Contrast Mechanisms in MRI. Michael Jay Schillaci

Size: px
Start display at page:

Download "Contrast Mechanisms in MRI. Michael Jay Schillaci"

Transcription

1 Contrast Mechanisms in MRI Michael Jay Schillaci

2 Overview Image Acquisition Basic Pulse Sequences Unwrapping K-Space Image Optimization Contrast Mechanisms Static and Motion Contrasts T1 & T2 Weighting, Field Strength, T2*, Dephasing Endogenous Contrasts BOLD Imaging Motion Contrasts Time of Flight, Diffusion, Perfusion

3 Basic Pulse Sequences

4 Image Formation Integrate magnetization to get MRI signal Select a z slice and form image of XY plane variations S z ( t) = Area M XY ( x, y, t) e iγ t 0 [ xg ( τ ) + yg ( τ )] X Y dt dxdy Contrast from difference in magnetization in different tissues Image at several times to get average Horizontal density Vertical density

5 Basic MRI Scan Terminology Orientation: Coronal Sagittal Axial Coronal Sagittal Axial Matrix Size: # of Voxels in dimension Field of view (FOV): Spatial extent of dimension Resolution: FOV/Matrix size. Axial Orientation 64x64 Matrix 192x192mm FOV 3x3mm Resolution Sagittal Orientation 256x256 Matrix 256x256mm FOV 1x1mm Resolution

6 Image Creation The scanning process 1. Protocol sets Gradients and Encodes K-Space Weights 2. Signal is Determined with Fourier Transform 3. Image Created with Inverse Transform S z ( t) = Area M XY ( x, y, t) e iγ t 0 [ xg ( τ ) + yg ( τ )] X Y dt dxdy Step 2 k y = 2πγ t 0 G y dt Step 1 Step 3 k x = 2πγ t 0 G dt x N 1 y x ik ( tl ) yl ik ( t ) yl xn n ( l, yn ) s( kx, k ) n y e e l m x l= 0 N 1 n= 0 x n dk x n dk y l

7 Image Acquisition FOV x 1 π = = 2π = 2 Δx γg T γg N T x s x s FOV y 1 = Δy π = 2π 2 γg T γg T y pe x s G y varies in each cycle Data Acquisition (DAQ)

8 Slice Selection Gradient: G sl Gradient Field Ensures Field Greater on Top Larmor Frequency Depends on z Position RF pulse Energizes Matched Slice Field Strength Z Position

9 Frequency Encoding Gradient: G ro Apply transverse gradient when we wish to acquire image. Slice emits signal at Larmor frequency, e.g. lines at higher fields will have higher frequency signals. X Position Field Strength

10 Phase Encoding Gradient: G pe Apply Orthogonal RF pulse Apply before readout Adjusts the phase along the dimension (usually Y) Y Position Field Strength

11 Unwrapping K-Space Field of View: FOV x 1 π = = 2π = 2 Δx γg T γg N T x s x s FOV y 1 = Δy π = 2π 2 γg T γg T y pe x s Choose phase encoding time so that Δx = Δy Pixel Size: Δx = FOV N x x Δy = FOV N y y Image Adapted from Prof. Yao Wang s Medical Imaging course notes at:

12 Image Optimization Adjustment of Flip Angle Parameter Maximum SNR typically between 30 and 60 degrees Long TR sequences (2D) Increase SNR by increasing flip angle Short TR sequences (TOF & 3D) Decrease SNR by increasing flip angle S Maximizing the signal TR T1 1 e = M 0 sinθ e TR T1 1 cosθe gives the: Ernst Angle: Spoil cosθ E = e TR T 1 TE T * 2

13 Gradient Echo Imaging 1. Assume perfect spoiling - transverse magnetization is zero before each excitation: M zb = M za cosθ 2. Spin-Lattice (T1) Relaxation occurs between excitations: M zc TR = T1 M + zbe M0 1 e TR T 1 S Spoil = M 0 1 e sinθ 1 cosθe TR T 1 TR T 1 e TE T * 2 1. Assume steady state is reached during repeat time (TR): 2. Spoiled gradient rephases the FID signal at echo time (TE): S = M sinθe Spoil M = zc M za za TE T * 2

14 Spin Echo Imaging Spin echo sequence applies a 180º refocusing pulse Half way between 90º pulse and DAQ Allows measurement of true T2 time T2 T2*

15 The Refocusing Pulse 1 Actual Signal T2 Signal T2* TE 0.5 TE Spins Rotate at Different Rates Refocusing Pulse Re-Aligns Spins

16 Volume Reconstruction 3D volumes composed of 2D slices Slice thickness. Thicker slices have more hydrogen so more signal (shorter scan time) Thinner slices provide higher resolution (longer scan time) Optional: gap between slices. Reduces RF interference (SNR) SNR V N Fewer slices cover brain 3mm 1mm Gap 2mm Thick

17 Static Contrast Mechanisms

18 T1 and T2 Weighting T1 Contrast Echo at T2 min Repeat at T1 max T2 Contrast Echo at T2 max Repeat at T1 min Net Magnetization is T1 Contrast Weighting TR TE Max T1 Contrast Min T2 Contrast T2 Contrast Weighting TR TE M XY TR TE T T M e e = re cov ery decay Min T1 Contrast Max T2 Contrast

19 Static Contrast Images Examples from the Siemens 3T T1 Weighted Image (T1WI) (Gray Matter White Matter) T2 Weighted Image (T2WI) (Gray Matter CSF Contrast) Anatomical Image Diagnostic Image

20 Flip Angle Variation RF Pulse Magnitude Determines Flip Angle Duration and magnitude are important +z M B 0 θ θ M Z +y +x B C M XY M Z = M cos( θ ) M XY = M sin ( θ ) Adapted from:

21 Field Strength Effects Increased field strength Net magnetization in material is greater Increased contrast means signal is increased Image 1 resolution is better Muscle Tissue 1 MRI adapted from:

22 Tissue Contrast and Dephasing Dephasing of H 2 O and Fat MRI signal is a composite of Fat and H 2 O signals H 2 O and Fat resonate at different frequencies T1 F = 210 ms, T1 W = 2000 ms ( T1 F > T1 W fat is brighter) Relative phase gives TE dependence M F Φ FW M W Parallel ( Φ FW = 0 o TE = ms Anti-Parallel (Φ FW = 180 o TE = ms

23 Endogenous Contrast

24 BOLD Imaging Blood Oxyenation Level Dependent Contrast dhb is paramagnetic, Hb is less Susceptibility of blood increases linearly with oxygenation BOLD subject to T2* criteria Oxygen is extracted from capillaries Arteries are fully oxygenated Venous blood has increased proportion of dhb Difference between Hb and dhb is greater for veins Therefore BOLD is result of venous blood changes

25 Sources of the BOLD Signal BOLD is a very indirect measure of activity Blood flow Neuronal activity Metabolism [dhb] BOLD signal Blood volume

26 Neuronal Origins of BOLD BOLD response predicted by dendritic activity (LFPs) Increased neuronal activity results in increased MR (T2*) signal LFP=Local Field Potential; MUA=Multi-Unit Activity; SDF=Spike-Density Function Adapted from Logothetis et al. (2002)

27 The BOLD Signal BASELINE ACTIVE

28 BOLD Imaging Blood Oxyenation Level Dependent Contrast Susceptibility of blood changes with oxygenation Blood flow correlated with task performance Differential activations can be mapped BASELINE ACTIVE

29 Static Contrast - T2* Relaxation T2* accounts for magnetic defects and effects T2 T2 = + + * T2 T2M MS T2 is relaxation due to spin-spin interaction of nuclei T2 M is relaxation induced by inhomogeneities of main magnet T2 MS is relaxation induced by magnetic susceptibility of material M B 0 M χ m

30 BOLD artifacts fmri is a T2* image we will have all the artifacts that a spinecho sequence attempts to remove. Dephasing near air-tissue boundaries (e.g., sinuses) results in signal dropout. Non-BOLD BOLD

31 Motion Contrast

32 Flow Weighting Time-of-Flight Contrast Saturation Excitation Acquisition No Flow Medium Flow High Flow No Signal Medium Signal High Signal Vessel Vessel Vessel

33 ADC Diffusion Tensor Imaging Anisotropy Diffusion Coefficients Magnitude (ADC) Maps Proton pools Direction (Anisotropy) Maps Velocity Reconstruct Fiber Tracks with Clustering l = 2Dt S = S e o D γ G T 3 3

34 Indices of Diffusion Anisotropy Relative anisotropy: ( ) ( ) ( ) RA = λ λ + λ λ + λ λ λ Fractional anisotropy: FA = 3 ( λ1 λ) + ( λ2 λ) + ( λ3 λ) 2( λ1 + λ2 + λ3 ) MD FA Vector

35 DTI in Stroke Research Examine integrity of fiber tracts Tractography - trace white matter paths in gray matter Assess neglect as a disconnection syndrome Stroke Healthy

36 Arterial Spin Labeling Perfusion Flow of fluid into vessels to supply nutrients/oxygen The amount and direction of flow matters

37 Pulsed Labeling Imaging Plane Alternating Inversion Alternating Inversion FAIR Flow-sensitive Alternating IR EPISTAR EPI Signal Targeting with Alternating Radiofrequency

38 ASL Pulse Sequences RF EPI Signal Targeting with Alternating Radiofrequency 180 o 90 o 180 o FAIR EPISTAR Gx Gy Gz RF Gx Gy Gz Odd Scan 180 o Alternating Proximal Inversion Alternating opposite Distal Inversion Even Scan Odd Scan Even Scan Flow-sensitive Alternating IR 90 o 180 o Image Image

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam (closed book, 1 sheets of notes double sided allowed, no calculator or other electronic devices allowed) 1. Ultrasound Physics (15 pt) A) (9

More information

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution.

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution. Introduction to MRI Spin & Magnetic Moments Relaxation (T1, T2) Spin Echoes 2DFT Imaging Selective excitation, phase & frequency encoding K-space & Spatial Resolution Contrast (T1, T2) Acknowledgement:

More information

Physics of MR Image Acquisition

Physics of MR Image Acquisition Physics of MR Image Acquisition HST-583, Fall 2002 Review: -MRI: Overview - MRI: Spatial Encoding MRI Contrast: Basic sequences - Gradient Echo - Spin Echo - Inversion Recovery : Functional Magnetic Resonance

More information

FREQUENCY SELECTIVE EXCITATION

FREQUENCY SELECTIVE EXCITATION PULSE SEQUENCES FREQUENCY SELECTIVE EXCITATION RF Grad 0 Sir Peter Mansfield A 1D IMAGE Field Strength / Frequency Position FOURIER PROJECTIONS MR Image Raw Data FFT of Raw Data BACK PROJECTION Image Domain

More information

Part III: Sequences and Contrast

Part III: Sequences and Contrast Part III: Sequences and Contrast Contents T1 and T2/T2* Relaxation Contrast of Imaging Sequences T1 weighting T2/T2* weighting Contrast Agents Saturation Inversion Recovery JUST WATER? (i.e., proton density

More information

Introduction to MRI Acquisition

Introduction to MRI Acquisition Introduction to MRI Acquisition James Meakin FMRIB Physics Group FSL Course, Bristol, September 2012 1 What are we trying to achieve? 2 What are we trying to achieve? Informed decision making: Protocols

More information

Field trip: Tuesday, Feb 5th

Field trip: Tuesday, Feb 5th Pulse Sequences Field trip: Tuesday, Feb 5th Hardware tour of VUIIIS Philips 3T Meet here at regular class time (11.15) Complete MRI screening form! Chuck Nockowski Philips Service Engineer Reminder: Project/Presentation

More information

Advanced Topics and Diffusion MRI

Advanced Topics and Diffusion MRI Advanced Topics and Diffusion MRI Slides originally by Karla Miller, FMRIB Centre Modified by Mark Chiew (mark.chiew@ndcn.ox.ac.uk) Slides available at: http://users.fmrib.ox.ac.uk/~mchiew/teaching/ MRI

More information

Introduction to Biomedical Imaging

Introduction to Biomedical Imaging Alejandro Frangi, PhD Computational Imaging Lab Department of Information & Communication Technology Pompeu Fabra University www.cilab.upf.edu MRI advantages Superior soft-tissue contrast Depends on among

More information

Applications of Spin Echo and Gradient Echo: Diffusion and Susceptibility Contrast

Applications of Spin Echo and Gradient Echo: Diffusion and Susceptibility Contrast Applications of Spin Echo and Gradient Echo: Diffusion and Susceptibility Contrast Chunlei Liu, PhD Department of Electrical Engineering & Computer Sciences and Helen Wills Neuroscience Institute University

More information

Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori

Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori Enseignant-chercheur Equipe IMAGES - Télécom ParisTech pietro.gori@telecom-paristech.fr September 20, 2017 P. Gori BIOMED 20/09/2017 1 / 76

More information

Introduction to the Physics of NMR, MRI, BOLD fmri

Introduction to the Physics of NMR, MRI, BOLD fmri Pittsburgh, June 13-17, 2011 Introduction to the Physics of NMR, MRI, BOLD fmri (with an orientation toward the practical aspects of data acquisition) Pittsburgh, June 13-17, 2001 Functional MRI in Clinical

More information

The NMR Inverse Imaging Problem

The NMR Inverse Imaging Problem The NMR Inverse Imaging Problem Nuclear Magnetic Resonance Protons and Neutrons have intrinsic angular momentum Atoms with an odd number of proton and/or odd number of neutrons have a net magnetic moment=>

More information

MRI in Review: Simple Steps to Cutting Edge Part I

MRI in Review: Simple Steps to Cutting Edge Part I MRI in Review: Simple Steps to Cutting Edge Part I DWI is now 2 years old... Mike Moseley Radiology Stanford DWI, b = 1413 T2wt, 28/16 ASN 21 San Francisco + Disclosures: Funding NINDS, NCRR, NCI 45 minutes

More information

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2015 MRI Lecture 4 k (t) = γ 2π k y (t) = γ 2π K-space At each point in time, the received signal is the Fourier transform of the object

More information

Apodization. Gibbs Artifact. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 5. rect(k x )

Apodization. Gibbs Artifact. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 5. rect(k x ) Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2013 MRI Lecture 5 GE Medical Systems 2003 Gibbs Artifact Apodization rect(k ) Hanning Window h(k )=1/2(1+cos(2πk ) 256256 image 256128

More information

Bioengineering 278" Magnetic Resonance Imaging" " Winter 2011" Lecture 9! Time of Flight MRA!

Bioengineering 278 Magnetic Resonance Imaging  Winter 2011 Lecture 9! Time of Flight MRA! Bioengineering 278" Magnetic Resonance Imaging" " Winter 2011" Lecture 9 Motion Encoding using Longitudinal Magnetization: Magnetic Resonance Angiography Time of Flight Contrast Enhanced Arterial Spin

More information

M R I Physics Course. Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia

M R I Physics Course. Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia M R I Physics Course Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia M R I Physics Course Spin Echo Imaging Hahn Spin Echo

More information

On Signal to Noise Ratio Tradeoffs in fmri

On Signal to Noise Ratio Tradeoffs in fmri On Signal to Noise Ratio Tradeoffs in fmri G. H. Glover April 11, 1999 This monograph addresses the question of signal to noise ratio (SNR) in fmri scanning, when parameters are changed under conditions

More information

Chapter 14:Physics of Magnetic Resonance

Chapter 14:Physics of Magnetic Resonance Chapter 14:Physics of Magnetic Resonance Slide set of 141 slides based on the chapter authored by Hee Kwon Song of the publication (ISBN 978-92-0-131010-1): Diagnostic Radiology Physics: A Handbook for

More information

MR Advance Techniques. Flow Phenomena. Class I

MR Advance Techniques. Flow Phenomena. Class I MR Advance Techniques Flow Phenomena Class I Flow Phenomena In this class we will explore different phenomenona produced from nuclei that move during the acquisition of data. Flowing nuclei exhibit different

More information

Chapter 24 MRA and Flow quantification. Yongquan Ye, Ph.D. Assist. Prof. Radiology, SOM Wayne State University

Chapter 24 MRA and Flow quantification. Yongquan Ye, Ph.D. Assist. Prof. Radiology, SOM Wayne State University Chapter 24 MRA and Flow quantification Yongquan Ye, Ph.D. Assist. Prof. Radiology, SOM Wayne State University Previous classes Flow and flow compensation (Chap. 23) Steady state signal (Cha. 18) Today

More information

Nuclear Magnetic Resonance Imaging

Nuclear Magnetic Resonance Imaging Nuclear Magnetic Resonance Imaging Jeffrey A. Fessler EECS Department The University of Michigan NSS-MIC: Fundamentals of Medical Imaging Oct. 20, 2003 NMR-0 Background Basic physics 4 magnetic fields

More information

BMB 601 MRI. Ari Borthakur, PhD. Assistant Professor, Department of Radiology Associate Director, Center for Magnetic Resonance & Optical Imaging

BMB 601 MRI. Ari Borthakur, PhD. Assistant Professor, Department of Radiology Associate Director, Center for Magnetic Resonance & Optical Imaging BMB 601 MRI Ari Borthakur, PhD Assistant Professor, Department of Radiology Associate Director, Center for Magnetic Resonance & Optical Imaging University of Pennsylvania School of Medicine A brief history

More information

MRI Physics I: Spins, Excitation, Relaxation

MRI Physics I: Spins, Excitation, Relaxation MRI Physics I: Spins, Excitation, Relaxation Douglas C. Noll Biomedical Engineering University of Michigan Michigan Functional MRI Laboratory Outline Introduction to Nuclear Magnetic Resonance Imaging

More information

Basic MRI physics and Functional MRI

Basic MRI physics and Functional MRI Basic MRI physics and Functional MRI Gregory R. Lee, Ph.D Assistant Professor, Department of Radiology June 24, 2013 Pediatric Neuroimaging Research Consortium Objectives Neuroimaging Overview MR Physics

More information

Lab 2: Magnetic Resonance Imaging

Lab 2: Magnetic Resonance Imaging EE225E/BIOE265 Spring 2013 Principles of MRI Miki Lustig Developed by: Galen Reed and Miki Lustig Lab 2: Magnetic Resonance Imaging Introduction In this lab, we will get some hands-on experience with an

More information

Blood Water Dynamics

Blood Water Dynamics Bioengineering 208 Magnetic Resonance Imaging Winter 2007 Lecture 8 Arterial Spin Labeling ASL Basics ASL for fmri Velocity Selective ASL Vessel Encoded ASL Blood Water Dynamics Tissue Water Perfusion:

More information

MRI in Practice. Catherine Westbrook MSc, DCRR, CTC Senior Lecturer Anglia Polytechnic University Cambridge UK. John Talbot MSc, DCRR

MRI in Practice. Catherine Westbrook MSc, DCRR, CTC Senior Lecturer Anglia Polytechnic University Cambridge UK. John Talbot MSc, DCRR MRI in Practice Third edition Catherine Westbrook MSc, DCRR, CTC Senior Lecturer Anglia Polytechnic University Cambridge UK and Carolyn Kaut RothRT(R) (MR) (CT) (M) (CV) Fellow SMRT (Section for Magnetic

More information

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics Magnetic Resonance Imaging Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics pal.e.goa@ntnu.no 1 Why MRI? X-ray/CT: Great for bone structures and high spatial resolution Not so great

More information

NMR/MRI examination (8N080 / 3F240)

NMR/MRI examination (8N080 / 3F240) NMR/MRI examination (8N080 / 3F240) Remarks: 1. This test consists of 3 problems with at total of 26 sub-questions. 2. Questions are in English. You are allowed to answer them in English or Dutch. 3. Please

More information

Tissue Characteristics Module Three

Tissue Characteristics Module Three Tissue Characteristics Module Three 1 Equilibrium State Equilibrium State At equilibrium, the hydrogen vector is oriented in a direction parallel to the main magnetic field. Hydrogen atoms within the vector

More information

Sequence Overview. Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229

Sequence Overview. Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229 Sequence Overview Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging 75 Pulse Sequences and k-space RF k y G z k x G x 3D k-space G y k y k z Acq. k x 76 Gradient

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging BME I5000: Biomedical Imaging Lecture 9 Magnetic Resonance Imaging (imaging) Lucas C. Parra, parra@ccny.cuny.edu Blackboard: http://cityonline.ccny.cuny.edu/ 1 Schedule 1. Introduction, Spatial Resolution,

More information

G Medical Imaging. Outline 4/13/2012. Physics of Magnetic Resonance Imaging

G Medical Imaging. Outline 4/13/2012. Physics of Magnetic Resonance Imaging G16.4426 Medical Imaging Physics of Magnetic Resonance Imaging Riccardo Lattanzi, Ph.D. Assistant Professor Department of Radiology, NYU School of Medicine Department of Electrical and Computer Engineering,

More information

EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 9 Solutions. Due April 29th, 2013

EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 9 Solutions. Due April 29th, 2013 EE5E/BIOE65 Spring 013 Principles of MRI Miki Lustig This is the last homework in class. Enjoy it. Assignment 9 Solutions Due April 9th, 013 1) In class when we presented the spin-echo saturation recovery

More information

Introductory MRI Physics

Introductory MRI Physics C HAPR 18 Introductory MRI Physics Aaron Sodickson EXRNAL MAGNETIC FIELD, PROTONS AND EQUILIBRIUM MAGNETIZATION Much of the bulk of the magnetic resonance imaging (MRI) scanner apparatus is dedicated to

More information

Fundamentals of MR Imaging

Fundamentals of MR Imaging Fundamentals of MR Imaging Shantanu Sinha. Department of Radiology UCSD School of Medicine, San Diego, CA-92103. E-mail: shsinha@ucsd.edu Background References: R.B.Lufkin, The MRI Manual (2nd Edition).

More information

Background II. Signal-to-Noise Ratio (SNR) Pulse Sequences Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229.

Background II. Signal-to-Noise Ratio (SNR) Pulse Sequences Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229. Background II Signal-to-Noise Ratio (SNR) Pulse Sequences Sampling and Trajectories Parallel Imaging 1 SNR: Signal-to-Noise Ratio Signal: Desired voltage in coil Noise: Thermal, electronic Noise Thermal

More information

Diffusion Tensor Imaging (DTI): An overview of key concepts

Diffusion Tensor Imaging (DTI): An overview of key concepts Diffusion Tensor Imaging (DTI): An overview of key concepts (Supplemental material for presentation) Prepared by: Nadia Barakat BMB 601 Chris Conklin Thursday, April 8 th 2010 Diffusion Concept [1,2]:

More information

NMR and MRI : an introduction

NMR and MRI : an introduction Intensive Programme 2011 Design, Synthesis and Validation of Imaging Probes NMR and MRI : an introduction Walter Dastrù Università di Torino walter.dastru@unito.it \ Introduction Magnetic Resonance Imaging

More information

III, Diffusion, and Susceptibility. August 25, Departments of Mathematics and Applied Math and Computational Science University of Pennsylvania

III, Diffusion, and Susceptibility. August 25, Departments of Mathematics and Applied Math and Computational Science University of Pennsylvania III,, and Departments of Mathematics and Applied Math and Computational Science University of Pennsylvania August 25, 2010 Copyright Page All material in this lecture, except as noted within the text,

More information

Outlines: (June 11, 1996) Instructor:

Outlines: (June 11, 1996) Instructor: Magnetic Resonance Imaging (June 11, 1996) Instructor: Tai-huang Huang Institute of Biomedical Sciences Academia Sinica Tel. (02) 2652-3036; Fax. (02) 2788-7641 E. mail: bmthh@ibms.sinica.edu.tw Reference:

More information

Lecture 21. Nuclear magnetic resonance

Lecture 21. Nuclear magnetic resonance Lecture 21 Nuclear magnetic resonance A very brief history Stern and Gerlach atomic beam experiments Isidor Rabi molecular beam exp.; nuclear magnetic moments (angular momentum) Felix Bloch & Edward Purcell

More information

Quantitative Susceptibility Mapping and Susceptibility Tensor Imaging. Magnetization and Susceptibility

Quantitative Susceptibility Mapping and Susceptibility Tensor Imaging. Magnetization and Susceptibility Quantitative Susceptibility Mapping and Susceptibility Tensor Imaging 1, Chunlei Liu, Ph.D. 1 Brain Imaging and Analysis Center Department of Radiology Duke University, Durham, NC, USA 1 Magnetization

More information

} B 1 } Coil } Gradients } FFT

} B 1 } Coil } Gradients } FFT Introduction to MRI Daniel B. Ennis, Ph.D. Requirements for MRI UCLA DCVI Requirements for MRI Dipoles to Images MR Active uclei e.g. 1 H in H20 Cryogen Liquid He and 2 Magnetic Field (B0) Polarizer ystem

More information

Exam 8N080 - Introduction to MRI

Exam 8N080 - Introduction to MRI Exam 8N080 - Introduction to MRI Friday April 10 2015, 18.00-21.00 h For this exam you may use an ordinary calculator (not a graphical one). In total there are 5 assignments and a total of 50 points can

More information

Magnetic Resonance Imaging. Qun Zhao Bioimaging Research Center University of Georgia

Magnetic Resonance Imaging. Qun Zhao Bioimaging Research Center University of Georgia Magnetic Resonance Imaging Qun Zhao Bioimaging Research Center University of Georgia The Nobel Prize in Physiology or Medicine 2003 "for their discoveries concerning magnetic resonance imaging" Paul C.

More information

Functional Magnetic Resonance Imaging (FMRI) is an imaging technique for

Functional Magnetic Resonance Imaging (FMRI) is an imaging technique for Chapter 2 Principles of FMRI Functional Magnetic Resonance Imaging (FMRI) is an imaging technique for examining brain function. Since its first appearance in 1991 (Belliveau et al.[8]) the use of FMRI

More information

Principles of MRI EE225E / BIO265. Name That Artifact. RF Interference During Readout. RF Interference During Readout. Lecture 19

Principles of MRI EE225E / BIO265. Name That Artifact. RF Interference During Readout. RF Interference During Readout. Lecture 19 Name That Artifact Principles of MRI EE225E / BIO265 Lecture 19 Instructor: Miki Lustig UC Berkeley, EECS 1 http://mri-info.net 2 RF Interference During Readout RF Interference During Readout 1D FFT 1D

More information

Cambridge University Press MRI from A to Z: A Definitive Guide for Medical Professionals Gary Liney Excerpt More information

Cambridge University Press MRI from A to Z: A Definitive Guide for Medical Professionals Gary Liney Excerpt More information Main glossary Aa AB systems Referring to molecules exhibiting multiply split MRS peaks due to spin-spin interactions. In an AB system, the chemical shift between the spins is of similar magnitude to the

More information

Tissue Parametric Mapping:

Tissue Parametric Mapping: Tissue Parametric Mapping: Contrast Mechanisms Using SSFP Sequences Jongho Lee Department of Radiology University of Pennsylvania Tissue Parametric Mapping: Contrast Mechanisms Using bssfp Sequences Jongho

More information

Physical fundamentals of magnetic resonance imaging

Physical fundamentals of magnetic resonance imaging Physical fundamentals of magnetic resonance imaging Stepan Sereda University of Bonn 1 / 26 Why? Figure 1 : Full body MRI scan (Source: [4]) 2 / 26 Overview Spin angular momentum Rotating frame and interaction

More information

Part II: Magnetic Resonance Imaging (MRI)

Part II: Magnetic Resonance Imaging (MRI) Part II: Magnetic Resonance Imaging (MRI) Contents Magnetic Field Gradients Selective Excitation Spatially Resolved Reception k-space Gradient Echo Sequence Spin Echo Sequence Magnetic Resonance Imaging

More information

Pulse Sequences: RARE and Simulations

Pulse Sequences: RARE and Simulations Pulse Sequences: RARE and Simulations M229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2018.04.19 Department of Radiological Sciences David Geffen School of Medicine at UCLA Class Business Final project

More information

Chemistry 431. Lecture 23

Chemistry 431. Lecture 23 Chemistry 431 Lecture 23 Introduction The Larmor Frequency The Bloch Equations Measuring T 1 : Inversion Recovery Measuring T 2 : the Spin Echo NC State University NMR spectroscopy The Nuclear Magnetic

More information

MRI Physics II: Gradients, Imaging. Douglas C. Noll, Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor

MRI Physics II: Gradients, Imaging. Douglas C. Noll, Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor MRI Physics II: Gradients, Imaging Douglas C., Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor Magnetic Fields in MRI B 0 The main magnetic field. Always on (0.5-7 T) Magnetizes

More information

Basics of Diffusion Tensor Imaging and DtiStudio

Basics of Diffusion Tensor Imaging and DtiStudio Basics of Diffusion Tensor Imaging and DtiStudio DTI Basics 1 DTI reveals White matter anatomy Gray matter White matter DTI uses water diffusion as a probe for white matter anatomy Isotropic diffusion

More information

The physics US and MRI. Prof. Peter Bogner

The physics US and MRI. Prof. Peter Bogner The physics US and MRI Prof. Peter Bogner Sound waves mechanical disturbance, a pressure wave moves along longitudinal wave compression rarefaction zones c = nl, (c: velocity, n: frequency, l: wavelength

More information

The physics of medical imaging US, CT, MRI. Prof. Peter Bogner

The physics of medical imaging US, CT, MRI. Prof. Peter Bogner The physics of medical imaging US, CT, MRI Prof. Peter Bogner Clinical radiology curriculum blocks of lectures and clinical practice (7x2) Physics of medical imaging Neuroradiology Head and neck I. Head

More information

MRS: IN VIVO SPECTROSCOPIC IMAGING MAIN POINTS

MRS: IN VIVO SPECTROSCOPIC IMAGING MAIN POINTS MRS: IN VIVO SPECTROSCOPIC IMAGING MAIN POINTS 1. A MR spectrum can identify many metabolites other than water by: Locating the peak(s) determined by a characteristic chemical shift (ppm) resulting from

More information

2.1.1 A Brief History of NMR The conception of NMR sprouted after the Pauli s prediction of nuclear spin in

2.1.1 A Brief History of NMR The conception of NMR sprouted after the Pauli s prediction of nuclear spin in CHAPTER--2 BASICS OF NMR IMAGING AND SPECTROSCOPY 2.1 Introduction 2.1.1 A Brief History of NMR The conception of NMR sprouted after the Pauli s prediction of nuclear spin in 1924. Later Gorter (1936)

More information

Principles of Magnetic Resonance Imaging

Principles of Magnetic Resonance Imaging Principles of Magnetic Resonance Imaging Hi Klaus Scheffler, PhD Radiological Physics University of 1 Biomedical Magnetic Resonance: 1 Introduction Magnetic Resonance Imaging Contents: Hi 1 Introduction

More information

Basis of MRI Contrast

Basis of MRI Contrast Basis of MRI Contrast MARK A. HORSFIELD Department of Cardiovascular Sciences University of Leicester Leicester LE1 5WW UK Tel: +44-116-2585080 Fax: +44-870-7053111 e-mail: mah5@le.ac.uk 1 1.1 The Magnetic

More information

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY Spatial encoding in Magnetic Resonance Imaging Jean-Marie BONNY What s Qu est an image ce qu une? image? «a reproduction of a material object by a camera or a related technique» Multi-dimensional signal

More information

Diffusion Tensor Imaging I: The basics. Jennifer Campbell

Diffusion Tensor Imaging I: The basics. Jennifer Campbell Diffusion Tensor Imaging I: The basics Jennifer Campbell Diffusion Tensor Imaging I: The basics Jennifer Campbell Diffusion Imaging MRI: many different sources of contrast T1W T2W PDW Perfusion BOLD DW

More information

DIFFUSION MAGNETIC RESONANCE IMAGING

DIFFUSION MAGNETIC RESONANCE IMAGING DIFFUSION MAGNETIC RESONANCE IMAGING from spectroscopy to imaging apparent diffusion coefficient ADC-Map anisotropy diffusion tensor (imaging) DIFFUSION NMR - FROM SPECTROSCOPY TO IMAGING Combining Diffusion

More information

A Study of Flow Effects on the Gradient Echo Sequence

A Study of Flow Effects on the Gradient Echo Sequence -MR Flow Imaging- A Study of Flow Effects on the Gradient Echo Sequence Cylinder filled with doped water α pulse α pulse Flowing water Plastic pipes Slice Phase Read a TE b Signal sampling TR Thesis for

More information

Disclosures. MR Physics. Recipe to Creating Images without Radiation. MRI Physics. Vector Math. What s In an Image 12/21/2012. Siemens Medical Systems

Disclosures. MR Physics. Recipe to Creating Images without Radiation. MRI Physics. Vector Math. What s In an Image 12/21/2012. Siemens Medical Systems Disclosures MR Physics Joseph V. Fritz, PhD Dent Neurologic Institute Sunday, January 20, 2013 9:00 9:50 AM Siemens Medical Systems Research Agreement Philips Healthcare Research Agreement Toshiba Medical

More information

How is it different from conventional MRI? What is MR Spectroscopy? How is it different from conventional MRI? MR Active Nuclei

How is it different from conventional MRI? What is MR Spectroscopy? How is it different from conventional MRI? MR Active Nuclei What is MR Spectroscopy? MR-Spectroscopy (MRS) is a technique to measure the (relative) concentration of certain chemical or biochemical molecules in a target volume. MR-Spectroscopy is an in vivo (in

More information

Velocity Images. Phase Contrast Technique. G. Reiter 1,2, U. Reiter 1, R. Rienmüller 1

Velocity Images. Phase Contrast Technique. G. Reiter 1,2, U. Reiter 1, R. Rienmüller 1 Velocity Images - the MR Phase Contrast Technique G. Reiter 1,2, U. Reiter 1, R. Rienmüller 1 SSIP 2004 12 th Summer School in Image Processing, Graz, Austria 1 Interdisciplinary Cardiac Imaging Center,

More information

HY Ιατρική Απεικόνιση. Διδάσκων: Kώστας Μαριάς

HY Ιατρική Απεικόνιση. Διδάσκων: Kώστας Μαριάς HY 571 - Ιατρική Απεικόνιση Διδάσκων: Kώστας Μαριάς 11. MRI Τ1,Τ2, PD and physiological parameter imaging Summary and Clarifications Resonance is referred to as the property of an atom to absorb energy

More information

SENSE & SUSCEPTIBILITY: RESPIRATION-RELATED SUSCEPTIBILITY EFFECTS AND THEIR INTERACTIONS WITH PARALLEL IMAGING. John Sexton.

SENSE & SUSCEPTIBILITY: RESPIRATION-RELATED SUSCEPTIBILITY EFFECTS AND THEIR INTERACTIONS WITH PARALLEL IMAGING. John Sexton. SENSE & SUSCEPTIBILITY: RESPIRATION-RELATED SUSCEPTIBILITY EFFECTS AND THEIR INTERACTIONS WITH PARALLEL IMAGING By John Sexton Thesis Submitted to the Faculty of the Graduate School of Vanderbilt University

More information

Basic Concepts of MR Imaging, Diffusion MR Imaging, and Diffusion Tensor Imaging

Basic Concepts of MR Imaging, Diffusion MR Imaging, and Diffusion Tensor Imaging Basic Concepts of MR Imaging, Diffusion MR Imaging, and Diffusion Tensor Imaging Eduardo H.M.S.G. de Figueiredo, BSc a, *, Arthur F.N.G. Borgonovi, BSc b,c, Thomas M. Doring, MSc d,e KEYWORDS Magnetic

More information

Correction Gradients. Nov7, Reference: Handbook of pulse sequence

Correction Gradients. Nov7, Reference: Handbook of pulse sequence Correction Gradients Nov7, 2005 Reference: Handbook of pulse sequence Correction Gradients 1. Concomitant-Field Correction Gradients 2. Crusher Gradients 3. Eddy-Current Compensation 4. Spoiler Gradients

More information

Introduction to functional MRI in humans. Michael Hallquist University of Pittsburgh

Introduction to functional MRI in humans. Michael Hallquist University of Pittsburgh Introduction to functional MRI in humans Michael Hallquist University of Pittsburgh Goals of human neuroimaging Localization of brain function (mapping) Understanding large-scale functional integration

More information

Biomedical Imaging Magnetic Resonance Imaging

Biomedical Imaging Magnetic Resonance Imaging Biomedical Imaging Magnetic Resonance Imaging Charles A. DiMarzio & Eric Kercher EECE 4649 Northeastern University May 2018 Background and History Measurement of Nuclear Spins Widely used in physics/chemistry

More information

Sketch of the MRI Device

Sketch of the MRI Device Outline for Today 1. 2. 3. Introduction to MRI Quantum NMR and MRI in 0D Magnetization, m(x,t), in a Voxel Proton T1 Spin Relaxation in a Voxel Proton Density MRI in 1D MRI Case Study, and Caveat Sketch

More information

Magnetization Preparation Sequences

Magnetization Preparation Sequences Magnetization Preparation Sequences Acquisition method may not give desired contrast Prep block adds contrast (and/or encoding) MP-RAGE = Magnetization prepared rapid acquisition with gradient echo (Mugler,

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Magnetic Resonance Imaging in Medicine

Magnetic Resonance Imaging in Medicine Institute for Biomedical Engineering University and ETH Zurich Gloriastrasse 35 CH- 8092 Zurich Switzerland Magnetic Resonance Imaging in Medicine D. Meier, P. Boesiger, S. Kozerke 2012 All rights reserved.

More information

Development of Magnetic Resonance-Based Susceptibility Imaging Applications

Development of Magnetic Resonance-Based Susceptibility Imaging Applications Development of Magnetic Resonance-Based Susceptibility Imaging Applications Sung-Min Gho The Graduate School Yonsei University Development of Magnetic Resonance-Based Susceptibility Imaging Applications

More information

June 16, Signal generation and gradient fields in MRI. Maximilian Oehm. Summary of physical fundamentals. Motivation. Complex representation

June 16, Signal generation and gradient fields in MRI. Maximilian Oehm. Summary of physical fundamentals. Motivation. Complex representation in MRI of Signal in MRI June 16, 2015 in MRI Contents of 1 of 2 3 4 5 6 7 in MRI of of Magnetic field B e z (few T) Splits up energy levels N+ N N ++N 1ppm M = m V B No measurement in z-direction possible

More information

EE591 Magnetic Resonance Imaging and Reconstruction Project Report. S i m u l a t i o n. Professor: Krishna Nayak ID: , Name: Yongjin Cho

EE591 Magnetic Resonance Imaging and Reconstruction Project Report. S i m u l a t i o n. Professor: Krishna Nayak ID: , Name: Yongjin Cho EE591 Magnetic Resonance Imaging and Reconstruction Project Report S S F P S i m u l a t i o n Professor: Krishna Nayak ID: 2486.9458.56, Name: Yongjin Cho SSFP Simulation 1 1. Theory, simulation objective

More information

MRI at a Glance. Blackwell Science CATHERINE WESTBROOK. MSC DCRR CTC Director of Training and Education Lodestone Patient Care Ltd

MRI at a Glance. Blackwell Science CATHERINE WESTBROOK. MSC DCRR CTC Director of Training and Education Lodestone Patient Care Ltd MRI at a Glance MRI at a Glance CATHERINE WESTBROOK MSC DCRR CTC Director of Training and Education Lodestone Patient Care Ltd Blackwell Science 2002 by Blackwell Science Ltd, a Blackwell Publishing Company

More information

Rad Tech 4912 MRI Registry Review. Outline of the Registry Exam: Certification Fees

Rad Tech 4912 MRI Registry Review. Outline of the Registry Exam: Certification Fees Rad Tech 4912 MRI Registry Review Outline of the Registry Exam: Category: # of questions: A. Patient Care 30 B. Imaging Procedures 62 C. Data Acquisition and Processing 65 D. Physical Principles of Image

More information

BNG/ECE 487 FINAL (W16)

BNG/ECE 487 FINAL (W16) BNG/ECE 487 FINAL (W16) NAME: 4 Problems for 100 pts This exam is closed-everything (no notes, books, etc.). Calculators are permitted. Possibly useful formulas and tables are provided on this page. Fourier

More information

Lecture k-space. k-space illustrations. Zeugmatography 3/7/2011. Use of gradients to make an image echo. K-space Intro to k-space sampling

Lecture k-space. k-space illustrations. Zeugmatography 3/7/2011. Use of gradients to make an image echo. K-space Intro to k-space sampling Lecture 21-3-16 K-space Intro to k-space sampling (chap 3) Frequenc encoding and Discrete sampling (chap 2) Point Spread Function K-space properties K-space sampling principles (chap 3) Basic Contrast

More information

RAD229: Final Exam 2014/ SOLUTIONS You will have 3 hours to complete this Exam

RAD229: Final Exam 2014/ SOLUTIONS You will have 3 hours to complete this Exam RAD229: Final Exam 2014/2015 - SOLUTIONS You will have 3 hours to complete this Exam Solutions are given in Blue. In some cases, different interpretations may have led to different, but reasonable answers,

More information

PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER

PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER PETER PAZMANY CATHOLIC UNIVERSITY SEMMELWEIS UNIVERSITY Development of Complex Curricula for Molecular Bionics and Infobionics Programs within a consortial* framework** Consortium leader PETER PAZMANY

More information

BASIC MRI PHYSICS SPIN GYMNASTICS Don Plewes PhD, Walter Kucharczyk MD

BASIC MRI PHYSICS SPIN GYMNASTICS Don Plewes PhD, Walter Kucharczyk MD BASIC MRI PHYSICS SPIN GYMNASTICS Don Plewes PhD, Walter Kucharczyk MD Introduction To understand MRI, it is first necessary to understand the physics of proton Nuclear Magnetic Resonance (NMR). The most

More information

Diffusion Weighted MRI. Zanqi Liang & Hendrik Poernama

Diffusion Weighted MRI. Zanqi Liang & Hendrik Poernama Diffusion Weighted MRI Zanqi Liang & Hendrik Poernama 1 Outline MRI Quick Review What is Diffusion MRI? Detecting Diffusion Stroke and Tumor Detection Presenting Diffusion Anisotropy and Diffusion Tensor

More information

RAD229: Midterm Exam 2015/2016 October 19, Minutes. Please do not proceed to the next page until the exam begins.

RAD229: Midterm Exam 2015/2016 October 19, Minutes. Please do not proceed to the next page until the exam begins. RAD229: Midterm Exam 2015/2016 October 19, 2015 ---- 75 Minutes Name: Student ID: General Instructions: 1. Write your name legibly on this page. 2. You may use notes including lectures, homework, solutions

More information

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY Spatial encoding in Magnetic Resonance Imaging Jean-Marie BONNY What s Qu est an image ce qu une? image? «a reproduction of a material object by a camera or a related technique» Multi-dimensional signal

More information

A model for susceptibility artefacts from respiration in functional echo-planar magnetic resonance imaging

A model for susceptibility artefacts from respiration in functional echo-planar magnetic resonance imaging Phys. Med. Biol. 45 (2000) 3809 3820. Printed in the UK PII: S0031-9155(00)14109-0 A model for susceptibility artefacts from respiration in functional echo-planar magnetic resonance imaging Devesh Raj,

More information

Functional magnetic resonance imaging

Functional magnetic resonance imaging University of Ljubljana Faculty of Mathematics and Physics Department of Physics Seminar I b - 2nd year, Second cycle degree Functional magnetic resonance imaging Author: Patricia Cotič Supervisor: Assoc.

More information

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft MR Fundamentals 26 October 2010 Mitglied der Helmholtz-Gemeinschaft Mitglied der Helmholtz-Gemeinschaft Nuclear Spin Nuclear Spin Nuclear magnetic resonance is observed in atoms with odd number of protons

More information

Chapter 26 Sequence Design, Artifacts and Nomenclature. Yongquan Ye, Ph.D. Assist. Prof. Radiology, SOM Wayne State University

Chapter 26 Sequence Design, Artifacts and Nomenclature. Yongquan Ye, Ph.D. Assist. Prof. Radiology, SOM Wayne State University Chapter 26 Sequence Design, Artifacts and Nomenclature Yongquan Ye, Ph.D. Assist. Prof. Radiology, SOM Wayne State University Previous classes: RF pulse, Gradient, Signal Readout Gradient echo, spin echo,

More information

EE225E/BIOE265 Spring 2016 Principles of MRI. Assignment 4. Due Friday Feb 19st, 2016, Self Grading Due Monday Feb 22nd, 2016

EE225E/BIOE265 Spring 2016 Principles of MRI. Assignment 4. Due Friday Feb 19st, 2016, Self Grading Due Monday Feb 22nd, 2016 EE225E/BIOE265 Spring 2016 Principles of MRI Miki Lustig Assignment 4 Due Friday Feb 19st, 2016, Self Grading Due Monday Feb 22nd, 2016 1. Finish reading Nishimura Ch.4 and Ch. 5. 2. The following pulse

More information

Quantitative/Mapping Methods

Quantitative/Mapping Methods Quantitative/Mapping Methods Gradient Measurement Fat/Water Separation B0 and B1 mapping T1, T2 and T2* mapping 426 Gradient Measurement Duyn method Modifications 427 Duyn Method - Pulse Sequence Excite

More information