Lecture k-space. k-space illustrations. Zeugmatography 3/7/2011. Use of gradients to make an image echo. K-space Intro to k-space sampling

Size: px
Start display at page:

Download "Lecture k-space. k-space illustrations. Zeugmatography 3/7/2011. Use of gradients to make an image echo. K-space Intro to k-space sampling"

Transcription

1 Lecture K-space Intro to k-space sampling (chap 3) Frequenc encoding and Discrete sampling (chap 2) Point Spread Function K-space properties K-space sampling principles (chap 3) Basic Contrast mechanism (chap 4) K-space Intro to k-space sampling Frequenc encoding and Discrete sampling Point Spread Function K-space properties K-space sampling Pulse Sequence Basic Contrast mechanisms k-space k t k = γg(τ ) dτ = k z Limiting discussion to a slice (2D plane), magnetization distribution is given b the 2-dimensional Fourier transform of the spin distribution across the slice M T (t) = ρ(r) ep( jk r)dr slice ρ(r) is obtained from the inverse Fourier transform of M T (t)under the influence of a known gradient configuration ρ(,) = 1 k M T (k, )ep( j( k + ) )dk d k-space = visualization of the distribution of spatial frequencies in the image. k-space = Fourier transform of the MR image k-space illustrations FT {FT} -1 {FT} -1 FT ρ(, ) = 1 M T ( k, k ) ep( j ( k + k ) k M T (t) k t k = γ = G( τ ) dτ k k z dk dk FYS-KJEM FYS-KJEM Use of gradients to make an image echo Zeugmatograph G G Combination of G and G to rotate the total gradient orientation reconstruction b back projection Relationship between a three-dimensional object, its two-dimensional projection along the Y-ais, and four one-dimensional projections at 45 intervals in the XZ-plane. The arrows indicate the gradient directions. Lauterbur PC. Image formation b induced local interactions: eamples of emploing nuclear magnetic resonance. Nature 1973; 242: FYS-KJEM FYS-KJEM

2 What describes waves (signal) K-space Intro to k-space sampling Frequenc encoding and Discrete sampling Point Spread Function K-space properties K-space sampling Pulse Sequence Basic Contrast mechanisms Difference of phases between the 2 sums Frequenc information Sum of waves with different frequencies Same frequencies as above FYS-KJEM FYS-KJEM SE magnetization evolution The phase angle of a spin in a slice at a tis given b: t ω (,, t) dt = γgnt + γgt G pulsed field gradient along Definition of k: Gradient on t k i = γ G i ( t) dt (in the direction i) surface t The total transverse magnetisation is a function of k, and the position in the slice: M T (k, ) Image reconstruction: ρ(,) = 1 k k M T (k, )ep( j( k + ) )dk d 2D Fourier Transform FYS-KJEM FYS-KJEM Spin Echo: freq. encoding t= t=/2 t= Phase encoding t= t=/2 t= echo (frequenc encoding) G (frequenc encoding) G dephasing samplingof the signal which contains frequenc information (-ais) FYS-KJEM Spatial information in direction FYS-KJEM G 2

3 Frequenc and Phase encoding signal acquisition profile Phase encoding: needs multiple echo acquisitions FYS-KJEM FYS-KJEM Digital signal sampling Discrete sampling K-space Intro to k-space sampling Frequenc encoding and Discrete sampling Point Spread Function K-space properties K-space sampling Pulse Sequence Basic Contrast mechanisms FYS-KJM FYS-KJEM Discrete sampling PSF () = +T read / 2 T read / 2 A.e ( iγg..t ) dt T read MR-signal (M T ) U(t) Sampling interval: U(t) = 1 if t [-T read /2, T read /2] and elsewhere Signal sampling is modulated b a Block Function U(t) T read = N.t s In frequenc domain, this translates to: + PSF() = FFT( U(t) ) = U(t)e ( iγg..t ) dt PSF() = A iγg e( iγg..t ) T [ ] read / 2 Tread / 2 PSF() = A sin(γg..t read / 2) γg sin γgt read 2 PSF() = T read γg T read 2 periodic function (See eq. 2-24) FYS-KJEM FYS-KJM

4 PSF() P Field of View (FOV) ρ(,) = 1 M T (k, )ep( j( k + ) )dk d ρ(,) = 1 M T(k )ep( j( k ) )dk k k δfunction (point object) image representation of the point object We can calculate the Full Width at Half Height (FWHH) π = γ G T read k, ma = γg T read / 2 T read = N.t s λ ma = = = FOV k, min γg t s G = = f s γ FOV t s γ FOV (smallest wavelength) wavelength G is automaticall calculated b the scanner FOV is entered b the user (see Eq. 2-28) λ = / k FYS-KJM FYS-KJM FOV K-space properties Same definition can be done for the direction FOV = =, min γ( G, n G, n 1 )T πphase difference at the edge of the FOV Consider a square matri: N 2 = N.N Resolution (): δ = γg N t Field of view (): λ,ma,min s = = = FoV k γg t s Maimum frequenc in read-out () direction ± ω = ±γg FoV / 2 ma Min sampling rate (): 1 s / t γg FoV / G,n G,n 1 = G πn G, ma = (See Eq. 2-33) γt FOV We need to have G N 2 = G, ma Field of view (): πn λ,ma = FoV = γg T _ ma Sampling rate (): N = γg _ ma T FoV FYS-KJM FYS-KJEM K-space vs image space Back-folding / direction S(r) F(k) Increase 1/t s, N. ρ(,) FT FoV {FT} -1 k Object FoV N k t s k _ma FoV -ω ma = -γg FoV /2 ω ma = γg FoV /2 1 ρ(, ) = FYS-KJEM 474 M T ( k, k ) ep( j( k + k ) ) k dk dk N k k t k = γ = G( τ) dτ k k z 23 FYS-KJEM 474 Image FoV discarded discarded 24 4

5 Back-folding / direction FFT 1D: Truncation Artefact Object FoV Image FoV Fold-Over artefact FYS-KJEM FYS-KJEM FFT 2D: Truncation artefact Truncation artifact Ringing- (or truncation) artifacts in regions with high spatial frequencies (edges) in a phantom. The artifacts are more evident in the right image due to a lower matri (N=112, vs N=256 in the left image). FYS-KJEM FYS-KJEM Fold-Over artefact K-space Intro to k-space sampling Frequenc encoding and Discrete sampling Point Spread Function K-space properties K-space sampling Pulse Sequence Basic Contrast mechanisms FYS-KJEM FYS-KJEM

6 Frequenc and Phase encoding Phase encoding: needs multiple echo acquisitions Pulse sequence introduction Field gradients Spatial coding frequenc encoding (gradient on during signal acquisition) Phase encoding (gradient on before signal acquisition, repeated at different amplitudes) FYS-KJEM FYS-KJM Spatiall encoded Echoes Spin-Echo: SE Use of gradient in a spin-echo eperiment to induce spatiall dependent dephasing and rephasing Gradient Echo: GRE Gradient induced echo Spin Echo: freq. encoding (frequenc encoding) t= t=/2 t= 9 18 dephasing echo G FYS-KJM samplingof the signal which contains frequenc information (-ais) FYS-KJEM Gradient Echo 9 Gradient Echo M T 2 * relaation (FID) G t M z z z echo z z k = γ T G _ rew dt + T +T read / 2 T G _ rew dt = G T _ rewt + G read _ r 2 = FYS-KJEM FYS-KJEM

7 Gradient Echo (GRE) Travelling in k-space 1 sample RF G k G FYS-KJM FYS-KJM Gradient Echo 9 Gradient Echo 9 G k G k FYS-KJEM FYS-KJEM Gradient Echo Gradient Echo 9 9 G k G k repeated N s t s FYS-KJEM FYS-KJEM

8 Spin-Echo k-space travelling t= t=/2 t= 9 18 echo Repeated Phase encoding slice selection 18º rf pulse read-out phase encode t=/2 Acquisition of a profile (frequenc encoding) G t= k Spatial information in direction G FYS-KJEM FYS-KJEM Repeated Phase encoding Repeated Phase encoding (frequenc encoding) G (frequenc encoding) G Spatial information in direction G Spatial information in direction G FYS-KJEM FYS-KJEM Repeated Phase encoding Repeated Phase encoding (frequenc encoding) G (frequenc encoding) G Spatial information in direction G Spatial information in direction G FYS-KJEM FYS-KJEM

9 Repeated Phase encoding Acquisition of profile Repeated Phase encoding acquisition of all profiles (frequenc encoding) G (frequenc encoding) G Spatial information in direction G Spatial information in direction G FYS-KJEM FYS-KJEM Repeated acquisition of profiles k profiles +128 the field of view: FOV phase K FOV depends on the - gradient strengths -sampling of a profile frequenc -127 FYS-KJEM FYS-KJEM Signal intensit distribution in the selected slice phase K k frequenc encoding 2D FT frequenc -127 m(, ) = 1 k M T ( k, )ep[ i( k + ) ]dk d ω FYS-KJEM frequenc ω FYS-KJEM

10 Image generation IMAGE ω frequenc ω FYS-KJEM K-space Intro to k-space sampling Frequenc encoding and Discrete sampling Point Spread Function K-space properties K-space sampling Pulse Sequence Basic Contrast mechanisms FYS-KJEM and TR Basic Contrast 1 9 o Longitudinal and Transverse Relaation: TR FYS-KJEM FYS-KJEM Longitudinal and Transverse Relaation: at the same moment 9 o magnetisation 1 short T1 9 o 9 o signal FYS-KJEM FYS-KJEM

11 short T1 long T1 1 9 o 9 o short T2 1 9 o 9 o FYS-KJEM FYS-KJEM long T1 repetition 9 o 9 o 9 o TR 9 o 1 long T2 1 FYS-KJEM FYS-KJEM echo 9 o 9 o o 9 o Short FYS-KJEM FYS-KJEM

12 Longer 2 different tissues with different T1/T2 1 9 o 9 o 1 9 o 9 o FYS-KJEM FYS-KJEM T1 contrast brain eample T1 contrast 1 9 o White matter 1 9 o 9 o WM Gre matter GM FYS-KJEM FYS-KJEM T1 contrast T1 contrast 1 9 o 9 o WM 1 9 o 9 o WM GM GM FYS-KJEM FYS-KJEM

13 T1 contrast T1-weighted images TR 4 ms 1 9 o 9 o WM GM 1 ms 3 ms 4 ms FYS-KJEM FYS-KJEM Fat bone marrow bright i.v.contrast T1 weighted images: white matter TR short(se) < 6 ms (canbeas lowas 1.5ms) gre matter muscle bod fluids gre short < 25 ms bone air black TR < 6 ms < 25 ms FYS-KJEM FYS-KJEM T1-w knee PD (ρ*, proton densit) & T2 contrast 9 o 9 o 1 * Denoted rho contrast in the compendium FYS-KJEM FYS-KJEM

14 PD & T2 contrast PD & T2 contrast 1 9 o 9 o 1 9 o 9 o FYS-KJEM FYS-KJEM PD contrast long TR, short T2 contrast: increases 1 9 o 1 9 o FYS-KJEM FYS-KJEM T2 contrast, long TR, long PD & T2 weighted images TR 25 ms 9 o 1 2 ms 6 ms 1 ms 14 ms FYS-KJEM FYS-KJEM

15 Spine / summar T2 weighted images: TR long long > 18 ms > 8 ms T1 weighted T2 weighted FYS-KJEM FYS-KJEM Table of relaation s From: Greg J. Stanisz, Magnetic Resonance in Medicine 54: (25) FYS-KJM

Physics of MR Image Acquisition

Physics of MR Image Acquisition Physics of MR Image Acquisition HST-583, Fall 2002 Review: -MRI: Overview - MRI: Spatial Encoding MRI Contrast: Basic sequences - Gradient Echo - Spin Echo - Inversion Recovery : Functional Magnetic Resonance

More information

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2015 MRI Lecture 4 k (t) = γ 2π k y (t) = γ 2π K-space At each point in time, the received signal is the Fourier transform of the object

More information

Introduction to Biomedical Imaging

Introduction to Biomedical Imaging Alejandro Frangi, PhD Computational Imaging Lab Department of Information & Communication Technology Pompeu Fabra University www.cilab.upf.edu MRI advantages Superior soft-tissue contrast Depends on among

More information

Apodization. Gibbs Artifact. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 5. rect(k x )

Apodization. Gibbs Artifact. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 5. rect(k x ) Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2013 MRI Lecture 5 GE Medical Systems 2003 Gibbs Artifact Apodization rect(k ) Hanning Window h(k )=1/2(1+cos(2πk ) 256256 image 256128

More information

Part III: Sequences and Contrast

Part III: Sequences and Contrast Part III: Sequences and Contrast Contents T1 and T2/T2* Relaxation Contrast of Imaging Sequences T1 weighting T2/T2* weighting Contrast Agents Saturation Inversion Recovery JUST WATER? (i.e., proton density

More information

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics Magnetic Resonance Imaging Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics pal.e.goa@ntnu.no 1 Why MRI? X-ray/CT: Great for bone structures and high spatial resolution Not so great

More information

NMR and MRI : an introduction

NMR and MRI : an introduction Intensive Programme 2011 Design, Synthesis and Validation of Imaging Probes NMR and MRI : an introduction Walter Dastrù Università di Torino walter.dastru@unito.it \ Introduction Magnetic Resonance Imaging

More information

Basic Pulse Sequences I Saturation & Inversion Recovery UCLA. Radiology

Basic Pulse Sequences I Saturation & Inversion Recovery UCLA. Radiology Basic Pulse Sequences I Saturation & Inversion Recovery Lecture #5 Learning Objectives Explain what the most important equations of motion are for describing spin systems for MRI. Understand the assumptions

More information

The physics US and MRI. Prof. Peter Bogner

The physics US and MRI. Prof. Peter Bogner The physics US and MRI Prof. Peter Bogner Sound waves mechanical disturbance, a pressure wave moves along longitudinal wave compression rarefaction zones c = nl, (c: velocity, n: frequency, l: wavelength

More information

Nuclear Magnetic Resonance Imaging

Nuclear Magnetic Resonance Imaging Nuclear Magnetic Resonance Imaging Jeffrey A. Fessler EECS Department The University of Michigan NSS-MIC: Fundamentals of Medical Imaging Oct. 20, 2003 NMR-0 Background Basic physics 4 magnetic fields

More information

Contrast Mechanisms in MRI. Michael Jay Schillaci

Contrast Mechanisms in MRI. Michael Jay Schillaci Contrast Mechanisms in MRI Michael Jay Schillaci Overview Image Acquisition Basic Pulse Sequences Unwrapping K-Space Image Optimization Contrast Mechanisms Static and Motion Contrasts T1 & T2 Weighting,

More information

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution.

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution. Introduction to MRI Spin & Magnetic Moments Relaxation (T1, T2) Spin Echoes 2DFT Imaging Selective excitation, phase & frequency encoding K-space & Spatial Resolution Contrast (T1, T2) Acknowledgement:

More information

Exam 8N080 - Introduction to MRI

Exam 8N080 - Introduction to MRI Exam 8N080 - Introduction to MRI Friday April 10 2015, 18.00-21.00 h For this exam you may use an ordinary calculator (not a graphical one). In total there are 5 assignments and a total of 50 points can

More information

BMB 601 MRI. Ari Borthakur, PhD. Assistant Professor, Department of Radiology Associate Director, Center for Magnetic Resonance & Optical Imaging

BMB 601 MRI. Ari Borthakur, PhD. Assistant Professor, Department of Radiology Associate Director, Center for Magnetic Resonance & Optical Imaging BMB 601 MRI Ari Borthakur, PhD Assistant Professor, Department of Radiology Associate Director, Center for Magnetic Resonance & Optical Imaging University of Pennsylvania School of Medicine A brief history

More information

The NMR Inverse Imaging Problem

The NMR Inverse Imaging Problem The NMR Inverse Imaging Problem Nuclear Magnetic Resonance Protons and Neutrons have intrinsic angular momentum Atoms with an odd number of proton and/or odd number of neutrons have a net magnetic moment=>

More information

Principles of Magnetic Resonance Imaging

Principles of Magnetic Resonance Imaging Principles of Magnetic Resonance Imaging Hi Klaus Scheffler, PhD Radiological Physics University of 1 Biomedical Magnetic Resonance: 1 Introduction Magnetic Resonance Imaging Contents: Hi 1 Introduction

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging BME I5000: Biomedical Imaging Lecture 9 Magnetic Resonance Imaging (imaging) Lucas C. Parra, parra@ccny.cuny.edu Blackboard: http://cityonline.ccny.cuny.edu/ 1 Schedule 1. Introduction, Spatial Resolution,

More information

Correction Gradients. Nov7, Reference: Handbook of pulse sequence

Correction Gradients. Nov7, Reference: Handbook of pulse sequence Correction Gradients Nov7, 2005 Reference: Handbook of pulse sequence Correction Gradients 1. Concomitant-Field Correction Gradients 2. Crusher Gradients 3. Eddy-Current Compensation 4. Spoiler Gradients

More information

Introductory MRI Physics

Introductory MRI Physics C HAPR 18 Introductory MRI Physics Aaron Sodickson EXRNAL MAGNETIC FIELD, PROTONS AND EQUILIBRIUM MAGNETIZATION Much of the bulk of the magnetic resonance imaging (MRI) scanner apparatus is dedicated to

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analsis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Sketch of the MRI Device

Sketch of the MRI Device Outline for Today 1. 2. 3. Introduction to MRI Quantum NMR and MRI in 0D Magnetization, m(x,t), in a Voxel Proton T1 Spin Relaxation in a Voxel Proton Density MRI in 1D MRI Case Study, and Caveat Sketch

More information

MRI in Review: Simple Steps to Cutting Edge Part I

MRI in Review: Simple Steps to Cutting Edge Part I MRI in Review: Simple Steps to Cutting Edge Part I DWI is now 2 years old... Mike Moseley Radiology Stanford DWI, b = 1413 T2wt, 28/16 ASN 21 San Francisco + Disclosures: Funding NINDS, NCRR, NCI 45 minutes

More information

FREQUENCY SELECTIVE EXCITATION

FREQUENCY SELECTIVE EXCITATION PULSE SEQUENCES FREQUENCY SELECTIVE EXCITATION RF Grad 0 Sir Peter Mansfield A 1D IMAGE Field Strength / Frequency Position FOURIER PROJECTIONS MR Image Raw Data FFT of Raw Data BACK PROJECTION Image Domain

More information

Part II: Magnetic Resonance Imaging (MRI)

Part II: Magnetic Resonance Imaging (MRI) Part II: Magnetic Resonance Imaging (MRI) Contents Magnetic Field Gradients Selective Excitation Spatially Resolved Reception k-space Gradient Echo Sequence Spin Echo Sequence Magnetic Resonance Imaging

More information

Sequence Overview. Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229

Sequence Overview. Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229 Sequence Overview Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging 75 Pulse Sequences and k-space RF k y G z k x G x 3D k-space G y k y k z Acq. k x 76 Gradient

More information

} B 1 } Coil } Gradients } FFT

} B 1 } Coil } Gradients } FFT Introduction to MRI Daniel B. Ennis, Ph.D. Requirements for MRI UCLA DCVI Requirements for MRI Dipoles to Images MR Active uclei e.g. 1 H in H20 Cryogen Liquid He and 2 Magnetic Field (B0) Polarizer ystem

More information

Biomedical Imaging Magnetic Resonance Imaging

Biomedical Imaging Magnetic Resonance Imaging Biomedical Imaging Magnetic Resonance Imaging Charles A. DiMarzio & Eric Kercher EECE 4649 Northeastern University May 2018 Background and History Measurement of Nuclear Spins Widely used in physics/chemistry

More information

MR Advance Techniques. Flow Phenomena. Class I

MR Advance Techniques. Flow Phenomena. Class I MR Advance Techniques Flow Phenomena Class I Flow Phenomena In this class we will explore different phenomenona produced from nuclei that move during the acquisition of data. Flowing nuclei exhibit different

More information

Spin Echo Imaging Sequence

Spin Echo Imaging Sequence 1 MRI In Stereotactic Procedures Edward F. Jackson, Ph.D. The University of Texas M.D. Anderson Cancer Center Houston, Texas 2 RF G slice G phase G freq Signal k-space Spin Echo Imaging Sequence TE 1st

More information

7.3.A. The expression for signal recovery is similar to that derived under exercise 7.2 and is given by:

7.3.A. The expression for signal recovery is similar to that derived under exercise 7.2 and is given by: 7..A. Chemical shift difference 3..0. ppm, which equals 54.5 Hz at 3.0 T. Spatial displacement 54.5/00 0.87, which equals.03 cm along the 8 cm side and 0.77 cm along the 6 cm. The cm slice does not have

More information

Tissue Characteristics Module Three

Tissue Characteristics Module Three Tissue Characteristics Module Three 1 Equilibrium State Equilibrium State At equilibrium, the hydrogen vector is oriented in a direction parallel to the main magnetic field. Hydrogen atoms within the vector

More information

NMR/MRI examination (8N080 / 3F240)

NMR/MRI examination (8N080 / 3F240) NMR/MRI examination (8N080 / 3F240) Remarks: 1. This test consists of 3 problems with at total of 26 sub-questions. 2. Questions are in English. You are allowed to answer them in English or Dutch. 3. Please

More information

Topics. Spin. The concept of spin Precession of magnetic spin Relaxation Bloch Equation

Topics. Spin. The concept of spin Precession of magnetic spin Relaxation Bloch Equation Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2005 MRI Lecture 1 Topics The concept of spin Precession of magnetic spin Relaation Bloch Equation Spin Intrinsic angular momentum of elementary

More information

Chapter 14:Physics of Magnetic Resonance

Chapter 14:Physics of Magnetic Resonance Chapter 14:Physics of Magnetic Resonance Slide set of 141 slides based on the chapter authored by Hee Kwon Song of the publication (ISBN 978-92-0-131010-1): Diagnostic Radiology Physics: A Handbook for

More information

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam (closed book, 1 sheets of notes double sided allowed, no calculator or other electronic devices allowed) 1. Ultrasound Physics (15 pt) A) (9

More information

Topics. The History of Spin. Spin. The concept of spin Precession of magnetic spin Relaxation

Topics. The History of Spin. Spin. The concept of spin Precession of magnetic spin Relaxation Topics Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2008 MRI Lecture 1 The concept of spin Precession of magnetic spin Relaation Spin The History of Spin Intrinsic angular momentum

More information

MRI Physics II: Gradients, Imaging. Douglas C. Noll, Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor

MRI Physics II: Gradients, Imaging. Douglas C. Noll, Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor MRI Physics II: Gradients, Imaging Douglas C., Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor Magnetic Fields in MRI B 0 The main magnetic field. Always on (0.5-7 T) Magnetizes

More information

Physical fundamentals of magnetic resonance imaging

Physical fundamentals of magnetic resonance imaging Physical fundamentals of magnetic resonance imaging Stepan Sereda University of Bonn 1 / 26 Why? Figure 1 : Full body MRI scan (Source: [4]) 2 / 26 Overview Spin angular momentum Rotating frame and interaction

More information

Rad Tech 4912 MRI Registry Review. Outline of the Registry Exam: Certification Fees

Rad Tech 4912 MRI Registry Review. Outline of the Registry Exam: Certification Fees Rad Tech 4912 MRI Registry Review Outline of the Registry Exam: Category: # of questions: A. Patient Care 30 B. Imaging Procedures 62 C. Data Acquisition and Processing 65 D. Physical Principles of Image

More information

A Study of Flow Effects on the Gradient Echo Sequence

A Study of Flow Effects on the Gradient Echo Sequence -MR Flow Imaging- A Study of Flow Effects on the Gradient Echo Sequence Cylinder filled with doped water α pulse α pulse Flowing water Plastic pipes Slice Phase Read a TE b Signal sampling TR Thesis for

More information

Background II. Signal-to-Noise Ratio (SNR) Pulse Sequences Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229.

Background II. Signal-to-Noise Ratio (SNR) Pulse Sequences Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229. Background II Signal-to-Noise Ratio (SNR) Pulse Sequences Sampling and Trajectories Parallel Imaging 1 SNR: Signal-to-Noise Ratio Signal: Desired voltage in coil Noise: Thermal, electronic Noise Thermal

More information

Introduction to MRI Acquisition

Introduction to MRI Acquisition Introduction to MRI Acquisition James Meakin FMRIB Physics Group FSL Course, Bristol, September 2012 1 What are we trying to achieve? 2 What are we trying to achieve? Informed decision making: Protocols

More information

Chemistry 431. Lecture 23

Chemistry 431. Lecture 23 Chemistry 431 Lecture 23 Introduction The Larmor Frequency The Bloch Equations Measuring T 1 : Inversion Recovery Measuring T 2 : the Spin Echo NC State University NMR spectroscopy The Nuclear Magnetic

More information

Field trip: Tuesday, Feb 5th

Field trip: Tuesday, Feb 5th Pulse Sequences Field trip: Tuesday, Feb 5th Hardware tour of VUIIIS Philips 3T Meet here at regular class time (11.15) Complete MRI screening form! Chuck Nockowski Philips Service Engineer Reminder: Project/Presentation

More information

Lab 2: Magnetic Resonance Imaging

Lab 2: Magnetic Resonance Imaging EE225E/BIOE265 Spring 2013 Principles of MRI Miki Lustig Developed by: Galen Reed and Miki Lustig Lab 2: Magnetic Resonance Imaging Introduction In this lab, we will get some hands-on experience with an

More information

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft MR Fundamentals 26 October 2010 Mitglied der Helmholtz-Gemeinschaft Mitglied der Helmholtz-Gemeinschaft Nuclear Spin Nuclear Spin Nuclear magnetic resonance is observed in atoms with odd number of protons

More information

Pulse Sequences: RARE and Simulations

Pulse Sequences: RARE and Simulations Pulse Sequences: RARE and Simulations M229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2018.04.19 Department of Radiological Sciences David Geffen School of Medicine at UCLA Class Business Final project

More information

Lecture 5: Bloch equation and detection of magnetic resonance

Lecture 5: Bloch equation and detection of magnetic resonance Lecture 5: Bloch equation and detection of magnetic resonance Lecture aims to eplain:. Bloch equations, transverse spin relaation time and *. Detection of agnetic Resonance: Free Induction Deca Bloch equations

More information

Bloch Equations & Relaxation UCLA. Radiology

Bloch Equations & Relaxation UCLA. Radiology Bloch Equations & Relaxation MRI Systems II B1 I 1 I ~B 1 (t) I 6 ~M I I 5 I 4 Lecture # Learning Objectives Distinguish spin, precession, and nutation. Appreciate that any B-field acts on the the spin

More information

BNG/ECE 487 FINAL (W16)

BNG/ECE 487 FINAL (W16) BNG/ECE 487 FINAL (W16) NAME: 4 Problems for 100 pts This exam is closed-everything (no notes, books, etc.). Calculators are permitted. Possibly useful formulas and tables are provided on this page. Fourier

More information

Midterm Review. EE369B Concepts Simulations with Bloch Matrices, EPG Gradient-Echo Methods. B.Hargreaves - RAD 229

Midterm Review. EE369B Concepts Simulations with Bloch Matrices, EPG Gradient-Echo Methods. B.Hargreaves - RAD 229 Midterm Review EE369B Concepts Simulations with Bloch Matrices, EPG Gradient-Echo Methods 292 Fourier Encoding and Reconstruction Encoding k y x Sum over image k x Reconstruction k y Gradient-induced Phase

More information

RF Pulse Design. Multi-dimensional Excitation I. M229 Advanced Topics in MRI Kyung Sung, Ph.D Class Business

RF Pulse Design. Multi-dimensional Excitation I. M229 Advanced Topics in MRI Kyung Sung, Ph.D Class Business RF Pulse Design Multi-dimensional Excitation I M229 Advanced Topics in MRI Kyung Sung, Ph.D. 2018.04.10 Class Business Office hours - Instructors: Fri 10-12pm TAs: Xinran Zhong and Zhaohuan Zhang (time:

More information

The physics of medical imaging US, CT, MRI. Prof. Peter Bogner

The physics of medical imaging US, CT, MRI. Prof. Peter Bogner The physics of medical imaging US, CT, MRI Prof. Peter Bogner Clinical radiology curriculum blocks of lectures and clinical practice (7x2) Physics of medical imaging Neuroradiology Head and neck I. Head

More information

Magnetization Preparation Sequences

Magnetization Preparation Sequences Magnetization Preparation Sequences Acquisition method may not give desired contrast Prep block adds contrast (and/or encoding) MP-RAGE = Magnetization prepared rapid acquisition with gradient echo (Mugler,

More information

CHEM / BCMB 4190/6190/8189. Introductory NMR. Lecture 10

CHEM / BCMB 4190/6190/8189. Introductory NMR. Lecture 10 CHEM / BCMB 490/690/889 Introductory NMR Lecture 0 - - CHEM 490/690 Spin-Echo The spin-echo pulse sequence: 90 - τ - 80 - τ(echo) Spins echoes are widely used as part of larger pulse sequence to refocus

More information

The Basics of Magnetic Resonance Imaging

The Basics of Magnetic Resonance Imaging The Basics of Magnetic Resonance Imaging Nathalie JUST, PhD nathalie.just@epfl.ch CIBM-AIT, EPFL Course 2013-2014-Chemistry 1 Course 2013-2014-Chemistry 2 MRI: Many different contrasts Proton density T1

More information

Principles of MRI. Vinyl Record. Last time: Today: Homework Due tonight! EE225E / BIO265. Transforms a temporal signal to a spatial signal

Principles of MRI. Vinyl Record. Last time: Today: Homework Due tonight! EE225E / BIO265. Transforms a temporal signal to a spatial signal What is this? ` Principles of MRI Lecture 05 EE225E / BIO265 Instructor: Miki Lustig UC Berkeley, EECS The first NMR spectrum of ethanol 1951. 1 2 Today Last time: Linear systems, Fourier Transforms, Sampling

More information

MRI Physics I: Spins, Excitation, Relaxation

MRI Physics I: Spins, Excitation, Relaxation MRI Physics I: Spins, Excitation, Relaxation Douglas C. Noll Biomedical Engineering University of Michigan Michigan Functional MRI Laboratory Outline Introduction to Nuclear Magnetic Resonance Imaging

More information

22.56J Noninvasive Imaging in Biology and Medicine Instructor: Prof. Alan Jasanoff Fall 2005, TTh 1-2:30

22.56J Noninvasive Imaging in Biology and Medicine Instructor: Prof. Alan Jasanoff Fall 2005, TTh 1-2:30 22.56J Noninvasive Imaging in Biology and Medicine Instructor: Prof. Alan Jasanoff Fall 2005, TTh 1-2:30 Sample problems HW1 1. Look up (e.g. in the CRC Manual of Chemistry and Physics www.hbcpnetbase.com)

More information

June 16, Signal generation and gradient fields in MRI. Maximilian Oehm. Summary of physical fundamentals. Motivation. Complex representation

June 16, Signal generation and gradient fields in MRI. Maximilian Oehm. Summary of physical fundamentals. Motivation. Complex representation in MRI of Signal in MRI June 16, 2015 in MRI Contents of 1 of 2 3 4 5 6 7 in MRI of of Magnetic field B e z (few T) Splits up energy levels N+ N N ++N 1ppm M = m V B No measurement in z-direction possible

More information

Technical University of Denmark

Technical University of Denmark Technical University of Denmark Page 1 of 10 pages Written test, 12 December 2012 Course name: Introduction to medical imaging Course no. 31540 Aids allowed: None. Pocket calculator not allowed "Weighting":

More information

Relaxation. Ravinder Reddy

Relaxation. Ravinder Reddy Relaxation Ravinder Reddy Relaxation What is nuclear spin relaxation? What causes it? Effect on spectral line width Field dependence Mechanisms Thermal equilibrium ~10-6 spins leads to NMR signal! T1 Spin-lattice

More information

Pulse Sequences: EPG and Simulations

Pulse Sequences: EPG and Simulations Pulse Sequences: EPG and Simulations PBM229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2017.04.13 Department of Radiological Sciences David Geffen School of Medicine at UCLA Class Business Advanced topic

More information

Fundamental MRI Principles Module 2 N. Nuclear Magnetic Resonance. X-ray. MRI Hydrogen Protons. Page 1. Electrons

Fundamental MRI Principles Module 2 N. Nuclear Magnetic Resonance. X-ray. MRI Hydrogen Protons. Page 1. Electrons Fundamental MRI Principles Module 2 N S 1 Nuclear Magnetic Resonance There are three main subatomic particles: protons positively charged neutrons no significant charge electrons negatively charged Protons

More information

Welcome to MR! CT PET (with FDG) MRI (T2 w.) MR Image types: T2 weighted T1 weighted Sequence parameters FLAIR Diffusion

Welcome to MR! CT PET (with FDG) MRI (T2 w.) MR Image types: T2 weighted T1 weighted Sequence parameters FLAIR Diffusion Phsics Images Welcome to R! Introduction to agnetic Resonance Imaging Adam Espe Hansen, PET/R-phsicist Department of Clinical Phsiolog, Nuclear medicine & PET Rigshospitalet Basic Kinetic odeling in olecular

More information

Advanced Topics and Diffusion MRI

Advanced Topics and Diffusion MRI Advanced Topics and Diffusion MRI Slides originally by Karla Miller, FMRIB Centre Modified by Mark Chiew (mark.chiew@ndcn.ox.ac.uk) Slides available at: http://users.fmrib.ox.ac.uk/~mchiew/teaching/ MRI

More information

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY Spatial encoding in Magnetic Resonance Imaging Jean-Marie BONNY What s Qu est an image ce qu une? image? «a reproduction of a material object by a camera or a related technique» Multi-dimensional signal

More information

Rochester Institute of Technology Rochester, New York. COLLEGE of Science Department of Chemistry. NEW (or REVISED) COURSE:

Rochester Institute of Technology Rochester, New York. COLLEGE of Science Department of Chemistry. NEW (or REVISED) COURSE: Rochester Institute of Technology Rochester, New York COLLEGE of Science Department of Chemistry NEW (or REVISED) COURSE: 1014-730 1.0 Title: Magnetic Resonance Imaging (MRI) Date: July 2006 Credit Hours:

More information

NMR Imaging in porous media

NMR Imaging in porous media NMR Imaging in porous media What does NMR give us. Chemical structure. Molecular structure. Interactions between atoms and molecules. Incoherent dynamics (fluctuation, rotation, diffusion). Coherent flow

More information

Basic Pulse Sequences II - Spin Echoes. TE=12ms TE=47ms TE=106ms TE=153ms UCLA. Radiology

Basic Pulse Sequences II - Spin Echoes. TE=12ms TE=47ms TE=106ms TE=153ms UCLA. Radiology TE TR 90 180 90 Basic Pulse Sequences II - Spin Echoes TE=12ms TE=47ms TE=106ms TE=153ms TE=235ms Lecture #6 Summary B1(t) RF TR RF t ~M (1) (0 )= ~ M 0 = 2 4 0 0 M 0 3 5 Initial Condition ~M (1) (0 +

More information

Navigator Echoes. BioE 594 Advanced Topics in MRI Mauli. M. Modi. BioE /18/ What are Navigator Echoes?

Navigator Echoes. BioE 594 Advanced Topics in MRI Mauli. M. Modi. BioE /18/ What are Navigator Echoes? Navigator Echoes BioE 594 Advanced Topics in MRI Mauli. M. Modi. 1 What are Navigator Echoes? In order to correct the motional artifacts in Diffusion weighted MR images, a modified pulse sequence is proposed

More information

EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 9 Solutions. Due April 29th, 2013

EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 9 Solutions. Due April 29th, 2013 EE5E/BIOE65 Spring 013 Principles of MRI Miki Lustig This is the last homework in class. Enjoy it. Assignment 9 Solutions Due April 9th, 013 1) In class when we presented the spin-echo saturation recovery

More information

Fundamentals of MR Imaging

Fundamentals of MR Imaging Fundamentals of MR Imaging Shantanu Sinha. Department of Radiology UCSD School of Medicine, San Diego, CA-92103. E-mail: shsinha@ucsd.edu Background References: R.B.Lufkin, The MRI Manual (2nd Edition).

More information

Course Review. Midterm Review: EE369B Concepts Simulations with Bloch Matrices, EPG SNR. B.Hargreaves - RAD 229. Section F1

Course Review. Midterm Review: EE369B Concepts Simulations with Bloch Matrices, EPG SNR. B.Hargreaves - RAD 229. Section F1 Course Review Midterm Review: EE369B Concepts Simulations with Bloch Matrices, EPG SNR 1 Section F1 Bloch/Matrix Simulations M = [Mx My Mz] T RF and precession ~ 3x3 rotation matrices Relaxation ~ 3x3

More information

RADIOLOGIV TECHNOLOGY 4912 COMPREHENSEIVE REVIEW/MRI WORSHEET #1- PATIENT CARE AND SAFETY/PHYSICAL PRINCIPLES

RADIOLOGIV TECHNOLOGY 4912 COMPREHENSEIVE REVIEW/MRI WORSHEET #1- PATIENT CARE AND SAFETY/PHYSICAL PRINCIPLES RADIOLOGIV TECHNOLOGY 4912 COMPREHENSEIVE REVIEW/MRI WORSHEET #1- PATIENT CARE AND SAFETY/PHYSICAL PRINCIPLES 1. What are potential consequences to patients and personnel should there be a release of gaseous

More information

MRI in Practice. Catherine Westbrook MSc, DCRR, CTC Senior Lecturer Anglia Polytechnic University Cambridge UK. John Talbot MSc, DCRR

MRI in Practice. Catherine Westbrook MSc, DCRR, CTC Senior Lecturer Anglia Polytechnic University Cambridge UK. John Talbot MSc, DCRR MRI in Practice Third edition Catherine Westbrook MSc, DCRR, CTC Senior Lecturer Anglia Polytechnic University Cambridge UK and Carolyn Kaut RothRT(R) (MR) (CT) (M) (CV) Fellow SMRT (Section for Magnetic

More information

Pore Length Scales and Pore Surface Relaxivity of Sandstone Determined by Internal Magnetic Fields Modulation at 2 MHz NMR

Pore Length Scales and Pore Surface Relaxivity of Sandstone Determined by Internal Magnetic Fields Modulation at 2 MHz NMR The OpenAccess Journal for the Basic Principles of Diffusion Theory, Experiment and Application Pore Length Scales and Pore Surface Relaxivity of Sandstone Determined by Internal Magnetic Fields Modulation

More information

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY Spatial encoding in Magnetic Resonance Imaging Jean-Marie BONNY What s Qu est an image ce qu une? image? «a reproduction of a material object by a camera or a related technique» Multi-dimensional signal

More information

Index. p, lip, 78 8 function, 107 v, 7-8 w, 7-8 i,7-8 sine, 43 Bo,94-96

Index. p, lip, 78 8 function, 107 v, 7-8 w, 7-8 i,7-8 sine, 43 Bo,94-96 p, lip, 78 8 function, 107 v, 7-8 w, 7-8 i,7-8 sine, 43 Bo,94-96 B 1,94-96 M,94-96 B oro!' 94-96 BIro!' 94-96 I/r, 79 2D linear system, 56 2D FFT, 119 2D Fourier transform, 1, 12, 18,91 2D sinc, 107, 112

More information

Tissue Parametric Mapping:

Tissue Parametric Mapping: Tissue Parametric Mapping: Contrast Mechanisms Using SSFP Sequences Jongho Lee Department of Radiology University of Pennsylvania Tissue Parametric Mapping: Contrast Mechanisms Using bssfp Sequences Jongho

More information

EE591 Magnetic Resonance Imaging and Reconstruction Project Report. S i m u l a t i o n. Professor: Krishna Nayak ID: , Name: Yongjin Cho

EE591 Magnetic Resonance Imaging and Reconstruction Project Report. S i m u l a t i o n. Professor: Krishna Nayak ID: , Name: Yongjin Cho EE591 Magnetic Resonance Imaging and Reconstruction Project Report S S F P S i m u l a t i o n Professor: Krishna Nayak ID: 2486.9458.56, Name: Yongjin Cho SSFP Simulation 1 1. Theory, simulation objective

More information

Functional Magnetic Resonance Imaging (FMRI) is an imaging technique for

Functional Magnetic Resonance Imaging (FMRI) is an imaging technique for Chapter 2 Principles of FMRI Functional Magnetic Resonance Imaging (FMRI) is an imaging technique for examining brain function. Since its first appearance in 1991 (Belliveau et al.[8]) the use of FMRI

More information

Velocity k-space analysis of Flow Effects in Echo-Planar, Spiral and Projection Reconstruction Imaging. Sangeetha Somayajula

Velocity k-space analysis of Flow Effects in Echo-Planar, Spiral and Projection Reconstruction Imaging. Sangeetha Somayajula Velocity k-space analysis of Flow Effects in Echo-Planar, Spiral and Projection Reconstruction Imaging Sangeetha Somayajula Introduction Flow and motion in the object causes distortion in the MRI signal

More information

A Brief Introduction to Medical Imaging. Outline

A Brief Introduction to Medical Imaging. Outline A Brief Introduction to Medical Imaging Outline General Goals Linear Imaging Systems An Example, The Pin Hole Camera Radiations and Their Interactions with Matter Coherent vs. Incoherent Imaging Length

More information

Lecture 21. Nuclear magnetic resonance

Lecture 21. Nuclear magnetic resonance Lecture 21 Nuclear magnetic resonance A very brief history Stern and Gerlach atomic beam experiments Isidor Rabi molecular beam exp.; nuclear magnetic moments (angular momentum) Felix Bloch & Edward Purcell

More information

Relaxation times in nuclear magnetic resonance

Relaxation times in nuclear magnetic resonance Relaxation times in TEP Related topics Nuclear spins, atomic nuclei with a magnetic moment, precession movement of the nuclear spins, Landau-Lifshitz equation, Bloch equation, magnetisation, resonance

More information

Magnetic Resonance Imaging

Magnetic Resonance Imaging Magnetic Resonance Imaging History Nuclear magnetic resonance was first described by Isidor Rabi in 1938 - Columbia University, New York City, (Nobel Prize Nobel Prize in Physics 1944) 1946 - Edward Mills

More information

Topics. 2D Image. a b. c d. 1. Representing Images 2. 2D Fourier Transform 3. MRI Basics 4. MRI Applications 5. fmri

Topics. 2D Image. a b. c d. 1. Representing Images 2. 2D Fourier Transform 3. MRI Basics 4. MRI Applications 5. fmri Topics Neuroscience 200C Spring Quarter 2005 Imaging/MRI Lecture 1. Representing Images 2. 2D Fourier Transform 3. MRI Basics 4. MRI Applications 5. fmri Signals and Images Discrete-time/space signal/image:

More information

2.1.1 A Brief History of NMR The conception of NMR sprouted after the Pauli s prediction of nuclear spin in

2.1.1 A Brief History of NMR The conception of NMR sprouted after the Pauli s prediction of nuclear spin in CHAPTER--2 BASICS OF NMR IMAGING AND SPECTROSCOPY 2.1 Introduction 2.1.1 A Brief History of NMR The conception of NMR sprouted after the Pauli s prediction of nuclear spin in 1924. Later Gorter (1936)

More information

Low Field MRI of Laser Polarized Noble Gases. Yuan Zheng, 4 th year seminar, Feb, 2013

Low Field MRI of Laser Polarized Noble Gases. Yuan Zheng, 4 th year seminar, Feb, 2013 Low Field MRI of Laser Polarized Noble Gases Yuan Zheng, 4 th year seminar, Feb, 2013 Outline Introduction to conventional MRI Low field MRI of Laser Polarized (LP) noble gases Spin Exchange Optical Pumping

More information

RAD229: Midterm Exam 2015/2016 October 19, Minutes. Please do not proceed to the next page until the exam begins.

RAD229: Midterm Exam 2015/2016 October 19, Minutes. Please do not proceed to the next page until the exam begins. RAD229: Midterm Exam 2015/2016 October 19, 2015 ---- 75 Minutes Name: Student ID: General Instructions: 1. Write your name legibly on this page. 2. You may use notes including lectures, homework, solutions

More information

Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori

Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori Enseignant-chercheur Equipe IMAGES - Télécom ParisTech pietro.gori@telecom-paristech.fr September 20, 2017 P. Gori BIOMED 20/09/2017 1 / 76

More information

G Medical Imaging. Outline 4/13/2012. Physics of Magnetic Resonance Imaging

G Medical Imaging. Outline 4/13/2012. Physics of Magnetic Resonance Imaging G16.4426 Medical Imaging Physics of Magnetic Resonance Imaging Riccardo Lattanzi, Ph.D. Assistant Professor Department of Radiology, NYU School of Medicine Department of Electrical and Computer Engineering,

More information

On Signal to Noise Ratio Tradeoffs in fmri

On Signal to Noise Ratio Tradeoffs in fmri On Signal to Noise Ratio Tradeoffs in fmri G. H. Glover April 11, 1999 This monograph addresses the question of signal to noise ratio (SNR) in fmri scanning, when parameters are changed under conditions

More information

Basis of MRI Contrast

Basis of MRI Contrast Basis of MRI Contrast MARK A. HORSFIELD Department of Cardiovascular Sciences University of Leicester Leicester LE1 5WW UK Tel: +44-116-2585080 Fax: +44-870-7053111 e-mail: mah5@le.ac.uk 1 1.1 The Magnetic

More information

Magnetization Gradients, k-space and Molecular Diffusion. Magnetic field gradients, magnetization gratings and k-space

Magnetization Gradients, k-space and Molecular Diffusion. Magnetic field gradients, magnetization gratings and k-space 2256 Magnetization Gradients k-space and Molecular Diffusion Magnetic field gradients magnetization gratings and k-space In order to record an image of a sample (or obtain other spatial information) there

More information

ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM COLLEGE OF SCIENCE. Chester F. Carlson Center for Imaging Science

ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM COLLEGE OF SCIENCE. Chester F. Carlson Center for Imaging Science ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM COLLEGE OF SCIENCE Chester F. Carlson Center for Imaging Science NEW COURSE: COS-IMGS-730 Magnetic Resonance Imaging 1.0 Course Designations and Approvals

More information

How does this work? How does this method differ from ordinary MRI?

How does this work? How does this method differ from ordinary MRI? 361-Lec41 Tue 18nov14 How does this work? How does this method differ from ordinary MRI? NEW kinds of MRI (magnetic resononance imaging (MRI) Diffusion Magnetic Resonance Imaging Tractographic reconstruction

More information

RAD229: Final Exam 2014/ SOLUTIONS You will have 3 hours to complete this Exam

RAD229: Final Exam 2014/ SOLUTIONS You will have 3 hours to complete this Exam RAD229: Final Exam 2014/2015 - SOLUTIONS You will have 3 hours to complete this Exam Solutions are given in Blue. In some cases, different interpretations may have led to different, but reasonable answers,

More information

HY Ιατρική Απεικόνιση. Διδάσκων: Kώστας Μαριάς

HY Ιατρική Απεικόνιση. Διδάσκων: Kώστας Μαριάς HY 571 - Ιατρική Απεικόνιση Διδάσκων: Kώστας Μαριάς 11. MRI Τ1,Τ2, PD and physiological parameter imaging Summary and Clarifications Resonance is referred to as the property of an atom to absorb energy

More information