Chapter Four fluid flow mass, energy, Bernoulli and momentum

Size: px
Start display at page:

Transcription

1 4-1Conservation of Mass Principle Consider a control volume of arbitrary shape, as shown in Fig (4-1). Figure (4-1): the differential control volume and differential control volume (Total mass entering CV)- (Total mass leaving CV) = Net change in mass within the CV Total mass within the CV: Rate of change of mass within the CV: Now consider mass flow into or out of the control volume through a differential area da on the control surface of a fixed control volume. Let be the outward unit vector of da normal to da and be the flow velocity at da relative to a fixed coordinate system, as shown in Fig. (4-1). In general, the velocity may cross da at an angle. Qahtan A. Mahmood Page 1

2 u The mass flow rate through da is proportional to the fluid density normal velocity u, and the flow area da, and can be expressed as, Differential mass flow rate: The net flow rate into or out of the control volume through the entire control surface is obtained by integrating. Over the entire control surface, Net mass flow rate: The conservation of mass relation for a fixed control volume can then be expressed as The general conservation of mass relation can also be expressed as Or in mass flow rate Qahtan A. Mahmood Page 2

3 Example (4-1) A 4ft high, 3ft diameter cylindrical water tank whose top is open to the atmosphere is initially filled with water. Now the discharge plug near the bottom of the tank is pulled out, and water jet whose diameter is 0.5 in streams out. The average velocity of the jet is given by, where h is the height of water in the tank measured from the center of the hole (a variable) and g is the gravitational acceleration. Determine how long it will take for the water level in the tank to drop to 2 ft from the bottom. Solution: Qahtan A. Mahmood Page 3

4 4-2-Bernoulli equation The Bernoulli equation is an approximate relation between pressure, velocity, and elevation, and is valid in regions of steady, incompressible low where net frictional forces are negligible (4-2). Figure (4-2) the force acting on a fluid particle along a streamline. Applying Newton s second law in the s-direction on a particle moving along a streamline gives Two component of acceleration Qahtan A. Mahmood Page 4

5 Substituting (4-12) in equation (4-11) yield Canceling da from each term and simplifying, Noting that and dividing each term by gives By integration For incompressible This is the famous Bernoulli equation, which is commonly used in fluid mechanics for steady, incompressible flow. Qahtan A. Mahmood Page 5

6 The Bernoulli equation can also be written between any two points on the same streamline as Static, Dynamic, and Stagnation Pressures The kinetic and potential energies of the fluid can be converted to flow energy (and vice versa) during flow, causing the pressure to change. This phenomenon can be made more visible by multiplying the Bernoulli equation by the density Each term in this equation has pressure units, and thus each term represents some kind of pressure: P is the static pressure; it is represents the actual thermodynamic pressure of the fluid. u 2 2 is the dynamic pressure; it represents the pressure rise when the fluid in motion is brought to a stop isentropically gz is the hydrostatic pressure, which is not pressure in a real sense since its value depends on the reference level selected; it accounts for the elevation effects, i.e., of fluid weight on pressure Limitations on the Use of the Bernoulli Equation Steady flow: it should not be used during the transient start-up and shut-down periods, Qahtan A. Mahmood Page 6

7 Frictionless flow: (valve and sharp entrance are disturbs the streamlined structure of flow) No shaft work: pump, turbine, fan, or any other machine or impeller since such devices destroy the streamlines No heat transfer Flow along a streamline: no irrotational region of the flow Hydraulic Grade Line (HGL) and Energy Grade Line (EGL) This is done by dividing each term of the Bernoulli equation by g to give Where P/g is the pressure head; it represents the height of a fluid column that produces the static pressure P. u 2 /2 g is the velocity head; it represents the elevation needed for a fluid to reach the velocity u during frictionless free fall. z is the elevation head; it represents the potential energy of the fluid Also, H is the total head for the flow. (4-22) Qahtan A. Mahmood Page 7

8 Figure (4-4): HGL and EGL for frictionless flow in a duct Example (4-2) A large tank open to the atmosphere is filled with water to a height of 5 m from the outlet tap. A tap near the bottom of the tank is now opened, and water flows out from the smooth and rounded outlet. Determine the water velocity at the outlet. Solution: P 1 = P atm (open to the atmosphere), u 1 = 0 (the tank is large relative to the outlet) and z 2 =0 Also, P 2 = P atm (water discharges into the atmosphere). Then the Bernoulli equation simplifies to Example (4-3) Qahtan A. Mahmood Page 8

9 A pressurized tank of water has a 10cmdiameter orifice at the bottom, where water discharges to the atmosphere. The water level is 3 m above the outlet. The tank air pressure above the water level is 300 kpa (absolute) while the atmospheric pressure is 100 kpa. Neglecting frictional effects, determine the initial discharge rate of water from the tank. Solution: ( * ( ) 4-3-Conservation of Energy One of the most fundamental laws in nature is the first law of thermodynamics, also known as the conservation of energy principle. The conservation of energy principle for any system can be expressed simply as Then the conservation of energy for a fixed quantity of mass can be expressed in rate form as (Fig. 4-5) Qahtan A. Mahmood Page 9

10 Figure (4-5): A closed system Total energy consists of internal, kinetic and potential energies, and it is expressed on a unit-mass basis as Energy Transfer by Heat, Q For adiabatic process Q=0 For isothermal process there is change in temperature Energy Transfer by Work, W A system may involve numerous forms of work, and the total work can be expressed as Shaft Work Many flow systems involve a machine such as a pump, a turbine, a fan, or a compressor whose shaft protrudes through the control surface, and the work transfer associated with all such devices is simply referred to as shaft work W shaft Qahtan A. Mahmood Page 10

11 Where: Work Done by Pressure Forces Consider a gas being compressed in the piston-cylinder device shown in Fig. (4-6) Where u= ds/dt is the piston velocity So Figure (4-6) piston-cylinder Work done by pressure forces is positive when it is done on the system and negative when it is done by the system, Then the rate form of the conservation of energy relation for a closed system becomes Qahtan A. Mahmood Page 11

12 (Net rate of energy into CV)+(time rate of change of CV)=net flow rate of energy CS Substituting the surface integral for the rate of pressure work from Eq.(4-27) into Eq. (4-30) and combining it with the surface integral on the right give Then equation (4-31) become ( * ( ) or ( ) Qahtan A. Mahmood Page 12

13 The last two equations are fairly general expressions of conservation of energy, ENERGY ANALYSIS OF STEADY FLOWS For steady flows, the time rate of change of the energy content of the control volume is zero, and Eq. (4-34) simplifies to ( ) Many practical problems involve just one inlet and one outlet. The mass flow rate for such single-stream devices remains constant, and Eq. (4-34) reduces to ( ) Divided by mass flowrate ( ) equation can also be expressed as and rearranging, the steady-flow energy Qahtan A. Mahmood Page 13

14 For single-phase fluids (a gas or a liquid), we have U 2 - U 1 = cv (T 2 - T 1 ) Where cv is the constant-volume specific heat. Noting that w shaft, net in = w shaft, in - w shaft, out = w pump - w turbine, the mechanical energy balance can be written more explicitly as Multiplying Eq. (4-39) by the mass flow rate m. gives The total mechanical power loss which consists of pump, turbine losses and frictional losses in the piping network. That is, Divided equation (4-39) by g Qahtan A. Mahmood Page 14

15 Where Is the useful head delivered to the fluid by the pump. Because of irreversible losses in the pump,, is less than by the factor. similarly Is the extracted head removed from the fluid by the turbine. Because of irreversible losses in the turbine,, e is greater than by the factor. Finally Is the irreversible head loss between 1 and 2 due to all components of the piping system other than the pump or turbine? Note that the head loss h L represents the frictional losses associated with fluid flow in piping, and it does not include the losses that occur within the pump or turbine due to the inefficiencies of these devices Equation (4-41) is illustrated schematically in Fig. (4-7). Qahtan A. Mahmood Page 15

16 Figure (4-7): Mechanical energy flow chart for a fluid flow system Example (4-4) The pump of a water distribution system is powered by a 15kW electric motor whose efficiency is 90 percent (Fig. below). The water flow rate through the pump is 50 L/s. The diameters of the inlet and outlet pipes are the same, and the elevation difference across the pump is negligible. If the pressures at the inlet and outlet of the pump are measured to be 100 kpa and 300 kpa (absolute), respectively, determine (a) the mechanical efficiency of the pump and (b) the temperature rise of water as it flow through the pump due to the mechanical inefficiency. SOLUTION: Qahtan A. Mahmood Page 16

17 u 1 =u 2 =0 and z 1 =z 2 so ( * ( ) ( * Then the mechanical efficiency of the pump becomes Of the 13.5kW mechanical power supplied by the pump, only 10 kw is imparted to the fluid as mechanical energy. The remaining 3.5 kw is converted to thermal energy due to frictional effects, and this lost mechanical energy manifests itself as a heating effect in the fluid, The temperature rise of water due to this mechanical inefficiency is determined from the thermal energy balance, Solving for T, ( ) ( * Example (4-5) Qahtan A. Mahmood Page 17

18 In a hydroelectric power plant, 100 m3/s of water flow from an elevation of 120 m to a turbine, where electric power is generated (Fig. below). The total irreversible head loss in the piping system from point 1 to point 2 (excluding the turbine unit) is determined to be 35 m. If the overall efficiency of the turbine generator is 80 percent, estimate the electric power output Solution: P 1 =P 2 =atm u 1 =u 2 =0 Equation (4-41) reduce to (, The electric power generated by the actual unit 4-4-Conservation of Momentum Principle Newton s second law for a system of mass m subjected to a net force F is expressed as Where is the linear momentum of the system, Newton s second law can be expressed more generally as Qahtan A. Mahmood Page 18

19 where is the mass of a differential volume element dv and is its momentum. (Sum of force acting CV)=(Rate of change of momentum of CV)+(net flow rate at CS) During steady flow, the amount of momentum within the control volume remains constant (the second term of Eq. 4-45) is zero. It gives Mass flow rate across an inlet or outlet Momentum flow rate across a uniform inlet or outlet: so Many practical problems involve just one inlet and one outlet, and Eq. (4-49) reduces to Qahtan A. Mahmood Page 19

20 Momentum Equation for Two and three dimensional flow along a streamlin Consider the two dimensional system shown, since both momentum and force are vector quantities, they can be resolving into components in the x and y directions These components can be combined to give the resultant force And the angle of this force Force exerted by a jet striking flat plate Consider a jet striking a flat plate that may be perpendicular or inclined to the direction of the jet. The general term of the jet velocity component normal to the plate can be written as: ( ) Qahtan A. Mahmood Page 20

21 The mass flow entering the control volume If the plate is stationary: Thus the rate of change of momentum normal to the plate Force exerted normal to the plate = The rate of change of momentum normal to the plate: if the plate is stationary and inclined if the plate is both stationary and perpendicular Example (4-6) A jet of water from a fixed nozzle has a diameter d of 25mm and strikes a flat plate at angle of 30 o to the normal to the plate. The velocity of the jet is 5m/s, and the surface of the plate can be assumed to be frictionless. Calculate the force exerted normal to the plate (a) if the plate is stationary, (b) if the plate is moving with velocity u of 2m/s in the same direction as the jet. Qahtan A. Mahmood Page 21

22 Solution: a) Force exerted normal to the plate = The rate of change of momentum normal to the plate: if the plate is stationary and inclined ( ) ( ) if the plate is moving with velocity 2m/s ( ) Example (4.7) A reducing elbow is used to deflect water flow at a rate of 14 kg/s in a horizontal pipe upward 30 while accelerating it (Fig. below). The elbow discharges water into the atmosphere. The cross-sectional area of the elbow is 113 cm 2 at the inlet and 7 cm 2 at the outlet. The elevation difference between the centers of the outlet and the inlet is 30 cm. The weight of the elbow and the water in it is considered to be negligible. Determine (a) the gage pressure at the center of the inlet of the elbow and (b) the anchoring force needed to hold the elbow in place. Qahtan A. Mahmood Page 22

23 level (z 1 = 0) and noting that P 2 = P atm, the Bernoulli equation for a streamline going through the center of the elbow is expressed as (b) The momentum equation for steady one-dimensional flow is Qahtan A. Mahmood Page 23

24 ( ( ) + ( ) ( * If we repeated example above for the figure below Noting that the outlet velocity is negative since it is in the negative x-direction, we have ( ) Qahtan A. Mahmood Page 24

Objectives. Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation

Objectives Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation Conservation of Mass Conservation of Mass Mass, like energy, is a conserved

MASS, MOMENTUM, AND ENERGY EQUATIONS

MASS, MOMENTUM, AND ENERGY EQUATIONS This chapter deals with four equations commonly used in fluid mechanics: the mass, Bernoulli, Momentum and energy equations. The mass equation is an expression of the

vector H. If O is the point about which moments are desired, the angular moment about O is given:

The angular momentum A control volume analysis can be applied to the angular momentum, by letting B equal to angularmomentum vector H. If O is the point about which moments are desired, the angular moment

Chapter 5: Mass, Bernoulli, and Energy Equations

Chapter 5: Mass, Bernoulli, and Energy Equations Introduction This chapter deals with 3 equations commonly used in fluid mechanics The mass equation is an expression of the conservation of mass principle.

CLASS Fourth Units (Second part)

CLASS Fourth Units (Second part) Energy analysis of closed systems Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. MOVING BOUNDARY WORK Moving boundary work (P

Basic Fluid Mechanics

Basic Fluid Mechanics Chapter 5: Application of Bernoulli Equation 4/16/2018 C5: Application of Bernoulli Equation 1 5.1 Introduction In this chapter we will show that the equation of motion of a particle

CEE 3310 Control Volume Analysis, Oct. 10, = dt. sys

CEE 3310 Control Volume Analysis, Oct. 10, 2018 77 3.16 Review First Law of Thermodynamics ( ) de = dt Q Ẇ sys Sign convention: Work done by the surroundings on the system < 0, example, a pump! Work done

Chapter 3 Bernoulli Equation

1 Bernoulli Equation 3.1 Flow Patterns: Streamlines, Pathlines, Streaklines 1) A streamline, is a line that is everywhere tangent to the velocity vector at a given instant. Examples of streamlines around

Angular momentum equation

Angular momentum equation For angular momentum equation, B =H O the angular momentum vector about point O which moments are desired. Where β is The Reynolds transport equation can be written as follows:

CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS NOOR ALIZA AHMAD

CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS 1 INTRODUCTION Flow often referred as an ideal fluid. We presume that such a fluid has no viscosity. However, this is an idealized situation that does not exist.

CEE 3310 Control Volume Analysis, Oct. 7, D Steady State Head Form of the Energy Equation P. P 2g + z h f + h p h s.

CEE 3310 Control Volume Analysis, Oct. 7, 2015 81 3.21 Review 1-D Steady State Head Form of the Energy Equation ( ) ( ) 2g + z = 2g + z h f + h p h s out where h f is the friction head loss (which combines

Lesson 6 Review of fundamentals: Fluid flow

Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass

3.25 Pressure form of Bernoulli Equation

CEE 3310 Control Volume Analysis, Oct 3, 2012 83 3.24 Review The Energy Equation Q Ẇshaft = d dt CV ) (û + v2 2 + gz ρ d + (û + v2 CS 2 + gz + ) ρ( v n) da ρ where Q is the heat energy transfer rate, Ẇ

Chapter 7 The Energy Equation

Chapter 7 The Energy Equation 7.1 Energy, Work, and Power When matter has energy, the matter can be used to do work. A fluid can have several forms of energy. For example a fluid jet has kinetic energy,

Chapter 5: Mass, Bernoulli, and

and Energy Equations 5-1 Introduction 5-2 Conservation of Mass 5-3 Mechanical Energy 5-4 General Energy Equation 5-5 Energy Analysis of Steady Flows 5-6 The Bernoulli Equation 5-1 Introduction This chapter

5 ENERGY EQUATION OF FLUID MOTION

5 ENERGY EQUATION OF FLUID MOTION 5.1 Introduction In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics. The pertinent laws

3.8 The First Law of Thermodynamics and the Energy Equation

CEE 3310 Control Volume Analysis, Sep 30, 2011 65 Review Conservation of angular momentum 1-D form ( r F )ext = [ˆ ] ( r v)d + ( r v) out ṁ out ( r v) in ṁ in t CV 3.8 The First Law of Thermodynamics and

Chapter Two. Basic Thermodynamics, Fluid Mechanics: Definitions of Efficiency. Laith Batarseh

Chapter Two Basic Thermodynamics, Fluid Mechanics: Definitions of Efficiency Laith Batarseh The equation of continuity Most analyses in this book are limited to one-dimensional steady flows where the velocity

2 Internal Fluid Flow

Internal Fluid Flow.1 Definitions Fluid Dynamics The study of fluids in motion. Static Pressure The pressure at a given point exerted by the static head of the fluid present directly above that point.

2.The lines that are tangent to the velocity vectors throughout the flow field are called steady flow lines. True or False A. True B.

CHAPTER 03 1. Write Newton's second law of motion. YOUR ANSWER: F = ma 2.The lines that are tangent to the velocity vectors throughout the flow field are called steady flow lines. True or False 3.Streamwise

Therefore, the control volume in this case can be treated as a solid body, with a net force or thrust of. bm # V

When the mass m of the control volume remains nearly constant, the first term of the Eq. 6 8 simply becomes mass times acceleration since 39 CHAPTER 6 d(mv ) CV m dv CV CV (ma ) CV Therefore, the control

Mass of fluid leaving per unit time

5 ENERGY EQUATION OF FLUID MOTION 5.1 Eulerian Approach & Control Volume In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics.

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 5 Mass and Energy Analysis of Control Volumes by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics:

Chapter 4 DYNAMICS OF FLUID FLOW

Faculty Of Engineering at Shobra nd Year Civil - 016 Chapter 4 DYNAMICS OF FLUID FLOW 4-1 Types of Energy 4- Euler s Equation 4-3 Bernoulli s Equation 4-4 Total Energy Line (TEL) and Hydraulic Grade Line

EGN 3353C Fluid Mechanics

Lecture 8 Bernoulli s Equation: Limitations and Applications Last time, we derived the steady form of Bernoulli s Equation along a streamline p + ρv + ρgz = P t static hydrostatic total pressure q = dynamic

4 Mechanics of Fluids (I)

1. The x and y components of velocity for a two-dimensional flow are u = 3.0 ft/s and v = 9.0x ft/s where x is in feet. Determine the equation for the streamlines and graph representative streamlines in

Part A: 1 pts each, 10 pts total, no partial credit.

Part A: 1 pts each, 10 pts total, no partial credit. 1) (Correct: 1 pt/ Wrong: -3 pts). The sum of static, dynamic, and hydrostatic pressures is constant when flow is steady, irrotational, incompressible,

Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

first law of ThermodyNamics

first law of ThermodyNamics First law of thermodynamics - Principle of conservation of energy - Energy can be neither created nor destroyed Basic statement When any closed system is taken through a cycle,

Chapter 5. Mass and Energy Analysis of Control Volumes

Chapter 5 Mass and Energy Analysis of Control Volumes Conservation Principles for Control volumes The conservation of mass and the conservation of energy principles for open systems (or control volumes)

Introduction to Chemical Engineering Thermodynamics. Chapter 7. KFUPM Housam Binous CHE 303

Introduction to Chemical Engineering Thermodynamics Chapter 7 1 Thermodynamics of flow is based on mass, energy and entropy balances Fluid mechanics encompasses the above balances and conservation of momentum

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

Chapter (6) Energy Equation and Its Applications

Chapter (6) Energy Equation and Its Applications Bernoulli Equation Bernoulli equation is one of the most useful equations in fluid mechanics and hydraulics. And it s a statement of the principle of conservation

Exam #2: Fluid Kinematics and Conservation Laws April 13, 2016, 7:00 p.m. 8:40 p.m. in CE 118

CVEN 311-501 (Socolofsky) Fluid Dynamics Exam #2: Fluid Kinematics and Conservation Laws April 13, 2016, 7:00 p.m. 8:40 p.m. in CE 118 Name: : UIN: : Instructions: Fill in your name and UIN in the space

FLUID MECHANICS. Chapter 3 Elementary Fluid Dynamics - The Bernoulli Equation

FLUID MECHANICS Chapter 3 Elementary Fluid Dynamics - The Bernoulli Equation CHAP 3. ELEMENTARY FLUID DYNAMICS - THE BERNOULLI EQUATION CONTENTS 3. Newton s Second Law 3. F = ma along a Streamline 3.3

Thermodynamics ENGR360-MEP112 LECTURE 7

Thermodynamics ENGR360-MEP11 LECTURE 7 Thermodynamics ENGR360/MEP11 Objectives: 1. Conservation of mass principle.. Conservation of energy principle applied to control volumes (first law of thermodynamics).

where = rate of change of total energy of the system, = rate of heat added to the system, = rate of work done by the system

The Energy Equation for Control Volumes Recall, the First Law of Thermodynamics: where = rate of change of total energy of the system, = rate of heat added to the system, = rate of work done by the system

5/6/ :41 PM. Chapter 6. Using Entropy. Dr. Mohammad Abuhaiba, PE

Chapter 6 Using Entropy 1 2 Chapter Objective Means are introduced for analyzing systems from the 2 nd law perspective as they undergo processes that are not necessarily cycles. Objective: introduce entropy

SYSTEMS VS. CONTROL VOLUMES. Control volume CV (open system): Arbitrary geometric space, surrounded by control surfaces (CS)

SYSTEMS VS. CONTROL VOLUMES System (closed system): Predefined mass m, surrounded by a system boundary Control volume CV (open system): Arbitrary geometric space, surrounded by control surfaces (CS) Many

Consider a control volume in the form of a straight section of a streamtube ABCD.

6 MOMENTUM EQUATION 6.1 Momentum and Fluid Flow In mechanics, the momentum of a particle or object is defined as the product of its mass m and its velocity v: Momentum = mv The particles of a fluid stream

COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour. Basic Equations in fluid Dynamics

COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour Basic Equations in fluid Dynamics Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Description of Fluid

BME-A PREVIOUS YEAR QUESTIONS

BME-A PREVIOUS YEAR QUESTIONS CREDITS CHANGE ACCHA HAI TEAM UNIT-1 Introduction: Introduction to Thermodynamics, Concepts of systems, control volume, state, properties, equilibrium, quasi-static process,

Rate of Flow Quantity of fluid passing through any section (area) per unit time

Kinematics of Fluid Flow Kinematics is the science which deals with study of motion of liquids without considering the forces causing the motion. Rate of Flow Quantity of fluid passing through any section

The Bernoulli Equation

The Bernoulli Equation The most used and the most abused equation in fluid mechanics. Newton s Second Law: F = ma In general, most real flows are 3-D, unsteady (x, y, z, t; r,θ, z, t; etc) Let consider

Introduction to Turbomachinery

1. Coordinate System Introduction to Turbomachinery Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial 2. Radial

Introduction to Fluid Machines, and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines, and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 09 Introduction to Reaction Type of Hydraulic

1 st Law Analysis of Control Volume (open system) Chapter 6

1 st Law Analysis of Control Volume (open system) Chapter 6 In chapter 5, we did 1st law analysis for a control mass (closed system). In this chapter the analysis of the 1st law will be on a control volume

For example an empty bucket weighs 2.0kg. After 7 seconds of collecting water the bucket weighs 8.0kg, then:

Hydraulic Coefficient & Flow Measurements ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 3 1. Mass flow rate If we want to measure the rate at which water is flowing

The First Law of Thermodynamics. By: Yidnekachew Messele

The First Law of Thermodynamics By: Yidnekachew Messele It is the law that relates the various forms of energies for system of different types. It is simply the expression of the conservation of energy

ME332 FLUID MECHANICS LABORATORY (PART II)

ME332 FLUID MECHANICS LABORATORY (PART II) Mihir Sen Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame, IN 46556 Version: April 2, 2002 Contents Unit 5: Momentum transfer

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

Thermodynamics: An Engineering Approach 8th Edition in SI Units Yunus A. Çengel, Michael A. Boles McGraw-Hill, 2015 CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Lecture slides by Dr. Fawzi Elfghi

Two mark questions and answers UNIT I BASIC CONCEPT AND FIRST LAW SVCET

Two mark questions and answers UNIT I BASIC CONCEPT AND FIRST LAW 1. What do you understand by pure substance? A pure substance is defined as one that is homogeneous and invariable in chemical composition

6.1 Momentum Equation for Frictionless Flow: Euler s Equation The equations of motion for frictionless flow, called Euler s

Chapter 6 INCOMPRESSIBLE INVISCID FLOW All real fluids possess viscosity. However in many flow cases it is reasonable to neglect the effects of viscosity. It is useful to investigate the dynamics of an

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the co-efficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 4. ELEMENTARY FLUID DYNAMICS -THE BERNOULLI EQUATION

Experiment (4): Flow measurement

Experiment (4): Flow measurement Introduction: The flow measuring apparatus is used to familiarize the students with typical methods of flow measurement of an incompressible fluid and, at the same time

Useful concepts associated with the Bernoulli equation. Dynamic

Useful concets associated with the Bernoulli equation - Static, Stagnation, and Dynamic Pressures Bernoulli eq. along a streamline + ρ v + γ z = constant (Unit of Pressure Static (Thermodynamic Dynamic

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 21 Centrifugal Compressor Part I Good morning

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics

AEROSPACE ENGINEERING DEPARTMENT Second Year - Second Term (2008-2009) Fluid Mechanics & Gas Dynamics Similitude,Dimensional Analysis &Modeling (1) [7.2R*] Some common variables in fluid mechanics include:

Chapter 5: The First Law of Thermodynamics: Closed Systems

Chapter 5: The First Law of Thermodynamics: Closed Systems The first law of thermodynamics can be simply stated as follows: during an interaction between a system and its surroundings, the amount of energy

AER210 VECTOR CALCULUS and FLUID MECHANICS. Quiz 4 Duration: 70 minutes

AER210 VECTOR CALCULUS and FLUID MECHANICS Quiz 4 Duration: 70 minutes 26 November 2012 Closed Book, no aid sheets Non-programmable calculators allowed Instructor: Alis Ekmekci Family Name: Given Name:

CLAUSIUS INEQUALITY. PROOF: In Classroom

Chapter 7 ENTROPY CLAUSIUS INEQUALITY PROOF: In Classroom 2 RESULTS OF CLAUSIUS INEQUALITY For internally reversible cycles δq = 0 T int rev For irreversible cycles δq < 0 T irr A quantity whose cyclic

Lecture 3 The energy equation

Lecture 3 The energy equation Dr Tim Gough: t.gough@bradford.ac.uk General information Lab groups now assigned Timetable up to week 6 published Is there anyone not yet on the list? Week 3 Week 4 Week 5

Chapter 5 Mass, Bernoulli, and Energy Equations Chapter 5 MASS, BERNOULLI, AND ENERGY EQUATIONS

Chapter 5 MASS, BERNOULLI, AND ENERGY EQUATIONS Conservation of Mass 5-C Mass, energy, momentum, and electric charge are conserved, and volume and entropy are not conserved during a process. 5-C Mass flow

Where F1 is the force and dl1 is the infinitesimal displacement, but F1 = p1a1

In order to force the fluid to flow across the boundary of the system against a pressure p1, work is done on the boundary of the system. The amount of work done is dw = - F1.dl1, Where F1 is the force

ENT 254: Applied Thermodynamics

ENT 54: Applied Thermodynamics Mr. Azizul bin Mohamad Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis (UniMAP) azizul@unimap.edu.my 019-4747351 04-9798679 Chapter

Fundamentals of Fluid Mechanics

Sixth Edition Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department

ME 316: Thermofluids Laboratory

ME 316 Thermofluid Laboratory 6.1 KING FAHD UNIVERSITY OF PETROLEUM & MINERALS ME 316: Thermofluids Laboratory PELTON IMPULSE TURBINE 1) OBJECTIVES a) To introduce the operational principle of an impulse

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 7 Entropy by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics: An Engineering Approach, 5th ed.,

UNIT I Basic concepts and Work & Heat Transfer

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code: Engineering Thermodynamics (16ME307) Year & Sem: II-B. Tech & II-Sem

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture No - 03 First Law of Thermodynamics (Open System) Good afternoon,

Turbomachinery. Hasan Ozcan Assistant Professor. Mechanical Engineering Department Faculty of Engineering Karabuk University

Turbomachinery Hasan Ozcan Assistant Professor Mechanical Engineering Department Faculty of Engineering Karabuk University Introduction Hasan Ozcan, Ph.D, (Assistant Professor) B.Sc :Erciyes University,

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name:

Lesson 23 1. (10 pt) Write the equation for the thermal efficiency of a Carnot heat engine below: T η = T 1 L H 2. (10 pt) Can the thermal efficiency of an actual engine ever exceed that of an equivalent

Fluid Mechanics Qualifying Examination Sample Exam 2

Fluid Mechanics Qualifying Examination Sample Exam 2 Allotted Time: 3 Hours The exam is closed book and closed notes. Students are allowed one (double-sided) formula sheet. There are five questions on

4 Finite Control Volume Analysis Introduction Reynolds Transport Theorem Conservation of Mass

iv 2.3.2 Bourdon Gage................................... 92 2.3.3 Pressure Transducer................................ 93 2.3.4 Manometer..................................... 95 2.3.4.1 Piezometer................................

ME3560 Tentative Schedule Fall 2018

ME3560 Tentative Schedule Fall 2018 Week Number 1 Wednesday 8/29/2018 1 Date Lecture Topics Covered Introduction to course, syllabus and class policies. Math Review. Differentiation. Prior to Lecture Read

Conservation of Momentum using Control Volumes

Conservation of Momentum using Control Volumes Conservation of Linear Momentum Recall the conservation of linear momentum law for a system: In order to convert this for use in a control volume, use RTT

Mechanical Engineering Programme of Study

Mechanical Engineering Programme of Study Fluid Mechanics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy SOLVED EXAMPLES ON VISCOUS FLOW 1. Consider steady, laminar flow between two fixed parallel

s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I

Fundamentals of Engineering (FE) Exam General Section Steven Burian Civil & Environmental Engineering October 26, 2010 s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us

Problems of Practices Of Fluid Mechanics Compressible Fluid Flow Prepared By Brij Bhooshan Asst. Professor B. S. A. College of Engg. And Technology Mathura, Uttar Pradesh, (India) Supported By: Purvi Bhooshan

Basics of fluid flow. Types of flow. Fluid Ideal/Real Compressible/Incompressible

Basics of fluid flow Types of flow Fluid Ideal/Real Compressible/Incompressible Flow Steady/Unsteady Uniform/Non-uniform Laminar/Turbulent Pressure/Gravity (free surface) 1 Basics of fluid flow (Chapter

Chapter 17. For the most part, we have limited our consideration so COMPRESSIBLE FLOW. Objectives

Chapter 17 COMPRESSIBLE FLOW For the most part, we have limited our consideration so far to flows for which density variations and thus compressibility effects are negligible. In this chapter we lift this

ME3560 Tentative Schedule Spring 2019

ME3560 Tentative Schedule Spring 2019 Week Number Date Lecture Topics Covered Prior to Lecture Read Section Assignment Prep Problems for Prep Probs. Must be Solved by 1 Monday 1/7/2019 1 Introduction to

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous

IX. COMPRESSIBLE FLOW. ρ = P

IX. COMPRESSIBLE FLOW Compressible flow is the study of fluids flowing at speeds comparable to the local speed of sound. This occurs when fluid speeds are about 30% or more of the local acoustic velocity.

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 1 Introduction to Fluid Machines Well, good

Steven Burian Civil & Environmental Engineering September 25, 2013

Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session

Physics 123 Unit #1 Review

Physics 123 Unit #1 Review I. Definitions & Facts Density Specific gravity (= material / water) Pressure Atmosphere, bar, Pascal Barometer Streamline, laminar flow Turbulence Gauge pressure II. Mathematics

HOMEWORK ASSIGNMENT ON BERNOULLI S EQUATION

AMEE 0 Introduction to Fluid Mechanics Instructor: Marios M. Fyrillas Email: m.fyrillas@frederick.ac.cy HOMEWORK ASSIGNMENT ON BERNOULLI S EQUATION. Conventional spray-guns operate by achieving a low pressure

Experiment- To determine the coefficient of impact for vanes. Experiment To determine the coefficient of discharge of an orifice meter.

SUBJECT: FLUID MECHANICS VIVA QUESTIONS (M.E 4 th SEM) Experiment- To determine the coefficient of impact for vanes. Q1. Explain impulse momentum principal. Ans1. Momentum equation is based on Newton s

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial.

THERMODYNAMICS, FLUID AND PLANT PROCESSES The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS TUTORIAL 2 THERMODYNAMIC PRINCIPLES SAE

Basic Fluid Mechanics

Basic Fluid Mechanics Chapter 3B: Conservation of Mass C3B: Conservation of Mass 1 3.2 Governing Equations There are two basic types of governing equations that we will encounter in this course Differential

Fluid Mechanics. du dy

FLUID MECHANICS Technical English - I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's

Fluid Mechanics-61341

An-Najah National University College of Engineering Fluid Mechanics-61341 Chapter [5] Flow of An Incompressible Fluid Dr. Sameer Shadeed 1 Fluid Mechanics-2nd Semester 2010- [5] Flow of An Incompressible

Chapter Four Hydraulic Machines

Contents 1- Introduction. - Pumps. Chapter Four Hydraulic Machines (لفرع الميكانيك العام فقط ( Turbines. -3 4- Cavitation in hydraulic machines. 5- Examples. 6- Problems; sheet No. 4 (Pumps) 7- Problems;

The online of midterm-tests of Fluid Mechanics 1

The online of midterm-tests of Fluid Mechanics 1 1) The information on a can of pop indicates that the can contains 460 ml. The mass of a full can of pop is 3.75 lbm while an empty can weights 80.5 lbf.

Control Volume Revisited

Civil Engineering Hydraulics Control Volume Revisited Previously, we considered developing a control volume so that we could isolate mass flowing into and out of the control volume Our goal in developing

ES201 - Examination III Richards, North, Berry Fall November 2000 NAME BOX NUMBER

ES201 - Examination III Richards, North, Berry Fall 2000-2001 2 November 2000 NAME BOX NUMBER Problem 1 Problem 2 ( 30 ) ( 30 ) Problem 3 ( 40 ) Total ( 100 ) INSTRUCTIONS Closed book/notes exam. (Unit