Beijing Normal University, China, 25 M.A. in Statistics, University of Pittsburgh, 27 Submitted to the Graduate

More information

Resting-state fmri and DTI

Resting-state fmri and DTI Resting-state fmri and DTI David C. Zhu, Ph.D. Associate Professor of Radiology and Psychology Cognitive Imaging Research Center Michigan State University, East Lansing, Michigan, USA Facts The rain is

More information

Quantitative Neuro-Anatomic and Functional Image Assessment Recent progress on image registration and its applications

Quantitative Neuro-Anatomic and Functional Image Assessment Recent progress on image registration and its applications Quantitative Neuro-Anatomic and Functional Image Assessment Recent progress on image registration and its applications Guido Gerig Sarang Joshi Tom Fletcher Applications of image registration in neuroimaging

More information

MEG Source Localization Using an MLP With Distributed Output Representation

MEG Source Localization Using an MLP With Distributed Output Representation MEG Source Localization Using an MLP With Distributed Output Representation Sung Chan Jun, Barak A. Pearlmutter, Guido Nolte CBLL Meeting October 5, 2005 Source localization Definition: Identification

More information

Beyond Univariate Analyses: Multivariate Modeling of Functional Neuroimaging Data

Beyond Univariate Analyses: Multivariate Modeling of Functional Neuroimaging Data Beyond Univariate Analyses: Multivariate Modeling of Functional Neuroimaging Data F. DuBois Bowman Department of Biostatistics and Bioinformatics Center for Biomedical Imaging Statistics Emory University,

More information

One patient and one control were unable to complete the TOMM. An additional HC had abnormally low scores

One patient and one control were unable to complete the TOMM. An additional HC had abnormally low scores Ling et al. 2013-1 Supplemental Methods Participants One patient and one control were unable to complete the TOMM. An additional HC had abnormally low scores on the TOMM only (T-score < 0), and was not

More information

Chapter 1 - Lecture 3 Measures of Location

Chapter 1 - Lecture 3 Measures of Location Chapter 1 - Lecture 3 of Location August 31st, 2009 Chapter 1 - Lecture 3 of Location General Types of measures Median Skewness Chapter 1 - Lecture 3 of Location Outline General Types of measures What

More information

Latent state estimation using control theory

Latent state estimation using control theory Latent state estimation using control theory Bert Kappen SNN Donders Institute, Radboud University, Nijmegen Gatsby Unit, UCL London August 3, 7 with Hans Christian Ruiz Bert Kappen Smoothing problem Given

More information

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam (closed book, 1 sheets of notes double sided allowed, no calculator or other electronic devices allowed) 1. Ultrasound Physics (15 pt) A) (9

More information

Imaging Brain Structure and Function

Imaging Brain Structure and Function Imaging Brain Structure and Function Thomas J. Grabowski, Jr., MD Professor, Radiology and Neurology (joint) Director, UW Integrated Brain Imaging Center Director, UW Alzheimer s Disease Research Center

More information

Computational Brain Anatomy

Computational Brain Anatomy Computational Brain Anatomy John Ashburner Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK. Overview Voxel-Based Morphometry Morphometry in general Volumetrics VBM preprocessing followed

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Sandra Iglesias With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian Ruff SPM Course 2015 Overview of SPM Image time-series Kernel

More information

Extracting fmri features

Extracting fmri features Extracting fmri features PRoNTo course May 2018 Christophe Phillips, GIGA Institute, ULiège, Belgium c.phillips@uliege.be - http://www.giga.ulg.ac.be Overview Introduction Brain decoding problem Subject

More information

Chapter 7: Correlation

Chapter 7: Correlation Chapter 7: Correlation Oliver Twisted Please, Sir, can I have some more confidence intervals? To use this syntax open the data file CIr.sav. The data editor looks like this: The values in the table are

More information

First Technical Course, European Centre for Soft Computing, Mieres, Spain. 4th July 2011

First Technical Course, European Centre for Soft Computing, Mieres, Spain. 4th July 2011 First Technical Course, European Centre for Soft Computing, Mieres, Spain. 4th July 2011 Linear Given probabilities p(a), p(b), and the joint probability p(a, B), we can write the conditional probabilities

More information

The General Linear Model. Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London

The General Linear Model. Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London The General Linear Model Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM Course Lausanne, April 2012 Image time-series Spatial filter Design matrix Statistical Parametric

More information

A Data-driven Approach for Remaining Useful Life Prediction of Critical Components

A Data-driven Approach for Remaining Useful Life Prediction of Critical Components GT S3 : Sûreté, Surveillance, Supervision Meeting GdR Modélisation, Analyse et Conduite des Systèmes Dynamiques (MACS) January 28 th, 2014 A Data-driven Approach for Remaining Useful Life Prediction of

More information

Lesson 5.4: The Normal Distribution, page 251

Lesson 5.4: The Normal Distribution, page 251 6. For females: Midpoint Salary ($) Frequency 22 5 92 27 5 52 32 5 9 37 5 42 5 4 47 5 52 5 3 57 5 3 x = $27 39.3 = $724.2 For males: Midpoint Salary ($) Frequency 25 86 35 78 45 28 55 2 65 22 75 85 4 95

More information

Fundamentals of Computational Neuroscience 2e

Fundamentals of Computational Neuroscience 2e Fundamentals of Computational Neuroscience 2e January 1, 2010 Chapter 10: The cognitive brain Hierarchical maps and attentive vision A. Ventral visual pathway B. Layered cortical maps Receptive field size

More information

A Multivariate Time-Frequency Based Phase Synchrony Measure for Quantifying Functional Connectivity in the Brain

A Multivariate Time-Frequency Based Phase Synchrony Measure for Quantifying Functional Connectivity in the Brain A Multivariate Time-Frequency Based Phase Synchrony Measure for Quantifying Functional Connectivity in the Brain Dr. Ali Yener Mutlu Department of Electrical and Electronics Engineering, Izmir Katip Celebi

More information

Statistical Analysis of fmrl Data

Statistical Analysis of fmrl Data Statistical Analysis of fmrl Data F. Gregory Ashby The MIT Press Cambridge, Massachusetts London, England Preface xi Acronyms xv 1 Introduction 1 What Is fmri? 2 The Scanning Session 4 Experimental Design

More information

2.1 Linear regression with matrices

2.1 Linear regression with matrices 21 Linear regression with matrices The values of the independent variables are united into the matrix X (design matrix), the values of the outcome and the coefficient are represented by the vectors Y and

More information

From Diffusion Data to Bundle Analysis

From Diffusion Data to Bundle Analysis From Diffusion Data to Bundle Analysis Gabriel Girard gabriel.girard@epfl.ch Computational Brain Connectivity Mapping Juan-les-Pins, France 20 November 2017 Gabriel Girard gabriel.girard@epfl.ch CoBCoM2017

More information

Statistiek II. John Nerbonne using reworkings by Hartmut Fitz and Wilbert Heeringa. February 13, Dept of Information Science

Statistiek II. John Nerbonne using reworkings by Hartmut Fitz and Wilbert Heeringa. February 13, Dept of Information Science Statistiek II John Nerbonne using reworkings by Hartmut Fitz and Wilbert Heeringa Dept of Information Science j.nerbonne@rug.nl February 13, 2014 Course outline 1 One-way ANOVA. 2 Factorial ANOVA. 3 Repeated

More information

The University of Warwick. Department of Statistics. Dissertation. Controls for Multiplicity in Resting State Functional Connectivity Analysis

The University of Warwick. Department of Statistics. Dissertation. Controls for Multiplicity in Resting State Functional Connectivity Analysis The University of Warwick Department of Statistics Master of Science in Statistics Academic Year 2014/2015 Dissertation Controls for Multiplicity in Resting State Functional Connectivity Analysis Candidate:

More information

Biomedical Image Analysis. Segmentation by Thresholding

Biomedical Image Analysis. Segmentation by Thresholding Biomedical Image Analysis Segmentation by Thresholding Contents: Thresholding principles Ridler & Calvard s method Ridler TW, Calvard S (1978). Picture thresholding using an iterative selection method,

More information

Experimental design of fmri studies & Resting-State fmri

Experimental design of fmri studies & Resting-State fmri Methods & Models for fmri Analysis 2016 Experimental design of fmri studies & Resting-State fmri Sandra Iglesias With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian

More information

Electroencephalogram Based Causality Graph Analysis in Behavior Tasks of Parkinson s Disease Patients

Electroencephalogram Based Causality Graph Analysis in Behavior Tasks of Parkinson s Disease Patients University of Denver Digital Commons @ DU Electronic Theses and Dissertations Graduate Studies 1-1-2015 Electroencephalogram Based Causality Graph Analysis in Behavior Tasks of Parkinson s Disease Patients

More information

Guixiang Ma 05/07/2016. Authors: Guixiang Ma*, Lifang He, Chun- Ta Lu*, Philip S. Yu*, Linlin Shen, Ann B. Ragin

Guixiang Ma 05/07/2016. Authors: Guixiang Ma*, Lifang He, Chun- Ta Lu*, Philip S. Yu*, Linlin Shen, Ann B. Ragin Guixiang Ma 05/07/2016 Authors: Guixiang Ma*, Lifang He, Chun- Ta Lu*, Philip S. Yu*, Linlin Shen, Ann B. Ragin *UIC, USA SZU, China THU, China NWU, USA ... Human Brain Mapping functional Magnetic Resonance

More information

Anatomical Regularization on Statistical Manifolds for the Classification of Patients with Alzheimer s Disease

Anatomical Regularization on Statistical Manifolds for the Classification of Patients with Alzheimer s Disease Anatomical Regularization on Statistical Manifolds for the Classification of Patients with Alzheimer s Disease Rémi Cuingnet 1,2, Joan Alexis Glaunès 1,3, Marie Chupin 1, Habib Benali 2, and Olivier Colliot

More information

Spatial Source Filtering. Outline EEG/ERP. ERPs) Event-related Potentials (ERPs( EEG

Spatial Source Filtering. Outline EEG/ERP. ERPs) Event-related Potentials (ERPs( EEG Integration of /MEG/fMRI Vince D. Calhoun, Ph.D. Director, Image Analysis & MR Research The MIND Institute Outline fmri/ data Three Approaches to integration/fusion Prediction Constraints 2 nd Level Fusion

More information

Contextual connectivity: A framework for understanding the intrinsic dynamic architecture of large-scale functional brain networks

Contextual connectivity: A framework for understanding the intrinsic dynamic architecture of large-scale functional brain networks www.nature.com/scientificreports Received: 4 August 2016 Accepted: 20 June 2017 Published online: 26 July 2017 OPEN Contextual connectivity: A framework for understanding the intrinsic dynamic architecture

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Zurich SPM Course 2016 Sandra Iglesias Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering (IBT) University and ETH Zürich With many thanks for

More information

The Graphs of Mixed Functions (Day 13 1)

The Graphs of Mixed Functions (Day 13 1) The Graphs of Mied Functions (Day 3 ) In this unit, we will remember how to graph some old functions and discover how to graph lots of new functions. Eercise : Graph and label the parent function f( )

More information

Statistical Analysis of Functional ASL Images

Statistical Analysis of Functional ASL Images Statistical Analysis of Functional ASL Images Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Department of Biophysics Department of EE and CS 1 Outline: 1. Control/Label

More information

Critical Values for the Test of Flatness of a Histogram Using the Bhattacharyya Measure.

Critical Values for the Test of Flatness of a Histogram Using the Bhattacharyya Measure. Tina Memo No. 24-1 To Appear in; Towards a Quantitative mehtodology for the Quantitative Assessment of Cerebral Blood Flow in Magnetic Resonance Imaging. PhD Thesis, M.L.J.Scott, Manchester, 24. Critical

More information

Bayesian Analysis. Bayesian Analysis: Bayesian methods concern one s belief about θ. [Current Belief (Posterior)] (Prior Belief) x (Data) Outline

Bayesian Analysis. Bayesian Analysis: Bayesian methods concern one s belief about θ. [Current Belief (Posterior)] (Prior Belief) x (Data) Outline Bayesian Analysis DuBois Bowman, Ph.D. Gordana Derado, M. S. Shuo Chen, M. S. Department of Biostatistics and Bioinformatics Center for Biomedical Imaging Statistics Emory University Outline I. Introduction

More information

Machine Learning Linear Regression. Prof. Matteo Matteucci

Machine Learning Linear Regression. Prof. Matteo Matteucci Machine Learning Linear Regression Prof. Matteo Matteucci Outline 2 o Simple Linear Regression Model Least Squares Fit Measures of Fit Inference in Regression o Multi Variate Regession Model Least Squares

More information

Multi-Atlas Tensor-Based Morphometry and its Application to a Genetic Study of 92 Twins

Multi-Atlas Tensor-Based Morphometry and its Application to a Genetic Study of 92 Twins Multi-Atlas Tensor-Based Morphometry and its Application to a Genetic Study of 92 Twins Natasha Leporé 1, Caroline Brun 1, Yi-Yu Chou 1, Agatha D. Lee 1, Marina Barysheva 1, Greig I. de Zubicaray 2, Matthew

More information

Network scaling effects in graph analytic studies of human resting-state fmri data

Network scaling effects in graph analytic studies of human resting-state fmri data SYSTEMS NEUROSCIENCE Original Research Article published: 17 June 2010 doi: 10.3389/fnsys.2010.00022 Network scaling effects in graph analytic studies of human resting-state fmri data Alex Fornito 1,2

More information

Singapore Institute for Neurotechnology & Memory Network Programme, National University of Singapore, Singapore

Singapore Institute for Neurotechnology & Memory Network Programme, National University of Singapore, Singapore SUPPLEMENTARY INFORMATION: Gene expression links functional networks across cortex and striatum Kevin M Anderson 1, Fenna M Krienen 2, Eun Young Choi 3, Jenna M Reinen 1, B T Thomas Yeo 4,5, Avram J Holmes

More information

What does a population that is normally distributed look like? = 80 and = 10

What does a population that is normally distributed look like? = 80 and = 10 What does a population that is normally distributed look like? = 80 and = 10 50 60 70 80 90 100 110 X Empirical Rule 68% 95% 99.7% 68-95-99.7% RULE Empirical Rule restated 68% of the data values fall within

More information