SUPPLEMENTARY INFORMATION

Size: px
Start display at page:

Download "SUPPLEMENTARY INFORMATION"

Transcription

1 Physically unclonable cryptographic primitives using self-assembled carbon nanotubes Zhaoying Hu, Jose Miguel M. Lobez Comeras, Hongsik Park, Jianshi Tang, Ali Afzali, George S. Tulevski, James B. Hannon, Michael Liehr, Shu-Jen Han Simulation The simulation of interaction between CNT and the charged surface was carried out in COMSOL based on a multiphysics model including electrostatics and ionic transport. (1) Poisson equation describes the electric potential based on charge distribution: ϵ ϵ(x) Ψ(x)] =ρ(x) =e N () (S1) In the above equation, Ψ(x) is the electric potential, ρ(x) is the net charge density, ϵ is the vacuum permittivity and ϵ(x) is the dielectric constant of the solution. () and denote the molar concentration and valence of the i th ionic species respectively. (2) Nernst-Planck equation describes the ion motion in the solution: (x) = (x)(x) (x) () Ψ(x) (S2) The diffusion coefficient is related to the mobility μ via Einstein relation, μ = Z /k. (x) is the velocity field of the fluid. The equation is solved under steady state, where we have () =0. Although the interaction between CNT and the substrate surface can be a complicated 3D problem, we can simplify the problem by using 2D simulation by assuming that CNT is always NATURE NANOTECHNOLOGY 1

2 parallel to the elongated direction of the trench. It is a reasonable assumption since the minimum energy state occurs when the nanotube locates near the center of the trench. Therefore, the nanotube will be forced to align along the elongated direction of the trench as long as the trench has a high length-to-width aspect ratio. The structure is shown in Figure 2a,b, in which the out-of-plane length of CNT and pattern is 500 nm. Surface charge density of SDS-CNT, SiO 2 and NMPI on HfO 2 used in the simulation is -0.05, and 0.1 C/cm 2, respectively. The salt concentration is 0.1 mm. The possible combination number In an array with a total device number of, the possible combination number ( ) of connected devices () and open devices ( ) is given by the combination equation S3. In order to evaluate the dependence of ( ) on, we apply Stirling s approximation given by equation S4 and assume = (01]. The simplified form of combination equation can be represented by equation S5. By taking derivative of function (), we can calculate the minimum value of () = when = 0.. And the function ln ( ) is symmetric about axis of = 0., as shown in Supplementary Fig. 1. ( ) = ( ) (3) ln() () () ln ( ) (1 ) ln(1 ) ln()] ()() 2 NATURE NANOTECHNOLOGY

3 SUPPLEMENTARY INFORMATION Supplementary Figure 1. The combination number of binary bits in log e scale as a function of total bits number and the yield of connected bits. Intra-distance and inter-distance For calculating intra-distance, 2560 devices were first acquired as a reference data set. A new data set was acquired from the same devices array after 5 days. Then intra-distance is calculated by measuring the Hamming distance between the bit strings extracted from these two data sets accordingly. The sample mean of ()() ()(). can be calculated to provide an estimation of (() () ) Inter-distance is calculated by measuring the HD between each two strings taken from 2560/n strings. The sample mean of (()()) (()()). can be calculated to provide an estimation of NATURE NANOTECHNOLOGY 3

4 2 () () = (1) The mean and standard deviation of the normalized inter-distance using different key size n is plotted in Supplementary Fig. 2. Supplementary Figure 2. The normalized inter-distances calculated by choosing different key sizes based on the measurements on 2056 devices. The error bar indicates the standard deviation of the normalized inter-distance. If the elements of n bit strings R(i) are random variables, the HDs between two different strings R(i) and R(j) follows a binomial distribution. (() ()) = 1 () (1) 4 NATURE NANOTECHNOLOGY

5 SUPPLEMENTARY INFORMATION = 1 ( 1) 1 ( 1) ( 1) (1 ) = (1 ) () =(+1 ) = () () E = 1 ( ) (1 ) = 1 ( 1) +] ( ) (1 ) = ( 1) + () () () () () () =E = ( 1) + = p(1 p) where k is the number of occurring 1, and p the probability of occurrence of 1. Supplementary Table 1. Encodings and their probabilities for our data Binary code Probability Ternary code Probability Double binary code 0 (Open) a= (Open) a= (Open) 1 (Connected) b= (Semiconducting) b= (Semiconducting) 2 (Metallic) c= (Metallic) Taken 64-bit key for example, for binary code, the mean equals to probability μ = = 2 = 0.000; For ternary code, the probability μ = =2( + + ) = ; For double binary code, the probability μ = = 2 + ( + ) = These calculated values agrees well with the values shown in Supplementary Fig. 2. NATURE NANOTECHNOLOGY 5

6 The number of independent variables N = (). The variance is from Gaussian approximation of inter-distance distribution. Spatial autocorrelation analysis To investigate the effect of CNT bit on the value of its adjacent CNT bits, we carried out spatial autocorrelation analysis by calculating Geary s c univariate correlation coefficient. This correlation coefficient compares the value of the variable at any one location with the values in small neighborhoods, which is sensitive to the local correlation. c = ( 1) 2 ( ) = 1, 0, = where, are the value of the bits at the i th and j th location in the bits map, is the sample mean, n is the number of total bits, is a weight matrix indicating the spatial relationship of bits i and j. In our study, we consider 4 direct neighbors. The coefficient c usually ranges from 0 to 2, with an expected value () of 1 under no autocorrelation. Values from 0 to 1 indicate positive spatial autocorrelation, values above 1 indicates negative spatial autocorrelation. Based on the bits map in Fig. 5b, the coefficient is calculated to be c=0.9572, which is very close to 1, indicating no spatial autocorrelation in the bits map. 6 NATURE NANOTECHNOLOGY

7 SUPPLEMENTARY INFORMATION Since the number of bits (2560) is large, we can assume the random variable is normally distributed. The variance of coefficient c can be estimated as Var(c) = (2 + )( 1) 4 2( +1) = = + The z-score is calculated to be using the following equation, which is very close to the expected value 0. This z-score test further confirms no local spatial correlation in our PUF. () z = () Supplementary Table 2. NIST statistical randomness test performance of CNT random bits with 2560-bit long. For 1% significant level, p-value should be larger than (N/A corresponds to those test which are not applicable due to the requirement of extremely long bit string length >1,000,000) Statistical Test p-value Pass/Fail Frequency Pass Block Frequency Pass Runs Pass Longest Run Pass Rank Pass FFT Pass Non-overlapping Template Pass Overlapping Template Pass Serial Pass Approximate Entropy Pass Cumulative Sums Pass NATURE NANOTECHNOLOGY 7

8 Universal N/A N/A Linear Complexity N/A N/A Random Excursions N/A N/A Random Excursions Variant N/A N/A Supplementary Figure 3. Bridge faults (F 1, F 2 ) introduced by randomly placed CNTs in a full adder. Supplementary Table 3. Output of a full adder in fault-free condition and single fault F 1 or F 2. Input Output(C out /S) A B C in Fault-Free F 1 F Obfuscating the gate layout by the metallic CNTs Besides the basic CNT transistors structure described in the main text, top gates can be fabricated on each transistor, with gate metal leads connected by metallic CNTs using one more 8 NATURE NANOTECHNOLOGY

9 SUPPLEMENTARY INFORMATION CNT deposition process. The layout is shown in Supplementary Fig. 5. Due to the extremely small dimension of CNTs, this design obfuscates the gate layout and greatly increases the tamper resistance of CNT PUF. Supplementary Figure 4. Obfuscating the gate layout of a CNT transitor by inserting a metallic CNT lead within the gate lead. NATURE NANOTECHNOLOGY 9

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION High-density integration of carbon nanotubes by chemical self-assembly Hongsik Park, Ali Afzali, Shu-Jen Han, George S. Tulevski, Aaron D. Franklin, Jerry Tersoff, James B. Hannon and Wilfried Haensch

More information

Multi-valued Arbiters for Quality Enhancement of PUF Responses on FPGA Implementation

Multi-valued Arbiters for Quality Enhancement of PUF Responses on FPGA Implementation Multi-valued Arbiters for Quality Enhancement of PUF Responses on FPGA Implementation Siarhei S. Zalivaka 1, Alexander V. Puchkov 2, Vladimir P. Klybik 2, Alexander A. Ivaniuk 2, Chip-Hong Chang 1 1 School

More information

CHAPTER 3 CHAOTIC MAPS BASED PSEUDO RANDOM NUMBER GENERATORS

CHAPTER 3 CHAOTIC MAPS BASED PSEUDO RANDOM NUMBER GENERATORS 24 CHAPTER 3 CHAOTIC MAPS BASED PSEUDO RANDOM NUMBER GENERATORS 3.1 INTRODUCTION Pseudo Random Number Generators (PRNGs) are widely used in many applications, such as numerical analysis, probabilistic

More information

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently,

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, suggesting that the results is reproducible. Supplementary Figure

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/4/e1602726/dc1 Supplementary Materials for Selective control of electron and hole tunneling in 2D assembly This PDF file includes: Dongil Chu, Young Hee Lee,

More information

Self-shrinking Bit Generation Algorithm Based on Feedback with Carry Shift Register

Self-shrinking Bit Generation Algorithm Based on Feedback with Carry Shift Register Advanced Studies in Theoretical Physics Vol. 8, 2014, no. 24, 1057-1061 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/astp.2014.49132 Self-shrinking Bit Generation Algorithm Based on Feedback

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1 Raman spectroscopy of CVD graphene on SiO 2 /Si substrate. Integrated Raman intensity maps of D, G, 2D peaks, scanned across the same graphene area. Scale

More information

Graphene photodetectors with ultra-broadband and high responsivity at room temperature

Graphene photodetectors with ultra-broadband and high responsivity at room temperature SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.31 Graphene photodetectors with ultra-broadband and high responsivity at room temperature Chang-Hua Liu 1, You-Chia Chang 2, Ted Norris 1.2* and Zhaohui

More information

A new pseudorandom number generator based on complex number chaotic equation

A new pseudorandom number generator based on complex number chaotic equation A new pseudorandom number generator based on complex number chaotic equation Liu Yang( 刘杨 ) and Tong Xiao-Jun( 佟晓筠 ) School of Computer Science and Technology, Harbin Institute of Technology, Weihai 264209,

More information

Supplementary Figure 1 shows overall fabrication process and detailed illustrations are given

Supplementary Figure 1 shows overall fabrication process and detailed illustrations are given Supplementary Figure 1. Pressure sensor fabrication schematics. Supplementary Figure 1 shows overall fabrication process and detailed illustrations are given in Methods section. (a) Firstly, the sacrificial

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information: Photocurrent generation in semiconducting and metallic carbon nanotubes Maria Barkelid 1*, Val Zwiller 1 1 Kavli Institute of Nanoscience, Delft University of Technology, Delft,

More information

Numerical Modeling of the Bistability of Electrolyte Transport in Conical Nanopores

Numerical Modeling of the Bistability of Electrolyte Transport in Conical Nanopores Numerical Modeling of the Bistability of Electrolyte Transport in Conical Nanopores Long Luo, Robert P. Johnson, Henry S. White * Department of Chemistry, University of Utah, Salt Lake City, UT 84112,

More information

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00 1 Name: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND Final Exam Physics 3000 December 11, 2012 Fall 2012 9:00-11:00 INSTRUCTIONS: 1. Answer all seven (7) questions.

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Supporting Information Graphene transfer method 1 : Monolayer graphene was pre-deposited on both

More information

Ultralow-Power Reconfigurable Computing with Complementary Nano-Electromechanical Carbon Nanotube Switches

Ultralow-Power Reconfigurable Computing with Complementary Nano-Electromechanical Carbon Nanotube Switches Ultralow-Power Reconfigurable Computing with Complementary Nano-Electromechanical Carbon Nanotube Switches Presenter: Tulika Mitra Swarup Bhunia, Massood Tabib-Azar, and Daniel Saab Electrical Eng. And

More information

EVALUATION OF PHYSICAL UNCLONABLE FUNCTIONS

EVALUATION OF PHYSICAL UNCLONABLE FUNCTIONS EVALUATION OF PHYSICAL UNCLONABLE FUNCTIONS ECE 646 PROJECT PRESENTATION DEC 11, 2012 YAMINI RAVISHANKAR PHYSICAL UNCLONABLE FUNCTIONS A challenge-response mechanism in which the mapping between a challenge

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Flexible, high-performance carbon nanotube integrated circuits Dong-ming Sun, Marina Y. Timmermans, Ying Tian, Albert G. Nasibulin, Esko I. Kauppinen, Shigeru Kishimoto, Takashi

More information

Carbon Nanotube Thin-Films & Nanoparticle Assembly

Carbon Nanotube Thin-Films & Nanoparticle Assembly Nanodevices using Nanomaterials : Carbon Nanotube Thin-Films & Nanoparticle Assembly Seung-Beck Lee Division of Electronics and Computer Engineering & Department of Nanotechnology, Hanyang University,

More information

2.6 The Membrane Potential

2.6 The Membrane Potential 2.6: The Membrane Potential 51 tracellular potassium, so that the energy stored in the electrochemical gradients can be extracted. Indeed, when this is the case experimentally, ATP is synthesized from

More information

Construction of Pseudorandom Binary Sequences Using Chaotic Maps

Construction of Pseudorandom Binary Sequences Using Chaotic Maps Applied Mathematical Sciences, Vol. 9, 2015, no. 78, 3847-3853 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.52149 Construction of Pseudorandom Binary Sequences Using Chaotic Maps Dimo

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 1.138/NNANO.213.24 Detecting the translocation of DNA through a nanopore using graphene nanoribbons F. Traversi 1, C.Raillon 1, S. M. Benameur 2, K.Liu 1, S. Khlybov 1, M.

More information

Supplementary Figure 1: Micromechanical cleavage of graphene on oxygen plasma treated Si/SiO2. Supplementary Figure 2: Comparison of hbn yield.

Supplementary Figure 1: Micromechanical cleavage of graphene on oxygen plasma treated Si/SiO2. Supplementary Figure 2: Comparison of hbn yield. 1 2 3 4 Supplementary Figure 1: Micromechanical cleavage of graphene on oxygen plasma treated Si/SiO 2. Optical microscopy images of three examples of large single layer graphene flakes cleaved on a single

More information

6.012 Electronic Devices and Circuits

6.012 Electronic Devices and Circuits Page 1 of 10 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits Exam No. 2 Thursday, November 5, 2009 7:30 to

More information

A flexible and wearable terahertz scanner

A flexible and wearable terahertz scanner A flexible and wearable terahertz scanner Daichi Suzuki 1, Shunri Oda 1, and Yukio Kawano 1* 1 Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology,

More information

A Very Efficient Pseudo-Random Number Generator Based On Chaotic Maps and S-Box Tables M. Hamdi, R. Rhouma, S. Belghith

A Very Efficient Pseudo-Random Number Generator Based On Chaotic Maps and S-Box Tables M. Hamdi, R. Rhouma, S. Belghith A Very Efficient Pseudo-Random Number Generator Based On Chaotic Maps and S-Box Tables M. Hamdi, R. Rhouma, S. Belghith Abstract Generating random numbers are mainly used to create secret keys or random

More information

Ion Concentration and Electromechanical Actuation Simulations of Ionic Polymer-Metal Composites

Ion Concentration and Electromechanical Actuation Simulations of Ionic Polymer-Metal Composites October 5-7, 2016, Boston, Massachusetts, USA Ion Concentration and Electromechanical Actuation Simulations of Ionic Polymer-Metal Composites Tyler Stalbaum, Qi Shen, and Kwang J. Kim Active Materials

More information

Supplementary Methods A. Sample fabrication

Supplementary Methods A. Sample fabrication Supplementary Methods A. Sample fabrication Supplementary Figure 1(a) shows the SEM photograph of a typical sample, with three suspended graphene resonators in an array. The cross-section schematic is

More information

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm.

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm. PL (normalized) Intensity (arb. u.) 1 1 8 7L-MoS 1L-MoS 6 4 37 38 39 4 41 4 Raman shift (cm -1 ) Supplementary Figure 1 Raman spectra of the Figure 1B at the 1L-MoS area (black line) and 7L-MoS area (red

More information

16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE. Energy Band Diagram of Conductor, Insulator and Semiconductor:

16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE. Energy Band Diagram of Conductor, Insulator and Semiconductor: 16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE Energy bands in Intrinsic and Extrinsic silicon: Energy Band Diagram of Conductor, Insulator and Semiconductor: 1 2 Carrier transport: Any motion

More information

FResCA: A Fault-Resistant Cellular Automata Based Stream Cipher

FResCA: A Fault-Resistant Cellular Automata Based Stream Cipher FResCA: A Fault-Resistant Cellular Automata Based Stream Cipher Jimmy Jose 1,2 Dipanwita Roy Chowdhury 1 1 Crypto Research Laboratory, Department of Computer Science and Engineering, Indian Institute of

More information

FIB Voltage Contrast for Failure Localisation on CMOS Circuits an Overview

FIB Voltage Contrast for Failure Localisation on CMOS Circuits an Overview for Failure Localisation on CMOS Circuits an Overview 8th European FIB User Group Meeting Zürich 2004 Dr. rer. nat. Rüdiger Rosenkranz Infineon Technologies Dresden Physical Failure Analysis Page 1 Never

More information

Intrinsic Electronic Transport Properties of High. Information

Intrinsic Electronic Transport Properties of High. Information Intrinsic Electronic Transport Properties of High Quality and MoS 2 : Supporting Information Britton W. H. Baugher, Hugh O. H. Churchill, Yafang Yang, and Pablo Jarillo-Herrero Department of Physics, Massachusetts

More information

Application of COMSOL Multiphysics in Nanoscale Electrokinetic Transport

Application of COMSOL Multiphysics in Nanoscale Electrokinetic Transport High Performance Computing Day Application of COMSOL Multiphysics in Nanoscale Electrokinetic Transport Selcuk Atalay, PhD Candidate Advisor: Prof. Shizhi Qian Institute of Micro/Nanotechnology Aerospace

More information

EE 5211 Analog Integrated Circuit Design. Hua Tang Fall 2012

EE 5211 Analog Integrated Circuit Design. Hua Tang Fall 2012 EE 5211 Analog Integrated Circuit Design Hua Tang Fall 2012 Today s topic: 1. Introduction to Analog IC 2. IC Manufacturing (Chapter 2) Introduction What is Integrated Circuit (IC) vs discrete circuits?

More information

NiCl2 Solution concentration. Etching Duration. Aspect ratio. Experiment Atmosphere Temperature. Length(µm) Width (nm) Ar:H2=9:1, 150Pa

NiCl2 Solution concentration. Etching Duration. Aspect ratio. Experiment Atmosphere Temperature. Length(µm) Width (nm) Ar:H2=9:1, 150Pa Experiment Atmosphere Temperature #1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1,

More information

Electrostatic Single-walled Carbon Nanotube (CNT) Field Effect Transistor Device Modeling

Electrostatic Single-walled Carbon Nanotube (CNT) Field Effect Transistor Device Modeling Electrostatic Single-walled Carbon Nanotube (CNT) Field Effect Transistor Device Modeling Henok Abebe The Service USC Viterbi School of Engineering Information Sciences Institute Collaborator Ellis Cumberbatch

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 29, 2019 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2019 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

Manufacture of Nanostructures for Power Electronics Applications

Manufacture of Nanostructures for Power Electronics Applications Manufacture of Nanostructures for Power Electronics Applications Brian Hunt and Jon Lai Etamota Corporation 2672 E. Walnut St. Pasadena, CA 91107 APEC, Palm Springs Feb. 23rd, 2010 1 Background Outline

More information

p-n Junction of 1.95 nm Carbon Nanotube: Fabrication, Properties and Performance

p-n Junction of 1.95 nm Carbon Nanotube: Fabrication, Properties and Performance American Journal of Engineering and Applied Sciences Original Research Paper p-n Junction of 1.95 nm Carbon Nanotube: Fabrication, Properties and Performance Soheli Farhana and Mohamad Fauzan Noordin Faculty

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT CODE: EC 1354 SUB.NAME : VLSI DESIGN YEAR / SEMESTER: III / VI UNIT I MOS TRANSISTOR THEORY AND

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 10/30/2007 MOSFETs Lecture 4 Reading: Chapter 17, 19 Announcements The next HW set is due on Thursday. Midterm 2 is next week!!!! Threshold and Subthreshold

More information

Reliability of semiconductor I Cs. Reliability of semiconductor I Cs plus

Reliability of semiconductor I Cs. Reliability of semiconductor I Cs plus M.I.T. Reliability of semiconductor I Cs plus spin-based electronics Read Campbell, p. 425-428 and Ch. 20. Sec. 20.1, 20.2; Plummer, Sec. 11.5.6 IC reliability: Yield =(#operating parts) / (total # produced)

More information

Finite-volume Poisson solver with applications to conduction in

Finite-volume Poisson solver with applications to conduction in Finite-volume Poisson solver with applications to conduction in biological ion channels I. Kaufman 1, R. Tindjong 1, D. G. Luchinsky 1,2, P. V. E. McClintock 1 1 Department of Physics, Lancaster University,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Facile Synthesis of High Quality Graphene Nanoribbons Liying Jiao, Xinran Wang, Georgi Diankov, Hailiang Wang & Hongjie Dai* Supplementary Information 1. Photograph of graphene

More information

From Last Time. Several important conceptual aspects of quantum mechanics Indistinguishability. Symmetry

From Last Time. Several important conceptual aspects of quantum mechanics Indistinguishability. Symmetry From Last Time Several important conceptual aspects of quantum mechanics Indistinguishability particles are absolutely identical Leads to Pauli exclusion principle (one Fermion / quantum state). Symmetry

More information

ECE-470 Digital Design II Memory Test. Memory Cells Per Chip. Failure Mechanisms. Motivation. Test Time in Seconds (Memory Size: n Bits) Fault Types

ECE-470 Digital Design II Memory Test. Memory Cells Per Chip. Failure Mechanisms. Motivation. Test Time in Seconds (Memory Size: n Bits) Fault Types ECE-470 Digital Design II Memory Test Motivation Semiconductor memories are about 35% of the entire semiconductor market Memories are the most numerous IPs used in SOC designs Number of bits per chip continues

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Collapse of superconductivity in a hybrid tin graphene Josephson junction array by Zheng Han et al. SUPPLEMENTARY INFORMATION 1. Determination of the electronic mobility of graphene. 1.a extraction from

More information

DESIGN OF QCA FULL ADDER CIRCUIT USING CORNER APPROACH INVERTER

DESIGN OF QCA FULL ADDER CIRCUIT USING CORNER APPROACH INVERTER Research Manuscript Title DESIGN OF QCA FULL ADDER CIRCUIT USING CORNER APPROACH INVERTER R.Rathi Devi 1, PG student/ece Department, Vivekanandha College of Engineering for Women rathidevi24@gmail.com

More information

G band. D band Raman Shift (cm -1 )

G band. D band Raman Shift (cm -1 ) Raman Intensity (a.u.) a b c Supplementary Figure 1. SEM images comparing the nanotube arrays assembled using the fringing-field dielectrophoresis with spare and wide (part a, scale bar: 2 μm), dense and

More information

2D-2D tunneling field effect transistors using

2D-2D tunneling field effect transistors using 2D-2D tunneling field effect transistors using WSe 2 /SnSe 2 heterostructures Tania Roy, 1,2,3 Mahmut Tosun, 1,2,3 Mark Hettick, 1,2,3, Geun Ho Ahn, 1,2,3 Chenming Hu 1, and Ali Javey 1,2,3, 1 Electrical

More information

Evaluation of Electronic Characteristics of Double Gate Graphene Nanoribbon Field Effect Transistor for Wide Range of Temperatures

Evaluation of Electronic Characteristics of Double Gate Graphene Nanoribbon Field Effect Transistor for Wide Range of Temperatures Evaluation of Electronic Characteristics of Double Gate Graphene Nanoribbon Field Effect Transistor for Wide Range of Temperatures 1 Milad Abtin, 2 Ali Naderi 1 Department of electrical engineering, Masjed

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NNANO.211.214 Control over topological insulator photocurrents with light polarization J.W. McIver*, D. Hsieh*, H. Steinberg, P. Jarillo-Herrero and N. Gedik SI I. Materials and device fabrication

More information

I-V characteristics model for Carbon Nanotube Field Effect Transistors

I-V characteristics model for Carbon Nanotube Field Effect Transistors International Journal of Engineering & Technology IJET-IJENS Vol:14 No:04 33 I-V characteristics model for Carbon Nanotube Field Effect Transistors Rebiha Marki, Chérifa Azizi and Mourad Zaabat. Abstract--

More information

PHYS208 p-n junction. January 15, 2010

PHYS208 p-n junction. January 15, 2010 1 PHYS208 p-n junction January 15, 2010 List of topics (1) Density of states Fermi-Dirac distribution Law of mass action Doped semiconductors Dopinglevel p-n-junctions 1 Intrinsic semiconductors List of

More information

A Novel Design of Penternary Inverter Gate Based on Carbon Nano Tube

A Novel Design of Penternary Inverter Gate Based on Carbon Nano Tube Journal of Optoelectronical Nanostructures Islamic Azad University Winter 2017 / Vol. 2, No. 4 A Novel Design of Penternary Inverter Gate Based on Carbon Nano Tube Mahdieh Nayeri 1, Peiman Keshavarzian*,1,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Electroluminescence from a single nanotube-molecule-nanotube junction Christoph W. Marquardt, Sergio Grunder, Alfred Błaszczyk, Simone Dehm, Frank Hennrich, Hilbert v. Löhneysen,

More information

MOS Transistor Properties Review

MOS Transistor Properties Review MOS Transistor Properties Review 1 VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO

More information

Electronic Devices & Circuits

Electronic Devices & Circuits Electronic Devices & Circuits For Electronics & Communication Engineering By www.thegateacademy.com Syllabus Syllabus for Electronic Devices Energy Bands in Intrinsic and Extrinsic Silicon, Carrier Transport,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Trilayer graphene is a semimetal with a gate-tuneable band overlap M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo and S. Tarucha

More information

electrodeposition is a special case of electrolysis where the result is deposition of solid material on an electrode surface.

electrodeposition is a special case of electrolysis where the result is deposition of solid material on an electrode surface. Electrochemical Methods Electrochemical Deposition is known as electrodeposition - see CHEM* 1050 - electrolysis electrodeposition is a special case of electrolysis where the result is deposition of solid

More information

Free-standing Organic Transistors and Circuits. with Sub-micron thickness

Free-standing Organic Transistors and Circuits. with Sub-micron thickness Supplementary Information Free-standing Organic Transistors and Circuits with Sub-micron thickness Kenjiro Fukuda 1,2,3,4 (*), Tomohito Sekine 1, Rei Shiwaku 1, Takuya Morimoto 5, Daisuke Kumaki 1, and

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals ENS 345 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Office 4N101b 1 Outline - Goals of the course. What is electronic device?

More information

The goal of this project is to enhance the power density and lowtemperature efficiency of solid oxide fuel cells (SOFC) manufactured by atomic layer

The goal of this project is to enhance the power density and lowtemperature efficiency of solid oxide fuel cells (SOFC) manufactured by atomic layer Stanford University Michael Shandalov1, Shriram Ramanathan2, Changhyun Ko2 and Paul McIntyre1 1Department of Materials Science and Engineering, Stanford University 2Division of Engineering and Applied

More information

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

! CMOS Process Enhancements. ! Semiconductor Physics.  Band gaps.  Field Effects. ! MOS Physics.  Cut-off.  Depletion. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 9, 019 MOS Transistor Theory, MOS Model Lecture Outline CMOS Process Enhancements Semiconductor Physics Band gaps Field Effects

More information

Graphene: Plane and Simple Electrical Metrology?

Graphene: Plane and Simple Electrical Metrology? Graphene: Plane and Simple Electrical Metrology? R. E. Elmquist, F. L. Hernandez-Marquez, M. Real, T. Shen, D. B. Newell, C. J. Jacob, and G. R. Jones, Jr. National Institute of Standards and Technology,

More information

Chapter 2. Dielectric Theories

Chapter 2. Dielectric Theories Chapter Dielectric Theories . Dielectric Theories 1.1. Introduction Measurements of dielectric properties of materials is very important because it provide vital information regarding the material characteristics,

More information

Electrical Characteristics of Multilayer MoS 2 FET s

Electrical Characteristics of Multilayer MoS 2 FET s Electrical Characteristics of Multilayer MoS 2 FET s with MoS 2 /Graphene Hetero-Junction Contacts Joon Young Kwak,* Jeonghyun Hwang, Brian Calderon, Hussain Alsalman, Nini Munoz, Brian Schutter, and Michael

More information

UNIT 5:Random number generation And Variation Generation

UNIT 5:Random number generation And Variation Generation UNIT 5:Random number generation And Variation Generation RANDOM-NUMBER GENERATION Random numbers are a necessary basic ingredient in the simulation of almost all discrete systems. Most computer languages

More information

A Bottom-gate Depletion-mode Nanowire Field Effect Transistor (NWFET) Model Including a Schottky Diode Model

A Bottom-gate Depletion-mode Nanowire Field Effect Transistor (NWFET) Model Including a Schottky Diode Model Journal of the Korean Physical Society, Vol. 55, No. 3, September 2009, pp. 1162 1166 A Bottom-gate Depletion-mode Nanowire Field Effect Transistor (NWFET) Model Including a Schottky Diode Model Y. S.

More information

Non-Faradaic Impedance Characterization of an

Non-Faradaic Impedance Characterization of an Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is The Royal Society of Chemistry 2014 Supplementary Information Non-Faradaic Impedance Characterization of an Evaporating Droplet

More information

Electrical Conduction in Ceramic Materials 1 Ref: Barsoum, Fundamentals of Ceramics, Ch7, McGraw-Hill, 2000

Electrical Conduction in Ceramic Materials 1 Ref: Barsoum, Fundamentals of Ceramics, Ch7, McGraw-Hill, 2000 MME 467 Ceramics for Advanced Applications Lecture 19 Electrical Conduction in Ceramic Materials 1 Ref: Barsoum, Fundamentals of Ceramics, Ch7, McGraw-Hill, 2000 Prof. A. K. M. B. Rashid Department of

More information

Charging Kinetics of Micropores in Supercapacitors

Charging Kinetics of Micropores in Supercapacitors Clemson University TigerPrints All Theses Theses 5-2012 Charging Kinetics of Micropores in Supercapacitors Daniel Oberklein Clemson University, dfoberklein@roadrunner.com Follow this and additional works

More information

An efficient parallel pseudorandom bit generator based on an asymmetric coupled chaotic map lattice

An efficient parallel pseudorandom bit generator based on an asymmetric coupled chaotic map lattice PRAMANA c Indian Academy of Sciences Vol. 85, No. 4 journal of October 215 physics pp. 617 627 An efficient parallel pseudorandom bit generator based on an asymmetric coupled chaotic map lattice RENFU

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI: 10.1038/NNANO.2016.257 Multiple nanostructures based on anodized aluminium oxide templates Liaoyong Wen, Rui Xu, Yan Mi, Yong Lei * 1 NATURE NANOTECHNOLOGY

More information

MOS CAPACITOR AND MOSFET

MOS CAPACITOR AND MOSFET EE336 Semiconductor Devices 1 MOS CAPACITOR AND MOSFET Dr. Mohammed M. Farag Ideal MOS Capacitor Semiconductor Devices Physics and Technology Chapter 5 EE336 Semiconductor Devices 2 MOS Capacitor Structure

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Controlled Ripple Texturing of Suspended Graphene and Ultrathin Graphite Membranes Wenzhong Bao, Feng Miao, Zhen Chen, Hang Zhang, Wanyoung Jang, Chris Dames, Chun Ning Lau *

More information

Carbon Nanotubes for Interconnect Applications Franz Kreupl, Andrew P. Graham, Maik Liebau, Georg S. Duesberg, Robert Seidel, Eugen Unger

Carbon Nanotubes for Interconnect Applications Franz Kreupl, Andrew P. Graham, Maik Liebau, Georg S. Duesberg, Robert Seidel, Eugen Unger Carbon Nanotubes for Interconnect Applications Franz Kreupl, Andrew P. Graham, Maik Liebau, Georg S. Duesberg, Robert Seidel, Eugen Unger Infineon Technologies Corporate Research Munich, Germany Outline

More information

Section 12: Intro to Devices

Section 12: Intro to Devices Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals Bond Model of Electrons and Holes Si Si Si Si Si Si Si Si Si Silicon

More information

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes Multicolor Graphene Nanoribbon/Semiconductor Nanowire Heterojunction Light-Emitting Diodes Yu Ye, a Lin Gan, b Lun Dai, *a Hu Meng, a Feng Wei, a Yu Dai, a Zujin Shi, b Bin Yu, a Xuefeng Guo, b and Guogang

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Nano-scale plasmonic motors driven by light Ming Liu 1, Thomas Zentgraf 1, Yongmin Liu 1, Guy Bartal 1 & Xiang Zhang 1,2 1 NSF Nano-scale Science and Engineering Center (NSEC),

More information

Double Feynman Gate (F2G) in Quantumdot Cellular Automata (QCA)

Double Feynman Gate (F2G) in Quantumdot Cellular Automata (QCA) Double Feynman Gate (F2G) in Quantumdot Cellular Automata (QCA) Ali Newaz Bahar E-mail: bahar_mitdu@yahoo.com Sajjad Waheed E-mail: sajad302@yahoo.com Md. Ashraf Uddin Department of Computer Science and

More information

Black phosphorus field-effect transistors

Black phosphorus field-effect transistors SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.35 Black phosphorus field-effect transistors Likai Li, Yijun Yu, Guo Jun Ye, Qingqin Ge, Xuedong Ou, Hua Wu, Donglai Feng, Xian Hui Chen and Yuanbo Zhang

More information

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e)

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e) (a) (b) Supplementary Figure 1. (a) An AFM image of the device after the formation of the contact electrodes and the top gate dielectric Al 2 O 3. (b) A line scan performed along the white dashed line

More information

BIOELECTRIC PHENOMENA

BIOELECTRIC PHENOMENA Chapter 11 BIOELECTRIC PHENOMENA 11.3 NEURONS 11.3.1 Membrane Potentials Resting Potential by separation of charge due to the selective permeability of the membrane to ions From C v= Q, where v=60mv and

More information

Retract. Press down D RG MG LG S. Recess. I-V Converter VNA. Gate ADC. DC Bias. 20 mk. Amplifier. Attenuators. 0.

Retract. Press down D RG MG LG S. Recess. I-V Converter VNA. Gate ADC. DC Bias. 20 mk. Amplifier. Attenuators. 0. a Press down b Retract D RG S c d 2 µm Recess 2 µm.5 µm Supplementary Figure 1 CNT mechanical transfer (a) Schematics showing steps of pressing down and retracting during the transfer of the CNT from the

More information

There's Plenty of Room at the Bottom

There's Plenty of Room at the Bottom There's Plenty of Room at the Bottom 12/29/1959 Feynman asked why not put the entire Encyclopedia Britannica (24 volumes) on a pin head (requires atomic scale recording). He proposed to use electron microscope

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.1421 Understanding and Controlling the Substrate Effect on Graphene Electron-Transfer Chemistry via Reactivity Imprint Lithography Qing Hua Wang, Zhong Jin, Ki Kang Kim, Andrew J. Hilmer,

More information

Intermolecular Forces and Liquids and Solids. Chapter 11. Copyright The McGraw Hill Companies, Inc. Permission required for

Intermolecular Forces and Liquids and Solids. Chapter 11. Copyright The McGraw Hill Companies, Inc. Permission required for Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw Hill Companies, Inc. Permission required for 1 A phase is a homogeneous part of the system in contact with other parts of the

More information

Electrolyte Concentration Dependence of Ion Transport through Nanochannels

Electrolyte Concentration Dependence of Ion Transport through Nanochannels Electrolyte Concentration Dependence of Ion Transport through Nanochannels Murat Bakirci mbaki001@odu.edu Yunus Erkaya yerka001@odu.edu ABSTRACT The magnitude of current through a conical nanochannel filled

More information

Scaling up Chemical Vapor Deposition Graphene to 300 mm Si substrates

Scaling up Chemical Vapor Deposition Graphene to 300 mm Si substrates Scaling up Chemical Vapor Deposition Graphene to 300 mm Si substrates Co- Authors Aixtron Alex Jouvray Simon Buttress Gavin Dodge Ken Teo The work shown here has received partial funding from the European

More information

Analytical Heat Transfer Model for Thermal Through-Silicon Vias

Analytical Heat Transfer Model for Thermal Through-Silicon Vias Analytical Heat Transfer Model for Thermal Through-Silicon Vias Hu Xu, Vasilis F. Pavlidis, and Giovanni De Micheli LSI - EPFL, CH-1015, Switzerland Email: {hu.xu, vasileios.pavlidis, giovanni.demicheli}@epfl.ch

More information

Chapter 11. Intermolecular Forces and Liquids & Solids

Chapter 11. Intermolecular Forces and Liquids & Solids Chapter 11 Intermolecular Forces and Liquids & Solids The Kinetic Molecular Theory of Liquids & Solids Gases vs. Liquids & Solids difference is distance between molecules Liquids Molecules close together;

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Phonon populations and electrical power dissipation in carbon nanotube transistors Supplemental Information Mathias Steiner 1, Marcus Freitag 1, Vasili Perebeinos 1, James C.

More information

Space Charges in Insulators

Space Charges in Insulators 1 Space Charges in Insulators Summary. The space charges in insulators directly determine the built-in field and electron energy distribution, as long as carrier transport can be neglected. In this chapter

More information

The Road Ahead for Carbon Nanotube Transistors

The Road Ahead for Carbon Nanotube Transistors Carbon Technology The Road Ahead for Carbon Nanotube Transistors Aaron D. Franklin Research Staff Member Purdue Seminar 21 June 2013 2013 IBM Corporation Outline! IBM Research overview! Brief history of

More information

6. Comparison with recent CNT based strain sensors

6. Comparison with recent CNT based strain sensors Flexible CNT-array double helices Strain Sensor with high stretchability for Wireless Motion Capture Supplementary Information Cheng Li 1, Ya-Long Cui 1, Gui-Li Tian 2, Yi Shu 1, Xue-Feng Wang 1, He Tian

More information

Designing a Carbon Nanotube Field-Effect Transistor with High Transition Frequency for Ultra-Wideband Application

Designing a Carbon Nanotube Field-Effect Transistor with High Transition Frequency for Ultra-Wideband Application Engineering, 2017, 9, 22-35 http://www.scirp.org/journal/eng ISSN Online: 1947-394X ISSN Print: 1947-3931 Designing a Carbon Nanotube Field-Effect Transistor with High Transition Frequency for Ultra-Wideband

More information

Five-Input Complex Gate with an Inverter Using QCA

Five-Input Complex Gate with an Inverter Using QCA Five-Input Complex Gate with an Inverter Using QCA Tina Suratkar 1 Assistant Professor, Department of Electronics & Telecommunication Engineering, St.Vincent Pallotti College Of Engineering and Technology,

More information

CHAPTER 2: ENERGY BANDS & CARRIER CONCENTRATION IN THERMAL EQUILIBRIUM. M.N.A. Halif & S.N. Sabki

CHAPTER 2: ENERGY BANDS & CARRIER CONCENTRATION IN THERMAL EQUILIBRIUM. M.N.A. Halif & S.N. Sabki CHAPTER 2: ENERGY BANDS & CARRIER CONCENTRATION IN THERMAL EQUILIBRIUM OUTLINE 2.1 INTRODUCTION: 2.1.1 Semiconductor Materials 2.1.2 Basic Crystal Structure 2.1.3 Basic Crystal Growth technique 2.1.4 Valence

More information

CHAPTER 6 CHIRALITY AND SIZE EFFECT IN SINGLE WALLED CARBON NANOTUBES

CHAPTER 6 CHIRALITY AND SIZE EFFECT IN SINGLE WALLED CARBON NANOTUBES 10 CHAPTER 6 CHIRALITY AND SIZE EFFECT IN SINGLE WALLED CARBON NANOTUBES 6.1 PREAMBLE Lot of research work is in progress to investigate the properties of CNTs for possible technological applications.

More information