Tutorial: Viscosity Question 1

Size: px
Start display at page:

Download "Tutorial: Viscosity Question 1"

Transcription

1 Tutorial: Viscosity Question 1 ii I I (a) What is meant by Newtonian fluid? {b) T.he viscosity of liquids can be measured through the use of a rotating cylinder viscorneter of the type illustrated in Figure Ql. In this device the outer cylinder is fixed and the inner rylinder is routed with an angular velocity ar. The torque 1" required to develop ar is moasured and the viscosity is calculated &om those two measurements. Derrelcp an eqution relating the dynamic viscosity p, rylinder dimlster D, angulr velocity er, torque I and lengh y. The gep betrren the rotating inner cylinder and its case is I mm. (c) Ifthe dynarnic viscosiy of test liquid is 0.6 N.s/m?, ar is I00 radls" {re depth y is 2A mm and the cylinder diameter is l4 mm, dctermine the torque Irequired to rotate the rylinder. fixed outer cvlinde r, --r It I i I I l *-t Figure Ql I ntm i-*

2 Tutorial: Viscosity Question 2 {a) What is mcent byncu*oriaq fluid? (2 ma*s) ft) A Newtonian fluid heviag a spwific gravityof 0-9 and kinernatics viseosity (v) of 4 * 10{ m% form a boudqty laycr mr a solid wall of cubic volocity profrle- The boundary layer thicknccs (d) is 6 mm, and &e maximum velocity is l0 ur/s. Detennine the shcarshess (r) in 6e bormdary laycr aty oqual ta (to (iil (iir) 3 mm,ad Dreg forca, FisQIb (8 marks) (c) Tho internal and txtemal diarnctan of a collar beariag ars 2Q0 mm and 250 mm respectively as sho$m in Fig Qt. An oil of viscosfy 1.5 N.s/mz is fill d between the surface of the collar and hearing which is t = 1.2 mm. Dctermine the povrer required to ov rcome the viscous resistaoae when the shaft is rotatss at 180 rpm. (10 ma*s) r? Fig. Qlc z

3 Tutorial: Viscosity Question 3 (a) What is meant by Newtonian fluid? (b) A circular disc immersed in oil is used in Fi gure r. ir, o* 1ha1 dre d"*p G1",i;,', llff 'J;i"i:LrJ accordance ffl,:: il::o'l,l* with reladon ; 4*piug = Cal /t r\ where C =0.Snplaa1la+ \l B ) Assume linear velocity profires on both sides of the disc and negrect the tip effects.

4 T Tutorial: Viscosity Question 4 (a) Explain what is meant by Ne*.tonian and Non-Nervtonian fluid (5 marks) (b) Figure Ql show's a shaft rotates at 2000 rpm. An oii rvith a viscosiry of p = 0.5 Pa.s fitls the O.2 mm gap befween rotating shaft and stationary housing. Determine the total power requirecl to overcome the viscous resistance. (20 marla) Figure Ql

5 Tutorial: Viscosity Question 5 a) Apakah lnng dimak;udlan dirrgan lxntlalir l'leu'toni* dan beldalir non*newtonian. lrl Rainlr I menunirrlikan aci bergaris pusat 1ti0 trm herarh di t*ngoh galas.r,ang bergtris pusat 360."16 mm. Jika aci hernu{rr dcrrgan halqiu 2ft(t rpm, krrakan nilai da1'a kilas pada sislern ini. Kelikata* minr'^ah pelirrcir ialah 0.?2Pa.s. n--*.**t :9. r,tl lt.i, ry Rtiah i 5

6 Tutorial: Viscosity Question 6 A circular disc immersed in oil is used as a damper in damping system shown as in Figure Ql. Show tbat the darnpiftg torqle is proportional to angular specd in accordance withrulation Tdanprng = Co rl where C=0.5np{:**)nn. AD Assume linear velocity profites on both sidcs of the disc sind nwlsst thc tipcffects. FigrrcQl 6

7 ? Tutorial: Viscosity Question 7 (d Aeaesh yang dimalaudkrn dengun bendatir Newtonaa dan th*'newtonaa.eeri dua contoh eetiap jenis bendalir ini. (B markah) ft) $ekepiry catera berdiameter 30 cm dgn tebal 5 cm dibtalkon di dalam silinder tetap dengnn ruang kelegaan I mm,,&bi dengan glycerin (lelikatan /r = 0.6 N.dmg) seperti yang dituqiuklan dalam Rdah S1.'Ibntulal ttaya kilao dan kuesa yang dipertukln untut memut&rkan cahera pada kadal 20 p.p.m.ansgnp bakwa agihan hataju dalam ruang Lele gaan aebagai lirear. markau ''l l:r 'tr lmm 5 csr lmm Eajah 51 mm

8 PROBLEMS FOR CHAPTER 1 FLUID PROPERTIES QUESTION 1 According to information found in an old hydraulics book, the energy loss per unit weight of fluid flowing through a nozzle connected to a hose can be estimated by the formula 4 2 h = (0.04 to 0.09)( D / d) V / 2g where h is the energy loss per unit weight, D the hose diameter, d the nozzle tip diameter, V the fluid velocity in the hose, and g the acceleration of gravity. Do you think this equation is valid in any system of units? Explain. QUESTION 2 The no-slip condition means that a fluid sticks to a solid surface. This is true for both fixed and moving surfaces. Let two layers of fluid be dragged along by the motion of an upper plate as shown in Figure 1. The bottom plate is stationary. The top fluid puts a shear stress on the upper plate, and the lower fluid puts a shear stress on the bottom plate. Determine the ratio of these two shear stresses. QUESTION 3 Figure 1 A 25-mm-diameter shaft is pulled through a cylindrical bearing as shown in Figure 2. The lubricant that fills the 0.3-mm gap between the shaft and bearing is an oil having a kinematic viscosity of m 2 /s and a specific gravity of Determine the force P required to pull the shaft at a velocity of 3 m/s. Assume the velocity distribution in the gap is linear. Figure 2 1

9 QUESTION 4 A layer of water flows down an inclined fixed surface with the velocity profile shown in Figure 3. Determine the magnitude and direction of the shearing stress that the water exerts on the fixed surface for U = 2 m/s and h = 0.1 m. Figure 3 QUESTION 5 The viscosity of liquids can be measured through the use of a rotating cylinder viscometer of the type illustrated in Figure 4. In this device the outer cylinder is fixed and the inner cylinder is rotated with an angular velocity, ω. The torque T required to develop ω is measured and the viscosity is calculated from these two measurements. Develop an equation relating µ, ω, T, l, R o, and R i. Neglect end effects and assume the velocity distribution in the gap is linear. Figure 4 2

10 QUESTION 6 A conical body rotates at a constant angular velocity of 600 rpm in a container as shown in Figure 5. A uniform ft gap between the cone and the container is filled with oil that has a viscosity of 0.01 lb s/ft 2. Determine the torque required to rotate the cone. Figure 5 QUESTION 7 A 12-in.-diameter circular plate is placed over a fixed bottom plate with a 0.1-in. gap between the two plates filled with glycerin as shown in Figure 6. Determine the torque required to rotate the circular plate slowly at 2 rpm. Assume that the velocity distribution in the gap is linear and that the shear stress on the edge of the rotating plate is negligible. Figure 6 3

11 QUESTION 8 Surface tension forces can be strong enough to allow a double-edge steel razor blade to float on water, but a single-edge blade will sink. Assume that the surface tension forces act at an angle θ relative to the water surface as shown in Figure 7. (a) The mass of the double-edge blade is kg, and the total length of its sides is 206 mm. Determine the value of θ required to maintain equilibrium between the blade weight and the resultant surface tension force. (b) The mass of the single-edge blade is kg, and the total length of its sides is 154 mm. Explain why this blade sinks. Support your answer with the necessary calculations. Figure 7 Answer : 1. Valid. Similarity in units P = 286 (N) 4. τ = (N/m 2 ). Acting in the direction of flow. 3 2πR1 lµω 5. Torque = R o R1 6. Torque = ft.lb 7. Torque = ft.lb 8. (a) sinθ = (float) (b) sinθ = (impossible, sink) 4

12 PAST YEAR QUESTION QUESTION 1 Rajah S1 (a) Sebuah cakera berdiameter 75mm berputar pada kelajuan ω = 4 rad/s dalam sebuah bekas yang berputar pada kelajuan ω = 2 rad/s seperti dalam rajah S1. Bekas dipenuhi minyak berkelikatan Ns/m2. Dengan mengabaikan kesan kelikatan dihujung cakera, buktikan bahawa daya kilas yang diperlukan untuk memutarkan satu permukaan cakera ialah : T = / h dengan h ialah kelegaan antara cakera dengan bekas. (b) Jika kelegaan dibahagian atas cakera dalam soalan 1(a) ialah 3m dan dibahagian bawah ialah 2mm, tentukan daya kilas yang diperlukan untuk memutar cakera tersebut.

13 QUESTION 2 Figure Q1 (a) State and explain the Newton s law of viscosity. (b) A viscous clutch is to be made from a pair of closely spaced parallel discs enclosing a thin layer of viscous liquid a shown in Figure Q1. Develop algebraic expression for the torque and the power transmitted by the disc pair, in term of liquid viscosity, µ, disc radius, R, disc spacing, a, and the angular speed, ω i, of the input disc and ω o of the output disc. (c) Develop an expression for the slip ratio, s = ω/ω i, in term of ω i and the torque transmitted. ω is the difference of angular speed between the disc pair. Answer : 1. (b) Total Torque = (N.m) ( ω ωo) 2. (b) Torque = µ π a 2aT (c) S = 4 ω πµ R R 2

CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.

CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. CHARACTERISTIC OF FLUIDS A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called pressure. 1 Dimensions,

More information

Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr.

Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Reading Assignments Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Sert) Study Set 1 You can find the answers of some of the following

More information

Homework of chapter (1) (Solution)

Homework of chapter (1) (Solution) بسم اهلل الرمحن الرحيم The Islamic University of Gaza, Civil Engineering Department, Fluid mechanics-discussion, Instructor: Dr. Khalil M. Al Astal T.A: Eng. Mohammed H El Nazli Eng. Sarah R Rostom First

More information

Fluids and their Properties

Fluids and their Properties Chapter (1) Fluids and their Properties Dr. KHALIL MAHMOUD ALASTAL Eng.Mohammed AbuRahma Eng.Reem Sbaih 2017 Newton s Law of Viscosity: - / Non-Newtonian Fluids: - Mass Density: - / Specific weight: -

More information

) = slugs/ft 3. ) = lb ft/s. ) = ft/s

) = slugs/ft 3. ) = lb ft/s. ) = ft/s 1. Make use of Tables 1. in the text book (See the last page in this assignent) to express the following quantities in SI units: (a) 10. in./in, (b) 4.81 slugs, (c).0 lb, (d) 7.1 ft/s, (e) 0.04 lb s/ft.

More information

INTRODUCTION DEFINITION OF FLUID. U p F FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION

INTRODUCTION DEFINITION OF FLUID. U p F FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION INTRODUCTION DEFINITION OF FLUID plate solid F at t = 0 t > 0 = F/A plate U p F fluid t 0 t 1 t 2 t 3 FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION

More information

MM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER 2) FALL v=by 2 =-6 (1/2) 2 = -3/2 m/s

MM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER 2) FALL v=by 2 =-6 (1/2) 2 = -3/2 m/s MM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER ) FALL 018 1) For the velocity fields given below, determine: i) Whether the flow field is one-, two-, or three-dimensional, and why. ii) Whether the flow

More information

DJJ5113: MECHANICS OF MACHINES

DJJ5113: MECHANICS OF MACHINES INSTRUCTION: This section consists of FOUR (4) structured questions. Answer all questions. ARAHAN : Bahagian ini mengandungi EMPAT (4) soalan struktur. Jawab semua soalan. QUESTION 1 SOALAN 1 A steel drum

More information

2 Navier-Stokes Equations

2 Navier-Stokes Equations 1 Integral analysis 1. Water enters a pipe bend horizontally with a uniform velocity, u 1 = 5 m/s. The pipe is bended at 90 so that the water leaves it vertically downwards. The input diameter d 1 = 0.1

More information

DCC5143: FLUID MECHANICS

DCC5143: FLUID MECHANICS SECTION A: 50 MARKS BAHAGIAN A: 50 MARKAH INSTRUCTION: This section consists of TWO (2) structured questions. Please answer ALL questions. ARAHAN: Bahagian ini mengandungi DUA (2) soalan berstruktur. Sila

More information

Introduction to Marine Hydrodynamics

Introduction to Marine Hydrodynamics 1896 1920 1987 2006 Introduction to Marine Hydrodynamics (NA235) Department of Naval Architecture and Ocean Engineering School of Naval Architecture, Ocean & Civil Engineering First Assignment The first

More information

Exercise: concepts from chapter 10

Exercise: concepts from chapter 10 Reading:, Ch 10 1) The flow of magma with a viscosity as great as 10 10 Pa s, let alone that of rock with a viscosity of 10 20 Pa s, is difficult to comprehend because our common eperience is with s like

More information

Fluid Mechanics II Viscosity and shear stresses

Fluid Mechanics II Viscosity and shear stresses Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small

More information

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics REE 307 - Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics 1. Is the following flows physically possible, that is, satisfy the continuity equation? Substitute the expressions for

More information

PIPE FLOW. The Energy Equation. The first law of thermodynamics for a system is, in words = +

PIPE FLOW. The Energy Equation. The first law of thermodynamics for a system is, in words = + The Energy Equation PIPE FLOW The first law of thermodynamics for a system is, in words Time rate of increase of the total storage energy of the t Net time rate of energy addition by heat transfer into

More information

BUCKINGHAM PI THEOREM

BUCKINGHAM PI THEOREM BUCKINGHAM PI THEOREM Dimensional Analysis It is used to determine the equation is right or wrong. The calculation is depends on the unit or dimensional conditions of the equations. For example; F=ma F=MLT

More information

This paper consists of SIX (6) structured questions. Answer any FOUR (4) questions.

This paper consists of SIX (6) structured questions. Answer any FOUR (4) questions. INSTRUCTIONS: This paper consists of SIX (6) structured questions. Answer any FOUR (4) questions. ARAHAN: Kertas ini mengandungi ENAM (6) soalan struktur. Jawab mana-mana EMPAT (4) soalan sahaja QUESTION

More information

JJ309 : FLUID MECHANICS

JJ309 : FLUID MECHANICS INSTRUCTION: This section consists of SIX (6) structured questions. Answer FOUR (4) questions only. ARAHAN: Bahagian ini mengandungi ENAM (6) soalan struktur. Jawab EMPAT (4) soalan sahaja. QUESTION 1

More information

Universal Viscosity Curve Theory

Universal Viscosity Curve Theory TM Universal Viscosity Curve Theory Turbine Flow Meters and Flow Viscosity Introduction Like any transducer, a turbine flow meter is sensitive to physical parameters other than the one which is of interest.

More information

University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING. ME Fluid Mechanics Lecture notes. Chapter 1

University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING. ME Fluid Mechanics Lecture notes. Chapter 1 University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING ME 311 - Fluid Mechanics Lecture notes Chapter 1 Introduction and fluid properties Prepared by : Dr. N. Ait Messaoudene Based

More information

The online of midterm-tests of Fluid Mechanics 1

The online of midterm-tests of Fluid Mechanics 1 The online of midterm-tests of Fluid Mechanics 1 1) The information on a can of pop indicates that the can contains 460 ml. The mass of a full can of pop is 3.75 lbm while an empty can weights 80.5 lbf.

More information

What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube

What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube PHYS 101 Lecture 29x - Viscosity 29x - 1 Lecture 29x Viscosity (extended version) What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube Viscosity We introduced

More information

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m 1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

More information

Figure A1(a)/Rajah A1(a)

Figure A1(a)/Rajah A1(a) SECTION A: 50 MARKS BAHAGIAN A: 50 MARKAH INSTRUCTION: This section consists of TWO (2) structured questions. Answer ALL the questions. ARAHAN: Bahagian ini mengandungi DUA (2) soalan berstruktur. Jawab

More information

IEK 108 PROCESS FLUID MECHANICS [MEKANIK BENDALIR PROSES]

IEK 108 PROCESS FLUID MECHANICS [MEKANIK BENDALIR PROSES] UNIVERSITI SAINS MALAYSIA Supplementary Semester Examination Academic Session 2010/2011 June 2011 IEK 108 PROCESS FLUID MECHANICS [MEKANIK BENDALIR PROSES] Duration: 3 hours Masa: [3 jam] Please check

More information

IEK 108 PROCESS FLUID MECHANICS [MEKANIK BENDALIR PROSES]

IEK 108 PROCESS FLUID MECHANICS [MEKANIK BENDALIR PROSES] UNIVERSITI SAINS MALAYSIA Second Semester Examination 2009/2010 Academic Session April/May 2010 IEK 108 PROCESS FLUID MECHANICS [MEKANIK BENDALIR PROSES] Duration: 3 hours Masa: [3 jam] Please check that

More information

Fluid Mechanics Discussion. Prepared By: Dr.Khalil M. Al-Astal Eng.Ahmed S. Al-Agha Eng.Ruba M. Awad

Fluid Mechanics Discussion. Prepared By: Dr.Khalil M. Al-Astal Eng.Ahmed S. Al-Agha Eng.Ruba M. Awad Discussion Prepared By: Dr.Khalil M. Al-Astal Eng.Ahmed S. Al-Agha Eng.Ruba M. Awad 2014-2015 Chapter (1) Fluids and their Properties Fluids and their Properties Fluids (Liquids or gases) which a substance

More information

BERNOULLI EQUATION. The motion of a fluid is usually extremely complex.

BERNOULLI EQUATION. The motion of a fluid is usually extremely complex. Chapter 5 Fluid in Motion The Bernoulli Equation BERNOULLI EQUATION The motion of a fluid is usually extremely complex. The study of a fluid at rest, or in relative equilibrium, was simplified by the absence

More information

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer You are assigned to design a fallingcylinder viscometer to measure the viscosity of Newtonian liquids. A schematic

More information

INSTRUCTION: This section consists of FOUR (4) structured questions. Answer ALL questions.

INSTRUCTION: This section consists of FOUR (4) structured questions. Answer ALL questions. SECTION A : 100 MARKS BAHAGIAN A : 100 MARKAH INSTRUCTION: This section consists of FOUR (4) structured questions. Answer ALL questions. ARAHAN: Bahagian ini mengandungi EMPAT (4) soalan berstruktur. Jawab

More information

CE MECHANICS OF FLUIDS UNIT I

CE MECHANICS OF FLUIDS UNIT I CE 6303- MECHANICS OF FLUIDS UNIT I 1. Define specific volume of a fluid and write its unit [N/D-14][M/J-11] Volume per unit mass of a fluid is called specific volume. Unit: m3 / kg. 2. Name the devices

More information

Centripetal acceleration ac = to2r Kinetic energy of rotation KE, = \lto2. Moment of inertia. / = mr2 Newton's second law for rotational motion t = la

Centripetal acceleration ac = to2r Kinetic energy of rotation KE, = \lto2. Moment of inertia. / = mr2 Newton's second law for rotational motion t = la The Language of Physics Angular displacement The angle that a body rotates through while in rotational motion (p. 241). Angular velocity The change in the angular displacement of a rotating body about

More information

UNIVERSITI TUN HUSSEIN ONN MALAYSIA PEPERIKSAAN AKHIR SEMESTER II SESI 2009/2010

UNIVERSITI TUN HUSSEIN ONN MALAYSIA PEPERIKSAAN AKHIR SEMESTER II SESI 2009/2010 UNIVERSITI TUN HUSSEIN ONN MALAYSIA PEPERIKSAAN AKHIR SEMESTER II SESI 2009/2010 NAMA MATA PELAJARAN KOD MATA PELAJARAN KURSUS TARIKH PEPERIKSAAN JANGKA MASA ARAHAN MEKANIK MESIN DDA 3043 3 DDT/3 DDM APRIL/MEI

More information

EAH 225 / JAH 331/3 - Hydraulics

EAH 225 / JAH 331/3 - Hydraulics UNIVERSITI SAINS MALAYSIA 2 nd. Semester Examination Academic Session 2001/2002 FEBRUARY / MARCH 2002 EAH 225 / JAH 331/3 - Hydraulics Time : 3 hour Instruction to candidates:- 1. Ensure that this paper

More information

Shell Balances in Fluid Mechanics

Shell Balances in Fluid Mechanics Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell

More information

BFC FLUID MECHANICS BFC NOOR ALIZA AHMAD

BFC FLUID MECHANICS BFC NOOR ALIZA AHMAD BFC 10403 FLUID MECHANICS CHAPTER 1.0: Principles of Fluid 1.1 Introduction to Fluid Mechanics 1.2 Thermodynamic Properties of a Fluid: Density, specific weight, specific gravity, viscocity (kelikatan)berat

More information

DYNAMICS ME HOMEWORK PROBLEM SETS

DYNAMICS ME HOMEWORK PROBLEM SETS DYNAMICS ME 34010 HOMEWORK PROBLEM SETS Mahmoud M. Safadi 1, M.B. Rubin 2 1 safadi@technion.ac.il, 2 mbrubin@technion.ac.il Faculty of Mechanical Engineering Technion Israel Institute of Technology Spring

More information

Review for 3 rd Midterm

Review for 3 rd Midterm Review for 3 rd Midterm Midterm is on 4/19 at 7:30pm in the same rooms as before You are allowed one double sided sheet of paper with any handwritten notes you like. The moment-of-inertia about the center-of-mass

More information

1.060 Engineering Mechanics II Spring Problem Set 1

1.060 Engineering Mechanics II Spring Problem Set 1 1.060 Engineering Mechanics II Spring 2006 Due on Tuesday, February 21st Problem Set 1 Important note: Please start a new sheet of paper for each problem in the problem set. Write the names of the group

More information

Fluid Mechanics Introduction

Fluid Mechanics Introduction Fluid Mechanics Introduction Fluid mechanics study the fluid under all conditions of rest and motion. Its approach is analytical, mathematical, and empirical (experimental and observation). Fluid can be

More information

CHAPTER 1 Fluids and their Properties

CHAPTER 1 Fluids and their Properties FLUID MECHANICS Gaza CHAPTER 1 Fluids and their Properties Dr. Khalil Mahmoud ALASTAL Objectives of this Chapter: Define the nature of a fluid. Show where fluid mechanics concepts are common with those

More information

Rotational viscometers

Rotational viscometers 42 Non-Newtonian Flow in the Process Industries Rotational viscometers Due to their relative importance as tools for the rheological characterisation of non-newtonian fluid behaviour, we concentrate on

More information

BSL Transport Phenomena 2e Revised: Chapter 2 - Problem 2B.11 Page 1 of 5

BSL Transport Phenomena 2e Revised: Chapter 2 - Problem 2B.11 Page 1 of 5 BS Transport Phenomena 2e Revised: Chapter 2 - Problem 2B11 Page 1 of 5 Problem 2B11 The cone-and-plate viscometer (see Fig 2B11 A cone-and-plate viscometer consists of a flat plate and an inverted cone,

More information

Fluid Engineering Mechanics

Fluid Engineering Mechanics Fluid Engineering Mechanics Chapter Fluid Properties: Density, specific volume, specific weight, specific gravity, compressibility, viscosity, measurement of viscosity, Newton's equation of viscosity,

More information

CHAPTER 3. CONVENTIONAL RHEOMETRY: STATE-OF-THE-ART. briefly introduces conventional rheometers. In sections 3.2 and 3.

CHAPTER 3. CONVENTIONAL RHEOMETRY: STATE-OF-THE-ART. briefly introduces conventional rheometers. In sections 3.2 and 3. 30 CHAPTER 3. CONVENTIONAL RHEOMETRY: STATE-OF-THE-ART This chapter reviews literature on conventional rheometries. Section 3.1 briefly introduces conventional rheometers. In sections 3.2 and 3.3, viscometers

More information

Mechatronics. MANE 4490 Fall 2002 Assignment # 1

Mechatronics. MANE 4490 Fall 2002 Assignment # 1 Mechatronics MANE 4490 Fall 2002 Assignment # 1 1. For each of the physical models shown in Figure 1, derive the mathematical model (equation of motion). All displacements are measured from the static

More information

P = 1 3 (σ xx + σ yy + σ zz ) = F A. It is created by the bombardment of the surface by molecules of fluid.

P = 1 3 (σ xx + σ yy + σ zz ) = F A. It is created by the bombardment of the surface by molecules of fluid. CEE 3310 Thermodynamic Properties, Aug. 27, 2010 11 1.4 Review A fluid is a substance that can not support a shear stress. Liquids differ from gasses in that liquids that do not completely fill a container

More information

Tutorial 10. Boundary layer theory

Tutorial 10. Boundary layer theory Tutorial 10 Boundary layer theory 1. If the velocity distribution law in a laminar boundary layer over a flat plate is assumes to be of the form, determine the velocity distribution law. At y = 0, u= 0

More information

Laboratory 9: The Viscosity of Liquids

Laboratory 9: The Viscosity of Liquids Laboratory 9: The Viscosity of Liquids Introduction The essential difference between solids and fluids lies in the nature of their response to the socalled shearing stress. In solids, an elastic force

More information

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts)

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) 1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Fluid mechanics Fluid

More information

HYDRAULICS STAFF SELECTION COMMISSION CIVIL ENGINEERING STUDY MATERIAL HYDRAULICS

HYDRAULICS STAFF SELECTION COMMISSION CIVIL ENGINEERING STUDY MATERIAL HYDRAULICS 1 STAFF SELECTION COMMISSION CIVIL ENGINEERING STUDY MATERIAL Syllabus Hydraulics ( Fluid Mechanics ) Fluid properties, hydrostatics, measurements of flow, Bernoulli's theorem and its application, flow

More information

INSTRUCTION: This section consists of FOUR (4) structured questions. Answer ALL questions.

INSTRUCTION: This section consists of FOUR (4) structured questions. Answer ALL questions. INSTRUCTION: This section consists of FOUR (4) structured questions. Answer ALL questions. ARAHAN: Bahagian ini mengandungi EMPAT (4) soalan berstruktur. Jawab semua soalan. QUESTION 1 SOALAN 1 (a) X is

More information

[7] Torsion. [7.1] Torsion. [7.2] Statically Indeterminate Torsion. [7] Torsion Page 1 of 21

[7] Torsion. [7.1] Torsion. [7.2] Statically Indeterminate Torsion. [7] Torsion Page 1 of 21 [7] Torsion Page 1 of 21 [7] Torsion [7.1] Torsion [7.2] Statically Indeterminate Torsion [7] Torsion Page 2 of 21 [7.1] Torsion SHEAR STRAIN DUE TO TORSION 1) A shaft with a circular cross section is

More information

INSTRUCTION: This section consists of TWO (2) structured questions. Answer ALL questions.

INSTRUCTION: This section consists of TWO (2) structured questions. Answer ALL questions. SECTION A : 50 MARKS BAHAGIAN A : 50 MARKAH INSTRUCTION: This section consists of TWO (2) structured questions. Answer ALL questions. ARAHAN: Bahagian ini mengandungi DUA(2) soalan berstruktur. Jawab semua

More information

IEK 212 PROCESS HEAT TRANSFER [PEMINDAHAN HABA PROSES]

IEK 212 PROCESS HEAT TRANSFER [PEMINDAHAN HABA PROSES] UNIVERSITI SAINS MALAYSIA Supplementary Semester Examination Academic Session 2009/2010 June 2010 IEK 212 PROCESS HEAT TRANSFER [PEMINDAHAN HABA PROSES] Duration: 3 hours [Masa: 3 jam] Please check that

More information

Convective Mass Transfer

Convective Mass Transfer Convective Mass Transfer Definition of convective mass transfer: The transport of material between a boundary surface and a moving fluid or between two immiscible moving fluids separated by a mobile interface

More information

10.52 Mechanics of Fluids Spring 2006 Problem Set 3

10.52 Mechanics of Fluids Spring 2006 Problem Set 3 10.52 Mechanics of Fluids Spring 2006 Problem Set 3 Problem 1 Mass transfer studies involving the transport of a solute from a gas to a liquid often involve the use of a laminar jet of liquid. The situation

More information

CHAPTER 8 TEST REVIEW MARKSCHEME

CHAPTER 8 TEST REVIEW MARKSCHEME AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response MULTIPLE CHOICE DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM

More information

MECHANICAL CHARACTERISTICS OF STARCH BASED ELECTRORHEOLOGICAL FLUIDS

MECHANICAL CHARACTERISTICS OF STARCH BASED ELECTRORHEOLOGICAL FLUIDS 8 th International Machine Design and Production Conference 427 September 9-11, 1998 Ankara TURKEY ABSTRACT MECHANICAL CHARACTERISTICS OF STARCH BASED ELECTRORHEOLOGICAL FLUIDS E. R. TOPCU * and S. KAPUCU

More information

= o + t = ot + ½ t 2 = o + 2

= o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

More information

INSTRUCTION: This paper consists of SIX (6) essay questions. Answer any FOUR (4) questions only.

INSTRUCTION: This paper consists of SIX (6) essay questions. Answer any FOUR (4) questions only. INSTRUCTION: This paper consists of SIX (6) essay questions. Answer any FOUR (4) questions only. ARAHAN: Kertas ini mengandungi ENAM (6) soalan esei. Jawab mana-mana EMPAT (4) soalan sahaja. QUESTION 1

More information

Final Mock Exam PH 221-1D

Final Mock Exam PH 221-1D Final Mock Exam PH 221-1D April 18, 2015 You will have 2 hours to complete this exam. You must answer 8 questions to make a perfect score of 80. 1 Chapter Concept Summary Equations: Cutnell & Johnson

More information

Differential relations for fluid flow

Differential relations for fluid flow Differential relations for fluid flow In this approach, we apply basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of a flow

More information

9.3 Worked Examples Circular Motion

9.3 Worked Examples Circular Motion 9.3 Worked Examples Circular Motion Example 9.1 Geosynchronous Orbit A geostationary satellite goes around the earth once every 3 hours 56 minutes and 4 seconds, (a sidereal day, shorter than the noon-to-noon

More information

ROTATING RING. Volume of small element = Rdθbt if weight density of ring = ρ weight of small element = ρrbtdθ. Figure 1 Rotating ring

ROTATING RING. Volume of small element = Rdθbt if weight density of ring = ρ weight of small element = ρrbtdθ. Figure 1 Rotating ring ROTATIONAL STRESSES INTRODUCTION High centrifugal forces are developed in machine components rotating at a high angular speed of the order of 100 to 500 revolutions per second (rps). High centrifugal force

More information

Rotational Dynamics Smart Pulley

Rotational Dynamics Smart Pulley Rotational Dynamics Smart Pulley The motion of the flywheel of a steam engine, an airplane propeller, and any rotating wheel are examples of a very important type of motion called rotational motion. If

More information

+ ] B A BA / t BA / n. B G BG / t BG / n. a = (5)(4) = 80 in./s. A G AG / t AG / n. ] + [48 in./s ]

+ ] B A BA / t BA / n. B G BG / t BG / n. a = (5)(4) = 80 in./s. A G AG / t AG / n. ] + [48 in./s ] PROLEM 15.113 3-in.-radius drum is rigidly attached to a 5-in.-radius drum as shown. One of the drums rolls without sliding on the surface shown, and a cord is wound around the other drum. Knowing that

More information

Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow

Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow OCEN 678-600 Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow Date distributed : 9.18.2005 Date due : 9.29.2005 at 5:00 pm Return your solution either in class or in my mail

More information

Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS

Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Accelerated Physics Rotational Dynamics Problem Set Page 1 of 5 Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Directions: Show all work on a separate piece of paper. Box your final answer. Don t forget

More information

We define angular displacement, θ, and angular velocity, ω. What's a radian?

We define angular displacement, θ, and angular velocity, ω. What's a radian? We define angular displacement, θ, and angular velocity, ω Units: θ = rad ω = rad/s What's a radian? Radian is the ratio between the length of an arc and its radius note: counterclockwise is + clockwise

More information

Acceleration due to Gravity

Acceleration due to Gravity Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

More information

Introduction and Fundamental Concepts (Lectures 1-7)

Introduction and Fundamental Concepts (Lectures 1-7) Introduction and Fundamental Concepts (Lectures -7) Q. Choose the crect answer (i) A fluid is a substance that (a) has the same shear stress at a point regardless of its motion (b) is practicall incompressible

More information

Q1. Which of the following is the correct combination of dimensions for energy?

Q1. Which of the following is the correct combination of dimensions for energy? Tuesday, June 15, 2010 Page: 1 Q1. Which of the following is the correct combination of dimensions for energy? A) ML 2 /T 2 B) LT 2 /M C) MLT D) M 2 L 3 T E) ML/T 2 Q2. Two cars are initially 150 kilometers

More information

INSTRUCTION: This paper consists of FOUR (4) structured questions. Answer all the question.

INSTRUCTION: This paper consists of FOUR (4) structured questions. Answer all the question. INSTRUCTION: This paper consists of FOUR (4) structured questions. Answer all the question. ARAHAN : Bahagian ini mengandungi EMPAT (4) soalan struktur. Jawab semua soalan. QUESTION 1 SOALAN 1 C1 (a) List

More information

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]-113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum

More information

On my honor, I have neither given nor received unauthorized aid on this examination.

On my honor, I have neither given nor received unauthorized aid on this examination. Instructor(s): Field/inzler PHYSICS DEPATMENT PHY 2053 Final Exam April 27, 2013 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized aid on this examination.

More information

4 Mechanics of Fluids (I)

4 Mechanics of Fluids (I) 1. The x and y components of velocity for a two-dimensional flow are u = 3.0 ft/s and v = 9.0x ft/s where x is in feet. Determine the equation for the streamlines and graph representative streamlines in

More information

Rotational Motion. Rotational Motion. Rotational Motion

Rotational Motion. Rotational Motion. Rotational Motion I. Rotational Kinematics II. Rotational Dynamics (Netwton s Law for Rotation) III. Angular Momentum Conservation 1. Remember how Newton s Laws for translational motion were studied: 1. Kinematics (x =

More information

Introduction to Heat and Mass Transfer. Week 10

Introduction to Heat and Mass Transfer. Week 10 Introduction to Heat and Mass Transfer Week 10 Concentration Boundary Layer No concentration jump condition requires species adjacent to surface to have same concentration as at the surface Owing to concentration

More information

INSTRUCTION: This section consists of TWO (2) structured questions. Answer ALL the questions.

INSTRUCTION: This section consists of TWO (2) structured questions. Answer ALL the questions. DC063 : MECHANICS OF CIVIL ENGINEERING STRUCTURES SECTION A : 50 MARKS BAHAGIAN A : 50 MARKAH INSTRUCTION: This section consists of TWO (2) structured questions. Answer ALL the questions. ARAHAN: Bahagian

More information

Fluids. Fluid = Gas or Liquid. Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion

Fluids. Fluid = Gas or Liquid. Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion Chapter 14 Fluids Fluids Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion Fluid = Gas or Liquid MFMcGraw-PHY45 Chap_14Ha-Fluids-Revised 10/13/01 Densities MFMcGraw-PHY45 Chap_14Ha-Fluids-Revised

More information

R09. d water surface. Prove that the depth of pressure is equal to p +.

R09. d water surface. Prove that the depth of pressure is equal to p +. Code No:A109210105 R09 SET-1 B.Tech II Year - I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal

More information

MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.) MULTIPLE-CHOICE PROLEMS:(Two marks per answer) (Circle the Letter eside the Most Correct Answer in the Questions elow.) 1. The absolute viscosity µ of a fluid is primarily a function of: a. Density. b.

More information

INSTRUCTION: This section consists of SIX (6) essay questions. Answer FOUR (4) questions only.

INSTRUCTION: This section consists of SIX (6) essay questions. Answer FOUR (4) questions only. INSTRUCTION: This section consists of SIX (6) essay questions. Answer FOUR (4) questions only. ARAHAN: Bahagian ini mengandungi ENAM (6) soalan esei. Jawab EMPAT (4) soalan sahaja. QUESTION 1 SOALAN 1

More information

Chapter 9. Rotational Dynamics

Chapter 9. Rotational Dynamics Chapter 9 Rotational Dynamics In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of translation and rotation. 1) Torque Produces angular

More information

43. A person sits on a freely spinning lab stool that has no friction in its axle. When this person extends her arms,

43. A person sits on a freely spinning lab stool that has no friction in its axle. When this person extends her arms, 43. A person sits on a freely spinning lab stool that has no friction in its axle. When this person extends her arms, A) her moment of inertia increases and her rotational kinetic energy remains the same.

More information

Do not fill out the information below until instructed to do so! Name: Signature: Student ID: Section Number:

Do not fill out the information below until instructed to do so! Name: Signature: Student ID:   Section Number: Do not fill out the information below until instructed to do so! Name: Signature: Student ID: E-mail: Section Number: Formulae are provided on the last page. You may NOT use any other formula sheet. You

More information

Section A [28 marks / markah] Answer all question Jawab semua soalan

Section A [28 marks / markah] Answer all question Jawab semua soalan Section A [28 marks / markah] Answer all question Jawab semua soalan 1. A student carries out an experiment to study the relationship between the velocity of trolley, v and the height of the trolley on

More information

ME3560 Tentative Schedule Spring 2019

ME3560 Tentative Schedule Spring 2019 ME3560 Tentative Schedule Spring 2019 Week Number Date Lecture Topics Covered Prior to Lecture Read Section Assignment Prep Problems for Prep Probs. Must be Solved by 1 Monday 1/7/2019 1 Introduction to

More information

CH 10: PRESSURE, GRAVITY AND MOMENTS

CH 10: PRESSURE, GRAVITY AND MOMENTS CH 10: PRESSURE, GRAVITY AND MOMENTS Exercise 10.1: Page 104 1. Convert each of the following to kg: (i) 200 g (ii) 4 g (iii) 2 x 10 5 g (iv) 24 mg 2. Convert each of the following to m 3 : (i) 1 cm 3

More information

EAH 221/3 Fluid Mechanics For Civil Engineers [Mekanik Bendalir Untuk Jurutera Awam]

EAH 221/3 Fluid Mechanics For Civil Engineers [Mekanik Bendalir Untuk Jurutera Awam] UNIVERSITI SAINS MALAYSIA First Semester Examination Academic Session 2009/2010 November 2009 EAH 221/3 Fluid Mechanics For Civil Engineers [Mekanik Bendalir Untuk Jurutera Awam] Duration : 3 hours [Masa

More information

Practice Test 3. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Practice Test 3. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Date: _ Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE

More information

2014 MECHANICS OF MATERIALS

2014 MECHANICS OF MATERIALS R10 SET - 1 II. Tech I Semester Regular Examinations, March 2014 MEHNIS OF MTERILS (ivil Engineering) Time: 3 hours Max. Marks: 75 nswer any FIVE Questions ll Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~~~~

More information

PHY131H1S - Class 20. Pre-class reading quiz on Chapter 12

PHY131H1S - Class 20. Pre-class reading quiz on Chapter 12 PHY131H1S - Class 20 Today: Gravitational Torque Rotational Kinetic Energy Rolling without Slipping Equilibrium with Rotation Rotation Vectors Angular Momentum Pre-class reading quiz on Chapter 12 1 Last

More information

Sample paper 1. Question 1. What is the dimensional formula of torque? A. MLT -2 B. MT -2 C. ML 2 T -2 D. MLT -1 E. ML 3 T -2.

Sample paper 1. Question 1. What is the dimensional formula of torque? A. MLT -2 B. MT -2 C. ML 2 T -2 D. MLT -1 E. ML 3 T -2. Sample paper 1 Question 1 What is the dimensional formula of torque? A. MLT -2 B. MT -2 C. ML 2 T -2 D. MLT -1 E. ML 3 T -2 Correct Answer: C Torque is the turning effect of force applied on a body. It

More information

Figure 1 Answer: = m

Figure 1 Answer: = m Q1. Figure 1 shows a solid cylindrical steel rod of length =.0 m and diameter D =.0 cm. What will be increase in its length when m = 80 kg block is attached to its bottom end? (Young's modulus of steel

More information

MAT111 Linear Algebra [Aljabar Linear]

MAT111 Linear Algebra [Aljabar Linear] UNIVERSITI SAINS MALAYSIA Second Semester Examination 2016/2017 Academic Session June 2017 MAT111 Linear Algebra [Aljabar Linear] Duration : 3 hours [Masa : 3 jam] Please check that this examination paper

More information

31 ROTATIONAL KINEMATICS

31 ROTATIONAL KINEMATICS 31 ROTATIONAL KINEMATICS 1. Compare and contrast circular motion and rotation? Address the following Which involves an object and which involves a system? Does an object/system in circular motion have

More information

Advanced Higher Physics. Rotational motion

Advanced Higher Physics. Rotational motion Wallace Hall Academy Physics Department Advanced Higher Physics Rotational motion Problems AH Physics: Rotational Motion 1 2013 Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration

More information