# VENTURIMETER EXPERIMENT

Size: px
Start display at page:

Transcription

1 ENTURIMETER EXERIMENT. OBJECTİE The main objectives of this experiment is to obtain the coefficient of discharge from experimental data by utilizing venturi meter and, also the relationship between Reynolds number and the coefficient of discharge.. INTRODUCTION There are many different meters used to measure fluid flow: the turbine-type flow meter, the rotameter, the orifice meter, and the venturi meter are only a few. Each meter works by its ability to alter a certain physical property of the flowing fluid and then allows this alteration to be measured. The measured alteration is then related to the flow. The subject of this experiment is to analyze the features of certain meters. 3. THEORY Figure. Flow measurement apparatus The flow measurement apparatus consists of a water loop as shown above figure. The supple line is connected to a gravimetric hydraulic bench. The flow rate controlled by a gate valve located at the discharge side of the hydraulics bench. venturi meter, wide-angled

2 diffuser, orifice meter and rotameter are arranged in series. ressure taps across each device are connected to vertical manometer tubes located on a panel at the rear of the apparatus. The discharge from the apparatus is returned to the hydraulics bench. enturi Meter venturi meter is a measuring or also considered as a meter device that is usually used to measure the flow of a fluid in the pipe. enturi meter may also be used to increase the velocity of any type fluid in a pipe at any particular point. It basically works on the principle of Bernoulli's Theorem. The pressure in a fluid moving through a small cross section drops suddenly leading to an increase in velocity of the flow. The fluid of the characteristics of high pressure and low velocity gets converted to the low pressure and high velocity at a particular point and again reaches to high pressure and low velocity. The point where the characteristics become low pressure and high velocity is the place where the venturi flow meter is used. The enturi meter is constructed as shown in Figure. It has a constriction within itself. The pressure difference between the upstream and the downstream flow, Δh, can be found as a function of the flow rate. pplying Bernoulli s equation to points and of the enturi meter and relating the pressure difference to the flow rate yields. Figure. enturi meter ssume incompressible flow and no frictional losses, from Bernoulli s Equation γ g Z = γ g Z () Use of the continuity Equation Q = =, equation () becomes

3 = g Z Z γ () = ) ( Z Z g γ (3) Theoritical = = ) ( Z Z g Q theo γ (4) The term ) ( Z Z γ represents the difference in piezometric head ( h ) between the two sections and. The above expression for is obtained based on the assumption of one-dimensipnal frictionless flow. Hence the theoritical flow can be expressed as ) ( h g Q theo = = (5) Thus, = h g Q theo (6) Because of the above assumptions, the actual flow rate, act Q differs from theo Q and the ratio between them is called the discharge coefficient, C d which can be written as theo act d Q Q C = (7)

4 The value of C d differs from one flowmeter to the other depending on the flowmeter geometry and the Reynolds number. The discharge coefficient is always less than due to various losses(friction losses, area contraction etc.). Figure 3. International standard shapes for venture nozzle The modern venturi nozzle, Fig. 3, consists of an IS 93 nozzle entrance and a conical expansion of half-angle no greater than 5. It is intended to be operated in a narrow Reynolds-number range of.5 x 0 5 to x 0 6. The co-efficient of discharge is for venturi meter. Figure 4.. The co-efficient of discharge of a venturi meter

5 The Orifice Meter The orifice meter consists of a throttling device (an orifice plate) inserted in the flow. This orifice plate creates a measurable pressure difference between its upstream and downstream sides. This pressure is then related to the flow rate. Like the enturi meter, the pressure difference varies directly with the flow rate. The orifice meter is constructed as shown in Figure 5. Figure 5. Cutaway view of the orifice meter The co-efficient of discharge is for orifice meter. Figure 6. The co-efficient of discharge of a orifice meter.

6 Figure 7. (a) The approximate velocity profiles at several planes near a sharp-edged orifice plate. Note: the jet emerging from the hole is somewhat smaller than the hole itself; in highly turbulent flow the jet necks down to a minimum cross section at the vena contracta. Note that there is some backflow near the wall. (b) It is assumed that the velocity profile at is given by the approximate profile shown. It is also assumed that the velocity profile at is uniform. From boundary layer theory, the pressure of the plug flow at is transmitted across the (assumed stagnate) interval from the plug to the pressure port. The ariable rea Meter (Rotameter) rotameter consists of a gradually tapered glass tube mounted vertically in a frame with the large end up. Fluid enters the tube from the bottom. s it enters, it causes the float to rise to a position of equilibrium. The position of equilibrium is at the point where the weight of the float is balanced by the weight of the fluid it displaces (the buoyant force exerted on the float by the fluid) and the pressure due to velocity (dynamic pressure).

7 The higher the float position the greater the flow rate. Note that as the float rises, the annular area formed between the float and the tube increases. Maximum flow is at maximum annular area or when the float is at the top of the tube. Minimum area, of course, represents minimum flow rate and is when the float is at the bottom of the tube. (b) (a) Figure 8. (a,b) Rotameter In balance conditions, the flow rate is expressed by the following formula: f ( ρ f ρ) Q = C d ( T F ) = (8) ρ f where C d = coefficient of efflux t = pipe section f = maximum section of the float f = olume of the float ρ f = density of the float ρ = density of fluid

8 4. EXERIMENTS TO BE ERFORMED The test unit will be introduced in the laboratory before the experiment by the relevant assistant. 4. Calculation of the coefficien of efflux of the calibrated diaphragm im of the Experiment: To find out the relationship between the flow rate and the load loss To find the cofficient of efflux The necessary data for calculations will be recorded to the table given below Q rot Q vol H H HH, H 3 H 4 HH 3,4 H 5 H 6 HH 5,6 Calculations: Using the equation given below, calculate the cofficient of efflux. The flow rate is defined as: QQ = CC dd gg h = CC dd gg h ββ 4 4 ββ Where: CCCC = cccccccccccccccccccccc oooo ddddddddhaaaaaaaa ββ = dd/dd = pppppppp ssssssssssssss = rrrrrrrrrrrrrrrrrrrrrrrr ssssssssssssss h = llllllll llllllll iiii mm

9 Draw a relationship between the flow rate in y axis and the load loss in x axis Carry out a linear interpolation and find the coefficient of efflux from the angular coefficient value of thr obtained line. 4. Calculation of the coefficien of efflux of the venturi meter im of the Experiment: To find out the relationship between the flow rate and the square root of the load loss To find the cofficient of efflux The necessary data for calculations will be recorded to the table given below. Q rot Q vol H H HH, H 3 H 4 HH 3,4 H 5 H 6 HH 5,6 Calculations: Using the equation given below, calculate the cofficient of efflux. The flow rate is defined as: Where: QQ = CCCC = cccccccccccccccccccccc oooo ddddddddhaaaaaaaa ββ = dd/dd = pppppppp ssssssssssssss = rrrrrrrrrrrrrrrrrrrrrr ssssssssssssss h = llllllll llllllll iiii mm CC dd ββ gg h = CC dd gg h 4 ββ4

10 Draw a relationship between the flow rate in y axis and the square root of the load loss in x axis The slope of the best line is : Then, Calculate C d SSSSSSSSSS = CC dd 4.3 Calibration of the variable area flowmeter gg Fill a graph with the measured flowrate with the rotameter against the one obtain using the volumetric tank. Carry out a linear interpolation; the obrtained straight line represents the calibration line of the flow meter Q rot (l/h) (l) T (sec) Q vol (l/h) 4.4 Measurement methods comprosion Using the coefficients of efflux determined in the exercises 4. and 4., carry out a series of measurements and calculate the measuremts error fort he flow meters.

11 4.5 Comparing the load losses Using the data obtained, draw a graph with the load loss as fuction of the flow for three flow meters. olume Time Q Q rot H H H 3 H 4 H 5 H 6 (l) (sec) (l/h) (l/h) 5. REORT In your laboratory reports must have the followings; a) Cover b) short introduction c) ll the necessary calculations using measured data. d) Discussion of your results and a conclusion.

### Experiment (4): Flow measurement

Experiment (4): Flow measurement Introduction: The flow measuring apparatus is used to familiarize the students with typical methods of flow measurement of an incompressible fluid and, at the same time

### Lecture23. Flowmeter Design.

Lecture23 Flowmeter Design. Contents of lecture Design of flowmeter Principles of flow measurement; i) Venturi and ii) Orifice meter and nozzle Relationship between flow rate and pressure drop Relation

### EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the co-efficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1

### FLOW MEASUREMENT IN PIPES EXPERIMENT

University of Leicester Engineering Department FLOW MEASUREMENT IN PIPES EXPERIMENT Page 1 FORMAL LABORATORY REPORT Name of the experiment: FLOW MEASUREMENT IN PIPES Author: Apollin nana chaazou Partner

### DETERMINATION OF DISCHARGE AND HEAD LOSS USING A FLOW-MEASURING APPARATUS

DETERMINATION OF DISCHARGE AND HEAD LOSS USING A FLOW-MEASURING APPARATUS 1. INTRODUCTION Through use of the Flow-Measuring Apparatus, this experiment is designed to accustom students to typical methods

### 5 ENERGY EQUATION OF FLUID MOTION

5 ENERGY EQUATION OF FLUID MOTION 5.1 Introduction In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics. The pertinent laws

### Measurements using Bernoulli s equation

An Internet Book on Fluid Dynamics Measurements using Bernoulli s equation Many fluid measurement devices and techniques are based on Bernoulli s equation and we list them here with analysis and discussion.

### Flowmeter Discharge Coefficient Estimation

Bankston 1 Flowmeter Discharge Coefficient Estimation Elizabeth Bankston Team 1 Abstract An Edibon FME18 Flow Meter demonstration system was used to obtain experimental values for this experiment. The

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### Mass of fluid leaving per unit time

5 ENERGY EQUATION OF FLUID MOTION 5.1 Eulerian Approach & Control Volume In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics.

### MCE380: Measurements and Instrumentation Lab

MCE380: Measurements and Instrumentation Lab Chapter 8: Flow Measurements Topics: Basic Flow Equations Flow Obstruction Meters Positive Displacement Flowmeters Other Methods Holman, Ch. 7 Cleveland State

### Flow Measurement in Pipes and Ducts COURSE CONTENT

Flow Measurement in Pipes and Ducts Dr. Harlan H. Bengtson, P.E. COURSE CONTENT 1. Introduction This course is about measurement of the flow rate of a fluid flowing under pressure in a closed conduit.

### ME332 FLUID MECHANICS LABORATORY (PART I)

ME332 FLUID MECHANICS LABORATORY (PART I) Mihir Sen Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame, IN 46556 Version: January 14, 2002 Contents Unit 1: Hydrostatics

### Chapter 3 Bernoulli Equation

1 Bernoulli Equation 3.1 Flow Patterns: Streamlines, Pathlines, Streaklines 1) A streamline, is a line that is everywhere tangent to the velocity vector at a given instant. Examples of streamlines around

### EXPERIMENT NO. 4 CALIBRATION OF AN ORIFICE PLATE FLOWMETER MECHANICAL ENGINEERING DEPARTMENT KING SAUD UNIVERSITY RIYADH

EXPERIMENT NO. 4 CALIBRATION OF AN ORIFICE PLATE FLOWMETER MECHANICAL ENGINEERING DEPARTMENT KING SAUD UNIVERSITY RIYADH Submitted By: ABDULLAH IBN ABDULRAHMAN ID: 13456789 GROUP A EXPERIMENT PERFORMED

### If a stream of uniform velocity flows into a blunt body, the stream lines take a pattern similar to this: Streamlines around a blunt body

Venturimeter & Orificemeter ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 5 Applications of the Bernoulli Equation The Bernoulli equation can be applied to a great

### I. To find the coefficient of discharge for vcnturi meter. 2. To find the coefficient of discharge for ori rice meter.

Flow Measurement by Venturi and Orifice Meters Objectives: I. To find the coefficient of discharge for vcnturi meter. 2. To find the coefficient of discharge for ori rice meter. Venturi and Orificemeters

### MAHATMA GANDHI MISSION S JAWAHARLAL NEHRU ENGINEERING COLLEGE, AURANGABAD. (M.S.)

MAHATMA GANDHI MISSION S JAWAHARLAL NEHRU ENGINEERING COLLEGE, AURANGABAD. (M.S.) DEPARTMENT OF CIVIL ENGINEERING FLUID MECHANICS I LAB MANUAL Prepared By Prof. L. K. Kokate Lab Incharge Approved By Dr.

### Experimental and CFD analysis of flow through venturimeter to determine the coefficient of discharge

Experimental and CFD analysis of flow through venturimeter to determine the coefficient of discharge Nikhil Tamhankar Amar Pandhare Ashwinkumar Joglekar Vaibhav Bansode Abstract- The pressure distribution

### Experiment No.4: Flow through Venturi meter. Background and Theory

Experiment No.4: Flow through Venturi meter Background and Theory Introduction Flow meters are used in the industry to measure the volumetric flow rate of fluids. Differential pressure type flow meters

### CHAPTER (13) FLOW MEASUREMENTS

CHAPTER (13) FLOW MEASUREMENTS 09/12/2010 Dr. Munzer Ebaid 1 Instruments for the Measurements of Flow Rate 1. Direct Methods: Volume or weight measurements. 2. Indirect Methods: Venturi meters, Orifices

### Experiment- To determine the coefficient of impact for vanes. Experiment To determine the coefficient of discharge of an orifice meter.

SUBJECT: FLUID MECHANICS VIVA QUESTIONS (M.E 4 th SEM) Experiment- To determine the coefficient of impact for vanes. Q1. Explain impulse momentum principal. Ans1. Momentum equation is based on Newton s

### Flow Measurement in Pipes and Ducts COURSE CONTENT

Flow Measurement in Pipes and Ducts Dr. Harlan H. Bengtson, P.E. COURSE CONTENT 1. Introduction This course is about measurement of the flow rate of a fluid flowing under pressure in a closed conduit.

### Lecture 13 Flow Measurement in Pipes. I. Introduction

Lecture 13 Flow Measurement in Pipes I. Introduction There are a wide variety of methods for measuring discharge and velocity in pipes, or closed conduits Many of these methods can provide very accurate

### Chapter 4 DYNAMICS OF FLUID FLOW

Faculty Of Engineering at Shobra nd Year Civil - 016 Chapter 4 DYNAMICS OF FLUID FLOW 4-1 Types of Energy 4- Euler s Equation 4-3 Bernoulli s Equation 4-4 Total Energy Line (TEL) and Hydraulic Grade Line

### Hydraulics and hydrology

Hydraulics and hydrology - project exercises - Class 4 and 5 Pipe flow Discharge (Q) (called also as the volume flow rate) is the volume of fluid that passes through an area per unit time. The discharge

### 3.25 Pressure form of Bernoulli Equation

CEE 3310 Control Volume Analysis, Oct 3, 2012 83 3.24 Review The Energy Equation Q Ẇshaft = d dt CV ) (û + v2 2 + gz ρ d + (û + v2 CS 2 + gz + ) ρ( v n) da ρ where Q is the heat energy transfer rate, Ẇ

### CEE 3310 Control Volume Analysis, Oct. 7, D Steady State Head Form of the Energy Equation P. P 2g + z h f + h p h s.

CEE 3310 Control Volume Analysis, Oct. 7, 2015 81 3.21 Review 1-D Steady State Head Form of the Energy Equation ( ) ( ) 2g + z = 2g + z h f + h p h s out where h f is the friction head loss (which combines

### Chapter 7 The Energy Equation

Chapter 7 The Energy Equation 7.1 Energy, Work, and Power When matter has energy, the matter can be used to do work. A fluid can have several forms of energy. For example a fluid jet has kinetic energy,

### 2.The lines that are tangent to the velocity vectors throughout the flow field are called steady flow lines. True or False A. True B.

CHAPTER 03 1. Write Newton's second law of motion. YOUR ANSWER: F = ma 2.The lines that are tangent to the velocity vectors throughout the flow field are called steady flow lines. True or False 3.Streamwise

### Approximate physical properties of selected fluids All properties are given at pressure kn/m 2 and temperature 15 C.

Appendix FLUID MECHANICS Approximate physical properties of selected fluids All properties are given at pressure 101. kn/m and temperature 15 C. Liquids Density (kg/m ) Dynamic viscosity (N s/m ) Surface

### Calibration of Orifice Flow Meter and Venturi Flow Meter

Calibration of Orifice Flow Meter and Venturi Flow Meter D. Till Abstract Orifice and venturi flow meters decrease the pressure of a fluid b increasing its velocit as it flows through them. This is done

### MAHATMA GANDHI MISSION S JAWAHARLAL NEHRU ENGINEERING COLLEGE, FLUID MECHANICS LABORATORY MANUAL

MAHATMA GANDHI MISSION S JAWAHARLAL NEHRU ENGINEERING COLLEGE, AURANGABAD. (M.S.) DEPARTMENT OF CIVIL ENGINEERING FLUID MECHANICS LABORATORY MANUAL Prepared By Mr. L. K. Kokate Lab Incharge Approved By

### BRCM COLLEGE OF ENGINEERING & TECHNOLOGY Practical Experiment Instructions Sheet

Exp. Title FLUID MECHANICS- I LAB Syllabus FM-I Semester-4 th Page No. 1 of 1 Internal Marks: 25 L T P External Marks: 25 0 0 2 Total Marks: 50 1. To determine the met centric height of a floating body

### Chapter 5 Flow in Pipelines

For updated ersion, please click on http://kalam.ump.edu.my Chapter 5 Flow in ipelines by Dr. Nor Azlina binti Alias Faculty of Ciil and Earth Resources Enineerin azlina@ump.edu.my 5.4 Flowrate and Velocity

### Lecture 3 The energy equation

Lecture 3 The energy equation Dr Tim Gough: t.gough@bradford.ac.uk General information Lab groups now assigned Timetable up to week 6 published Is there anyone not yet on the list? Week 3 Week 4 Week 5

### ENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids

CHAPTER 1 Properties of Fluids ENGINEERING FLUID MECHANICS 1.1 Introduction 1.2 Development of Fluid Mechanics 1.3 Units of Measurement (SI units) 1.4 Mass, Density, Specific Weight, Specific Volume, Specific

### DEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore. Fluid Mechanics Lab

DEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore Fluid Mechanics Lab Introduction Fluid Mechanics laboratory provides a hands on environment that is crucial for developing

### 04/01/1998 Developments in DP Flowmeters By Jesse Yoder

04/01/1998 Developments in DP Flowmeters By Jesse Yoder Developments in DP Flowmeters Improvements in Primary Elements Are Keeping Differential Pressure Flowmeters the First Choice for Many Process Applications

### FLUID MECHANICS. Chapter 3 Elementary Fluid Dynamics - The Bernoulli Equation

FLUID MECHANICS Chapter 3 Elementary Fluid Dynamics - The Bernoulli Equation CHAP 3. ELEMENTARY FLUID DYNAMICS - THE BERNOULLI EQUATION CONTENTS 3. Newton s Second Law 3. F = ma along a Streamline 3.3

### Roll No. :... Invigilator s Signature :.. CS/B.Tech (EIE)/SEM-5/EI-501/ INDUSTRIAL INSTRUMENTATION II

Name : Roll No. :.... Invigilator s Signature :.. CS/B.Tech (EIE)/SEM-5/EI-501/2011-12 2011 INDUSTRIAL INSTRUMENTATION II Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full

### Republic of Iraq Ministry of Higher Education and Scientific Research University of Technology- Electromechanical Department

RepublicofIraq MinistryofHigherEducation andscientificresearch UniversityofTechnology- Electromechanical Department - 2014 1436 Experiment No. 1 Calibration of Bourdon Gauge Description: Figure (1) shows

### FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4)

FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) 1 1.0 Objectives The objective of this experiment is to calculate loss coefficient (K

### CALCULATION OF COEFFICIENT OF DISCHARGE OF ORIFICE PLATE AND FLOW NOZZLE

CALCULATION OF COEFFICIENT OF DISCHARGE OF ORIFICE PLATE AND FLOW NOZZLE A.NAGABHUSHANA RAO, M.PADMANABHAM ABSTRACT An orifice plate is a device used for measuring flow rate. Either a volumetric or mass

### COURSE CODE : 3072 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

COURSE TITLE : FLUID MECHANICS COURSE CODE : 307 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIOD 1 Properties of Fluids 0 Fluid Friction and Flow

### ME332 FLUID MECHANICS LABORATORY (PART II)

ME332 FLUID MECHANICS LABORATORY (PART II) Mihir Sen Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame, IN 46556 Version: April 2, 2002 Contents Unit 5: Momentum transfer

### Stream Tube. When density do not depend explicitly on time then from continuity equation, we have V 2 V 1. δa 2. δa 1 PH6L24 1

Stream Tube A region of the moving fluid bounded on the all sides by streamlines is called a tube of flow or stream tube. As streamline does not intersect each other, no fluid enters or leaves across the

### vector H. If O is the point about which moments are desired, the angular moment about O is given:

The angular momentum A control volume analysis can be applied to the angular momentum, by letting B equal to angularmomentum vector H. If O is the point about which moments are desired, the angular moment

### Fundamentals of Flow Metering

Technical Data Sheet 00816-0100-3031 Fundamentals of Flow Metering A reliable flow indication is dependent upon the correct measurement of A and V. If, for example, air bubbles are present in the fluid,

### Laboratory work No 2: Calibration of Orifice Flow Meter

Laboratory work No : Calibration of Orifice Flow Meter 1. Objective Calibrate the orifice flow meter and draw the graphs p = f 1 (Q) and C d = f (Re ).. Necessary equipment 1. Orifice flow meter. Measuring

### Flow Measurement in Pipes and Ducts

Flow Measurement in Pipes and Ducts Course No: M04-040 Credit: 4 PDH Harlan H. Bengtson, Ph.D., P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980 P: (877) 322-5800

### Orifice and Venturi Pipe Flow Meters

Orifice and Venturi Pipe Flow Meters by Harlan H. Bengtson, PhD, P.E. 1. Introduction Your Course Title Here The flow rate of a fluid flowing in a pipe under pressure is measured for a variety of applications,

### CEE 3310 Control Volume Analysis, Oct. 10, = dt. sys

CEE 3310 Control Volume Analysis, Oct. 10, 2018 77 3.16 Review First Law of Thermodynamics ( ) de = dt Q Ẇ sys Sign convention: Work done by the surroundings on the system < 0, example, a pump! Work done

### Friction Factors and Drag Coefficients

Levicky 1 Friction Factors and Drag Coefficients Several equations that we have seen have included terms to represent dissipation of energy due to the viscous nature of fluid flow. For example, in the

### CHAPTER THREE FLUID MECHANICS

CHAPTER THREE FLUID MECHANICS 3.1. Measurement of Pressure Drop for Flow through Different Geometries 3.. Determination of Operating Characteristics of a Centrifugal Pump 3.3. Energy Losses in Pipes under

### Laboratory exercise 1: Open channel flow measurement

Chapter 1 Laboratory exercise 1: Open channel flow measurement Laboratory exercise Open channel flow measurement is placed on the Faculty of Civil and Geodetic Engineering, on Department of Environmental

### Flow Measurement: Physical principle employed in various types of flow meters. PART 4 PREPARED BY: ESO OLUWATOBILOBA

Flow Measurement: Physical principle employed in various types of flow meters. PART 4 PREPARED BY: ESO OLUWATOBILOBA Pressure Differential Flow Meters In a differential pressure drop device the flow is

### Chapter Four fluid flow mass, energy, Bernoulli and momentum

4-1Conservation of Mass Principle Consider a control volume of arbitrary shape, as shown in Fig (4-1). Figure (4-1): the differential control volume and differential control volume (Total mass entering

### Q1 Give answers to all of the following questions (5 marks each):

FLUID MECHANICS First Year Exam Solutions 03 Q Give answers to all of the following questions (5 marks each): (a) A cylinder of m in diameter is made with material of relative density 0.5. It is moored

### 1.060 Engineering Mechanics II Spring Problem Set 4

1.060 Engineering Mechanics II Spring 2006 Due on Monday, March 20th Problem Set 4 Important note: Please start a new sheet of paper for each problem in the problem set. Write the names of the group members

### Chapter 15B - Fluids in Motion. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 15B - Fluids in Motion A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 007 Paul E. Tippens Fluid Motion The lower falls at Yellowstone National

### Fluid Mechanics Lab (ME-216-F) List of Experiments

Fluid Mechanics Lab (ME-216-F) List of Experiments 1. To determine the coefficient of discharge C d, velocity C v, and contraction C c of various types of orifices 2. Determine of discharge coefficients

### EGN 3353C Fluid Mechanics

Lecture 8 Bernoulli s Equation: Limitations and Applications Last time, we derived the steady form of Bernoulli s Equation along a streamline p + ρv + ρgz = P t static hydrostatic total pressure q = dynamic

### Major and Minor Losses

Abstract Major and Minor Losses Caitlyn Collazo, Team 2 (1:00 pm) A Technovate fluid circuit system was used to determine the pressure drop across a pipe section and across an orifice. These pressure drops

### Discharge measurements

Discharge measurements DISCHARGE MEASUREMENTS Suitability of methods and equipment for measurements where, under what conditions and for what reason discharge is measured determination of discharge in

### About the Calibration of Rotameter

About the Calibration of Rotameter IVANOV Valentin Ganchev Technical University of Sofia, Bulgaria, vgi@tu-sofia.bg Abstract This work on basis of literary studies and analysis of the author are examined

### DARSHAN INSTITUTE OF ENGINEERING AND TECHNOLOGY, RAJKOT FLUID MECHANICS ( )

DARSHAN INSTITUTE OF ENGINEERING AND TECHNOLOGY, RAJKOT FLUID MECHANICS (2141906) Sr. No. Experiment Start Date End Date Sign Remark 1. To understand pressure measurement procedure and related instruments/devices.

### 2 Internal Fluid Flow

Internal Fluid Flow.1 Definitions Fluid Dynamics The study of fluids in motion. Static Pressure The pressure at a given point exerted by the static head of the fluid present directly above that point.

### Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law = F 1 = F 2 2 = F 2 A 2

Lecture 24: Archimedes Principle and Bernoulli s Law 1 Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law Example 15.1 The hydraulic lift A hydraulic lift consists of a small diameter piston of radius

### ME411 Engineering Measurement & Instrumentation. Winter 2017 Lecture 11

ME411 Engineering Measurement & Instrumentation Winter 2017 Lecture 11 1 Flow Measurement Identify an effect that depends on flow rate Process control requires accurate measurement of flow control Mixing

### UNIT IV. Flow through Orifice and Mouthpieces and Flow through Notchs and Weirs

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : FM(15A01305) Year & Sem: II-B.Tech & I-Sem Course & Branch: B.Tech -

### NPTEL Quiz Hydraulics

Introduction NPTEL Quiz Hydraulics 1. An ideal fluid is a. One which obeys Newton s law of viscosity b. Frictionless and incompressible c. Very viscous d. Frictionless and compressible 2. The unit of kinematic

### EXPERIMENT NO: F5. Losses in Piping Systems

SJSU ME115 - THERMAL ENGINEERING LAB EXPERIMENT NO: F5 Losses in Piping Systems Objective One of the most common problems in fluid mechanics is the estimation of pressure loss. It is the objective of this

### The Bernoulli Equation

The Bernoulli Equation The most used and the most abused equation in fluid mechanics. Newton s Second Law: F = ma In general, most real flows are 3-D, unsteady (x, y, z, t; r,θ, z, t; etc) Let consider

### ABSTRACT I. INTRODUCTION

2016 IJSRSET Volume 2 Issue 4 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Analysis of Compressible Effect in the Flow Metering By Orifice Plate Using Prasanna

### Volume and Mass Flow Rate Measurement Author: John M. Cimbala, Penn State University Latest revision: 07 December 2007

Volume and Mass Flow Rate Measurement Author: John M. Cimbala, Penn State University Latest revision: 07 ecember 2007 Introduction and notation In many engineering applications, either mass flow rate or

### Calibrate Rotameter and Orifice Meter and Explore Reynolds #

CM3215 Fundamentals of Chemical Engineering Laboratory Calibrate Rotameter and Orifice Meter and Explore Reynolds # Extra features! Professor Faith Department of Chemical Engineering Michigan Technological

### Fluid Mechanics c) Orificemeter a) Viscous force, Turbulence force, Compressible force a) Turbulence force c) Integration d) The flow is rotational

Fluid Mechanics 1. Which is the cheapest device for measuring flow / discharge rate. a) Venturimeter b) Pitot tube c) Orificemeter d) None of the mentioned 2. Which forces are neglected to obtain Euler

### LABORATORY MANUAL FLUID MECHANICS ME-216-F

LABORATORY MANUAL FLUID MECHANICS ME-216-F LIST OF THE EXPERIMENT SNO NAME OF THE EXPERIMENT PAGE NO FROM TO 1. To determine the coefficient of impact for vanes. 2. To determine the coefficient of discharge

### Objectives. Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation

Objectives Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation Conservation of Mass Conservation of Mass Mass, like energy, is a conserved

### SCHOOL OF CHEMICAL ENGINEERING FACULTY OF ENGINEERING AND TECHNOLOGY SRM UNIVERSITY COURSE PLAN

SCHOOL OF CHEMICAL ENGINEERING FACULTY OF ENGINEERING AND TECHNOLOGY SRM UNIVERSITY COURSE PLAN Course code : CH0317 Course Title : Momentum Transfer Semester : V Course Time : July Nov 2011 Required Text

### TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle

Lecture 6 Fluids TOPICS Density Pressure Variation of Pressure with Depth Pressure Measurements Buoyant Forces-Archimedes Principle Surface Tension ( External source ) Viscosity ( External source ) Equation

### Teacher s Signature. S. No. Experiment marks. 3 To determine the coefficient of discharge of Notch (V and Rectangular types)

S. No. Index Name of experiment Date of performance 1. To determine the coefficient of impact for vanes. 2 To determine coefficient of discharge of an orificemeter. 3 To determine the coefficient of discharge

### ME 4600:483 Lab Notes Revised 11/16/2015. Flow Measurement

Table of Contents Flow Measurement Flow Measurement... 1 I. Objective... 1 II. Apparatus... 1 III. Principles and Background... 1 Pitot-Static Tubes... 2 Orifice Plates and Unrecoverable Losses... 4 Flow

### ACCOUNTING FOR FRICTION IN THE BERNOULLI EQUATION FOR FLOW THROUGH PIPES

ACCOUNTING FOR FRICTION IN THE BERNOULLI EQUATION FOR FLOW THROUGH PIPES Some background information first: We have seen that a major limitation of the Bernoulli equation is that it does not account for

### SAMPLE FORMAL REPORT A

SAMPLE FORMAL REPORT A Chemical Engineering 4903 and 4905 The following sample laboratory formal report is not intended to represent the scope and depth of the projects assigned to students. It is an edited

### Prediction of Performance Characteristics of Orifice Plate Assembly for Non-Standard Conditions Using CFD

International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-3, Issue-5, May 2015 Prediction of Performance Characteristics of Orifice Plate Assembly for Non-Standard Conditions

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### Steven Burian Civil & Environmental Engineering September 25, 2013

Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session

### Orifice and Venturi Pipe Flow Meters

Orifice and Venturi Pipe Flow Meters For Liquid and Gas Flow by Harlan H. Bengtson, PhD, P.E. 1. Introduction Orifice and Venturi Pipe Flow Meters The flow rate of a fluid flowing in a pipe under pressure

### HYDRAULIC RESISTANCE Local (Minor!) Pressure Losses

HYDRULIC RESISTNCE Local (Minor!) Pressure Losses TFD-FD06 Hydraulic Resistance Local (Minor!) Losses Local Pressure Losses (Minor Losses!) lthough they often account for a major portion of the total pressure

### CH.1 Overview of Fluid Mechanics/22 MARKS. 1.1 Fluid Fundamentals.

Content : 1.1 Fluid Fundamentals. 08 Marks Classification of Fluid, Properties of fluids like Specific Weight, Specific gravity, Surface tension, Capillarity, Viscosity. Specification of hydraulic oil

### The Expansibility Factor Equations in ISO and ISO : Do They Deliver What They Promise?

The Expansibility Factor Equations in ISO 567-2 and ISO 567-4: Do They Deliver What They Promise? Michael Reader-Harris, NEL INTRODUCTION The expansibility factor equations in ISO 567-2:2003 [] and ISO

### Chapter 11 - Fluids in Motion. Sections 7-9

Chapter - Fluids in Motion Sections 7-9 Fluid Motion The lower falls at Yellowstone National Park: the water at the top of the falls passes through a narrow slot, causing the velocity to increase at that

### Flow rate and mass flow rate

EEN-E1040 Measurement and control of energy systems Flow measurements / 14 Sep 2017 WELCOME! v. 01 / T. Paloposki Flow rate and mass flow rate Consider the system shown here 1 Volume flow rate through

### Rate of Flow Quantity of fluid passing through any section (area) per unit time

Kinematics of Fluid Flow Kinematics is the science which deals with study of motion of liquids without considering the forces causing the motion. Rate of Flow Quantity of fluid passing through any section

### UNIT I FLUID PROPERTIES AND STATICS

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Fluid Mechanics (16CE106) Year & Sem: II-B.Tech & I-Sem Course & Branch: