Search for time reversal symmetry effects in disordered conductors and insulators beyond weak localization. Marc Sanquer CEA/DRF/INAC & UGA

Size: px
Start display at page:

Download "Search for time reversal symmetry effects in disordered conductors and insulators beyond weak localization. Marc Sanquer CEA/DRF/INAC & UGA"

Transcription

1 Search for time reversal symmetry effects in disordered conductors and insulators beyond weak localization. Marc Sanquer CEA/DRF/INAC & UGA 40 years of Mesoscopics Physics: Colloquium in memory of Jean-Louis Pichard June 25-26, 2018

2 G. Bergmann 1984

3 (Image by Yang-Zhi Chou and Matthew Foster/Rice University) JLPichard PhD (Orsay, 1984) Contribution à une théorie quantique des phénomènes de transport par études numériques de systèmes désordonnés: localisation d Anderson

4 JLP and G. Sarma, Journal of Physics C-solid state physics, L , (1981) JLP obtains the electronic localization length in 2D ribbons or 3D bars ( beyond the strict 1D case) Lt (under special conditions, Lt= cross section of the ribbon) at a time where computers are not very efficient

5 First report of reproducible mesoscopic conductance fluctuations («fingerprint») Conductance in Restricted-Dimensionality Accumulation Layers A. B. Fowler, A. Hartstein, and R. A. Webb Phys. Rev. Lett. 48, 196 (1982) Long ( few microns) and narrow channel

6

7 Random Matrix Theory and mesoscopic conductance fluctuations

8

9 M a eigenvalues of the X matrix: g measures the numbers of a between 0 and 1. If the { a } are randomly distributed, then var(g) <g>, But var(g) 1 (UCF) Therefore there are correlations between the { a }

10 Time reversal symmetry effects =1 =2 Muttalib, Pichard,Stone PRL 59 (1987) ensemble of Hermitian matrices with random matrix elements Spectral Rigidity Level repulsion p(s=0)= 0 p(s<<1) s =1,2,4 =1 Porter-Thomas distribution

11 =1, Porter-Thomas distribution Eigenvalues repulsion in various physical problems: nuclear physics, chaos-logy (from Pier Mello, Les Houches)

12 TESTING the DEPENDENCE OF THE UCF ON TIME REVERSAL SYMMETRY

13 L=10 m, L =2.8 m, W=90nm GaAs:Si (10 18 cm -3 ) without a gate D. Mailly & M. Sanquer, J. Phys 1, 357 (1992) =1 =2 P.A. Mello, PRL60, 1089 ( 88)

14 =1 =2: 1/f noise reduction Prediction by Feng, Lee, Stone PRL 56, 1960 (1986) L=10 m, L =2.8 m, W=90nm GaAs:Si ( cm -3 ) with an Al-gate D. Mailly & M. Sanquer, J. Phys 1, 357 (1992)

15 Bi-films (thickness 11-90nm, size few m 2 up to 10 m 100 m ) N. O. Birge B. Golding, W. H. Haemmerle PRL62, 195 (1989)

16 Sensitivity of the localization length to time reversal symmetry acroscopic films RH regime GaAs:Si W/O SOC Nl a:y x Si 1-x With SOC JLP, MS et al. PRL 65, 1812 (1990)

17 Sensitivity of the localization length to time reversal symmetry = ( N + 2- )l (quasi 1D bar) GaAs:Si, w/o SOC JLP, MS et al. PRL 65, 1812 (1990)

18 GaAs:Si, w/o SOC =1 2 N 7 Khavin, Gershenson, Bogdanov PRB 58 ( 98)

19 Agreement w/o SOC but Controversy with SOC: Is there an increase of the localization length under application Of a magnetic field (resminiscent os weak antilocalization) or not? PRL 66, 1517 ( 92) With SOC diffusive loops / forward directed path analysis Problem of ergodicity Bouchaud J.-P., 1991, J. Phys. France, 1, 985 (w/o SOC) Lerner Imry Europhys. Lett., 29 (l), pp (1995) Medina Kardar PRB (92)

20 Forward directed path analysis (Nguyen Spivak Shklovskii JETP Lett. 41,42 (85)) Medina Kardar PRB (92)

21 Bouchaud J.-P., 1991, J. Phys. France, 1, 985 (w/o SOC) J-P Bouchaud, D. Sornette Europhys. Lett. 17, 721 (92) (with SOC)

22 J-P Bouchaud, D. Sornette Europhys. Lett. 17, 721 (92) (with SOC)

23 Magneto-conductance of small MESFETs ( L= nm) W. Poirier, MS, D. Mailly, Phys. Rev. B59, (1999)

24 Magneto-conductance of small MESFETs ( L= nm) N 1 N 8 Nguyen,Spivak, Shklovskii, JETP Lett. 41,42 (85) W. Poirier, MS, D. Mailly, Phys. Rev. B59, (1999) [Fit parameters L=160nm, l =20nm]

25 Magneto-conductance of small MESFETs ( L= nm) W. Poirier, MS, D. Mailly, Phys. Rev. B59, (1999)

26 Silicon nanodevices? Smaller, larger carrier density, smaller mean-free path [Compared to GaAs ] Design of doped silicon bars of various lengths and cross-sections L=200nm comparable to L l = 4-8nm k F l 1 N l L Issue: Coulomb Blockade?

27 1989: first report on periodic conductance oscillations in semi-conductors Conductance Oscillations Periodic in the Density of a One-Dimensional Electron Gas Scott-Thomas, J.H.F., S.B. Field, M.A. Kastner, H.I. Smith, and D.A. Antonadis, 1989, Phys. Rev. Lett. 62, 583. Abstract: By use of x-ray lithography Si inversion layers have been fabricated with width 25 nm and mobility cm2/v s. These display oscillations in their conductance that are periodic in the number of electrons per unit length, even in zero magnetic field. The oscillations reflect an oscillatory activation energy of the conductance and are accompanied by unusual nonlinearities suggestive of pinned charge-density waves.

28 2006: Silicon quantum dot based on the FDSOI technology M. Hofheinz, X. Jehl, M. Sanquer, G. Molas, M. Vinet and S. Deleonibus, A simple and controlled single electron transistor based on doping modulation in silicon nanowires, Applied Physics Letters vol.89, (2006).

29 The MOS-SET One gate Underlapped NW R= 100kW Ec= e 2 /C =12 mev Tsi=10nm, spacers 15nm, L*W=40*20nm CEA Ec=30meV, 20*20*10nm 3, C=6aF R 1 MW (Prati et al. Nanotechnology 2011) Simulation INAC+LETI Ec=85meV, C=2aF R= 5 MW (Deshpande et al. IEDM2012) journée nanosciences 27Nov M. Sanquer Size down to 3,5nm 10nm Lavieville et al Nano Lett (2015)

30 Quantum dots; statistics of the conductance for CB peaks (and valleys) ( Jalabert, Stone, Alhassid et PRL 68, 3468, 1992) =1 =2: First, breaking TR symmetry reduces amplitude of fluctuations Second, breaking TR symmetry increases the mean amplitude =4 =2 (Ahmadian, Aleiner PRB 73, (2006) the average peak height is reduced in the case [ =2]. With SOC, the application of the magnetic field causes the average peak conductance to drop by a factor 1.37, similar to antilocalization for bulk systems.

31

Numerical study of localization in antidot lattices

Numerical study of localization in antidot lattices PHYSICAL REVIEW B VOLUME 58, NUMBER 16 Numerical study of localization in antidot lattices 15 OCTOBER 1998-II Seiji Uryu and Tsuneya Ando Institute for Solid State Physics, University of Tokyo, 7-22-1

More information

What is Quantum Transport?

What is Quantum Transport? What is Quantum Transport? Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, U.S.A. http://www.physics.udel.edu/~bnikolic Semiclassical Transport (is boring!) Bloch-Boltzmann

More information

Quantum coherent transport in Meso- and Nanoscopic Systems

Quantum coherent transport in Meso- and Nanoscopic Systems Quantum coherent transport in Meso- and Nanoscopic Systems Philippe Jacquod pjacquod@physics.arizona.edu U of Arizona http://www.physics.arizona.edu/~pjacquod/ Quantum coherent transport Outline Quantum

More information

Formation of unintentional dots in small Si nanostructures

Formation of unintentional dots in small Si nanostructures Superlattices and Microstructures, Vol. 28, No. 5/6, 2000 doi:10.1006/spmi.2000.0942 Available online at http://www.idealibrary.com on Formation of unintentional dots in small Si nanostructures L. P. ROKHINSON,

More information

Single Electron Devices and Circuits

Single Electron Devices and Circuits Single Electron Devices and Circuits M. F. Gonzalez-Zalba 1, S. Kaxiras 2, R.D. Levine 3, F. Remacle 4, S. Rogge 5, M. Sanquer 6 1 Hitachi Cambridge Laboratory, Cambridge, UK 2 Division of Computer Systems,

More information

QUANTUM TRANSPORT IN BOTTOM-UP SEMICONDUCTOR NANOSTRUCTURES

QUANTUM TRANSPORT IN BOTTOM-UP SEMICONDUCTOR NANOSTRUCTURES QUANTUM TRANSPORT IN BOTTOM-UP SEMICONDUCTOR NANOSTRUCTURES Silvano De Franceschi INAC/SPSMS/LaTEQS: Laboratory of quantum electron transport and superconductivity http://www-drfmc.cea.fr/pisp/55/silvano.de_franceschi.html

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information

Impact of disorder and topology in two dimensional systems at low carrier densities

Impact of disorder and topology in two dimensional systems at low carrier densities Impact of disorder and topology in two dimensional systems at low carrier densities A Thesis Submitted For the Degree of Doctor of Philosophy in the Faculty of Science by Mohammed Ali Aamir Department

More information

Fundamentals of Nanoelectronics: Basic Concepts

Fundamentals of Nanoelectronics: Basic Concepts Fundamentals of Nanoelectronics: Basic Concepts Sławomir Prucnal FWIM Page 1 Introduction Outline Electronics in nanoscale Transport Ohms law Optoelectronic properties of semiconductors Optics in nanoscale

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime

Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime Zhenhua Qiao, Yanxia Xing, and Jian Wang* Department of Physics and the Center of Theoretical and Computational

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 3 Beforehand Weak Localization and Mesoscopic Fluctuations Today

More information

Conversion thermoélectrique: L intérêt des bords de bandes. Nanofils désordonnés et Cavités quantiques chaotiques:

Conversion thermoélectrique: L intérêt des bords de bandes. Nanofils désordonnés et Cavités quantiques chaotiques: Conversion thermoélectrique: Nanofils désordonnés et Cavités quantiques chaotiques: L intérêt des bords de bandes en régime élastique cohérent et en régime inélastique activé. --------------------------------------------------------------------------

More information

Spin Currents in Mesoscopic Systems

Spin Currents in Mesoscopic Systems Spin Currents in Mesoscopic Systems Philippe Jacquod - U of Arizona I Adagideli (Sabanci) J Bardarson (Berkeley) M Duckheim (Berlin) D Loss (Basel) J Meair (Arizona) K Richter (Regensburg) M Scheid (Regensburg)

More information

Electronic Quantum Transport in Mesoscopic Semiconductor Structures

Electronic Quantum Transport in Mesoscopic Semiconductor Structures Thomas Ihn Electronic Quantum Transport in Mesoscopic Semiconductor Structures With 90 Illustrations, S in Full Color Springer Contents Part I Introduction to Electron Transport l Electrical conductance

More information

Scanning Gate Microscopy (SGM) of semiconductor nanostructures

Scanning Gate Microscopy (SGM) of semiconductor nanostructures Scanning Gate Microscopy (SGM) of semiconductor nanostructures H. Sellier, P. Liu, B. Sacépé, S. Huant Dépt NANO, Institut NEEL, Grenoble, France B. Hackens, F. Martins, V. Bayot UCL, Louvain-la-Neuve,

More information

Anderson Localization from Classical Trajectories

Anderson Localization from Classical Trajectories Anderson Localization from Classical Trajectories Piet Brouwer Laboratory of Atomic and Solid State Physics Cornell University Support: NSF, Packard Foundation With: Alexander Altland (Cologne) Quantum

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

8.513 Lecture 14. Coherent backscattering Weak localization Aharonov-Bohm effect

8.513 Lecture 14. Coherent backscattering Weak localization Aharonov-Bohm effect 8.513 Lecture 14 Coherent backscattering Weak localization Aharonov-Bohm effect Light diffusion; Speckle patterns; Speckles in coherent backscattering phase-averaged Coherent backscattering Contribution

More information

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators Philippe Jacquod U of Arizona UA Phys colloquium - feb 1, 2013 Continuous symmetries and conservation laws Noether

More information

Ferroelectric Field Effect Transistor Based on Modulation Doped CdTe/CdMgTe Quantum Wells

Ferroelectric Field Effect Transistor Based on Modulation Doped CdTe/CdMgTe Quantum Wells Vol. 114 (2008) ACTA PHYSICA POLONICA A No. 5 Proc. XXXVII International School of Semiconducting Compounds, Jaszowiec 2008 Ferroelectric Field Effect Transistor Based on Modulation Doped CdTe/CdMgTe Quantum

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NNANO.211.214 Control over topological insulator photocurrents with light polarization J.W. McIver*, D. Hsieh*, H. Steinberg, P. Jarillo-Herrero and N. Gedik SI I. Materials and device fabrication

More information

The statistical theory of quantum dots

The statistical theory of quantum dots The statistical theory of quantum dots Y. Alhassid Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, Connecticut 06520 A quantum dot is a sub-micron-scale conducting

More information

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes Multicolor Graphene Nanoribbon/Semiconductor Nanowire Heterojunction Light-Emitting Diodes Yu Ye, a Lin Gan, b Lun Dai, *a Hu Meng, a Feng Wei, a Yu Dai, a Zujin Shi, b Bin Yu, a Xuefeng Guo, b and Guogang

More information

Quantum Transport in Ballistic Cavities Subject to a Strictly Parallel Magnetic Field

Quantum Transport in Ballistic Cavities Subject to a Strictly Parallel Magnetic Field Quantum Transport in Ballistic Cavities Subject to a Strictly Parallel Magnetic Field Cédric Gustin and Vincent Bayot Cermin, Université Catholique de Louvain, Belgium Collaborators Cermin,, Univ. Catholique

More information

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea 3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI Heon-Jung Kim Department of Physics, Daegu University, Korea Content 3D Dirac metals Search for 3D generalization of graphene Bi 1-x

More information

Charges and Spins in Quantum Dots

Charges and Spins in Quantum Dots Charges and Spins in Quantum Dots L.I. Glazman Yale University Chernogolovka 2007 Outline Confined (0D) Fermi liquid: Electron-electron interaction and ground state properties of a quantum dot Confined

More information

GRAPHENE the first 2D crystal lattice

GRAPHENE the first 2D crystal lattice GRAPHENE the first 2D crystal lattice dimensionality of carbon diamond, graphite GRAPHENE realized in 2004 (Novoselov, Science 306, 2004) carbon nanotubes fullerenes, buckyballs what s so special about

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.16 Electrical detection of charge current-induced spin polarization due to spin-momentum locking in Bi 2 Se 3 by C.H. Li, O.M.J. van t Erve, J.T. Robinson,

More information

Weakly-coupled quasi-1d helical modes in disordered 3D topological insulator quantum wires

Weakly-coupled quasi-1d helical modes in disordered 3D topological insulator quantum wires Weakly-coupled quasi-1d helical modes in disordered 3D topological insulator quantum wires J. Dufouleur, 1 L. Veyrat, 1 B. Dassonneville, 1 E. Xypakis, 2 J. H. Bardarson, 2 C. Nowka, 1 S. Hampel, 1 J.

More information

Surfaces, Interfaces, and Layered Devices

Surfaces, Interfaces, and Layered Devices Surfaces, Interfaces, and Layered Devices Building blocks for nanodevices! W. Pauli: God made solids, but surfaces were the work of Devil. Surfaces and Interfaces 1 Interface between a crystal and vacuum

More information

Three-terminal quantum-dot thermoelectrics

Three-terminal quantum-dot thermoelectrics Three-terminal quantum-dot thermoelectrics Björn Sothmann Université de Genève Collaborators: R. Sánchez, A. N. Jordan, M. Büttiker 5.11.2013 Outline Introduction Quantum dots and Coulomb blockade Quantum

More information

InAs/GaSb A New 2D Topological Insulator

InAs/GaSb A New 2D Topological Insulator InAs/GaSb A New 2D Topological Insulator 1. Old Material for New Physics 2. Quantized Edge Modes 3. Adreev Reflection 4. Summary Rui-Rui Du Rice University Superconductor Hybrids Villard de Lans, France

More information

Asymmetry in the Magnetoconductance of Metal Wires and Loops

Asymmetry in the Magnetoconductance of Metal Wires and Loops University of South Carolina Scholar Commons Faculty Publications Physics and Astronomy, Department of 10-6-1986 Asymmetry in the Magnetoconductance of Metal Wires and Loops A. D. Benoit S. Washburn C.

More information

Recent developments in spintronic

Recent developments in spintronic Recent developments in spintronic Tomas Jungwirth nstitute of Physics ASCR, Prague University of Nottingham in collaboration with Hitachi Cambridge, University of Texas, Texas A&M University - Spintronics

More information

Nonlinear screening and percolation transition in 2D electron liquid. Michael Fogler

Nonlinear screening and percolation transition in 2D electron liquid. Michael Fogler Dresden 005 Nonlinear screening and percolation transition in D electron liquid Michael Fogler UC San Diego, USA Support: A.P. Sloan Foundation; C. & W. Hellman Fund Tunable D electron systems MOSFET Heterostructure

More information

Currents from hot spots

Currents from hot spots NANO-CTM Currents from hot spots Markus Büttiker, Geneva with Björn Sothmann, Geneva Rafael Sanchez, Madrid Andrew N. Jordan, Rochester Summer School "Energy harvesting at micro and nanoscales, Workshop

More information

Journal of Theoretical Physics

Journal of Theoretical Physics 1 Journal of Theoretical Physics Founded and Edited by M. Apostol 79 (2002) ISSN 1453-4428 Metallic Clusters Deposited on Surfaces. Puszczykowo talk, 2002 M. Apostol Department of Theoretical Physics,

More information

Electronic transport in low dimensional systems

Electronic transport in low dimensional systems Electronic transport in low dimensional systems For example: 2D system l

More information

Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique

Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique GDR Physique Quantique Mésoscopique, Aussois, 19-22 mars 2007 Simon Gustavsson Matthias Studer Renaud Leturcq Barbara Simovic

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Collapse of superconductivity in a hybrid tin graphene Josephson junction array by Zheng Han et al. SUPPLEMENTARY INFORMATION 1. Determination of the electronic mobility of graphene. 1.a extraction from

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 5 Beforehand Yesterday Today Anderson Localization, Mesoscopic

More information

Metal-insulator Transition by Holographic Charge Density Waves

Metal-insulator Transition by Holographic Charge Density Waves Metal-insulator Transition by Holographic Charge Density Waves Chao Niu (IHEP, CAS) Based mainly on arxiv:1404.0777 with: Yi Ling, Jianpin Wu, Zhuoyu Xian and Hongbao Zhang (May 9, 2014) Outlines 1. Introduction

More information

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg Laurens W. Molenkamp Physikalisches Institut, EP3 Universität Würzburg Onsager Coefficients I electric current density J particle current density J Q heat flux, heat current density µ chemical potential

More information

A Bottom-gate Depletion-mode Nanowire Field Effect Transistor (NWFET) Model Including a Schottky Diode Model

A Bottom-gate Depletion-mode Nanowire Field Effect Transistor (NWFET) Model Including a Schottky Diode Model Journal of the Korean Physical Society, Vol. 55, No. 3, September 2009, pp. 1162 1166 A Bottom-gate Depletion-mode Nanowire Field Effect Transistor (NWFET) Model Including a Schottky Diode Model Y. S.

More information

RANDOM MATRICES and ANDERSON LOCALIZATION

RANDOM MATRICES and ANDERSON LOCALIZATION RANDOM MATRICES and ANDERSON LOCALIZATION Luca G. Molinari Physics Department Universita' degli Studi di Milano Abstract: a particle in a lattice with random potential is subject to Anderson localization,

More information

Evolution of the Second Lowest Extended State as a Function of the Effective Magnetic Field in the Fractional Quantum Hall Regime

Evolution of the Second Lowest Extended State as a Function of the Effective Magnetic Field in the Fractional Quantum Hall Regime CHINESE JOURNAL OF PHYSICS VOL. 42, NO. 3 JUNE 2004 Evolution of the Second Lowest Extended State as a Function of the Effective Magnetic Field in the Fractional Quantum Hall Regime Tse-Ming Chen, 1 C.-T.

More information

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik Majorana single-charge transistor Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Majorana nanowires: Two-terminal device: Majorana singlecharge

More information

Disordered Superconductors

Disordered Superconductors Cargese 2016 Disordered Superconductors Claude Chapelier, INAC-PHELIQS, CEA-Grenoble Superconductivity in pure metals Kamerlingh Onnes, H., "Further experiments with liquid helium. C. On the change of

More information

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Luis Dias UT/ORNL Lectures: Condensed Matter II 1 Electronic Transport

More information

Conductance fluctuations at the integer quantum Hall plateau transition

Conductance fluctuations at the integer quantum Hall plateau transition PHYSICAL REVIEW B VOLUME 55, NUMBER 3 15 JANUARY 1997-I Conductance fluctuations at the integer quantum Hall plateau transition Sora Cho Department of Physics, University of California, Santa Barbara,

More information

Adiabatic quantum motors

Adiabatic quantum motors Felix von Oppen Freie Universität Berlin with Raul Bustos Marun and Gil Refael Motion at the nanoscale Brownian motion Directed motion at the nanoscale?? 2 Directed motion at the nanoscale Nanocars 3 Nanoscale

More information

arxiv: v2 [cond-mat.dis-nn] 21 Jul 2010

arxiv: v2 [cond-mat.dis-nn] 21 Jul 2010 Two-dimensional electron systems beyond the diffusive regime P. Markoš Department of Physics FEI, lovak University of Technology, 8 9 Bratislava, lovakia arxiv:5.89v [cond-mat.dis-nn] Jul Transport properties

More information

HOPPING AND RELATED PHENOMENA

HOPPING AND RELATED PHENOMENA Advances in Disordered Semiconductors - Vol. 2 HOPPING AND RELATED PHENOMENA Edited by Hellmut Fritzsche The James Franck Institute The University of Chicago Chicago, USA Michael Pollak University ot California

More information

Electron transport : From nanoparticle arrays to single nanoparticles. Hervé Aubin

Electron transport : From nanoparticle arrays to single nanoparticles. Hervé Aubin Electron transport : From nanoparticle arrays to single nanoparticles Hervé Aubin Qian Yu (PhD) Hongyue Wang (PhD) Helena Moreira (PhD) Limin Cui (Visitor) Irena Resa(Post-doc) Brice Nadal (Post-doc) Alexandre

More information

Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES

Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES Cliquez et modifiez le titre Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES Laboratoire de Physique des Solides Orsay, France June 15, 2016 Workshop Condensed

More information

Topological Insulators and Ferromagnets: appearance of flat surface bands

Topological Insulators and Ferromagnets: appearance of flat surface bands Topological Insulators and Ferromagnets: appearance of flat surface bands Thomas Dahm University of Bielefeld T. Paananen and T. Dahm, PRB 87, 195447 (2013) T. Paananen et al, New J. Phys. 16, 033019 (2014)

More information

Surfaces, Interfaces, and Layered Devices

Surfaces, Interfaces, and Layered Devices Surfaces, Interfaces, and Layered Devices Building blocks for nanodevices! W. Pauli: God made solids, but surfaces were the work of Devil. Surfaces and Interfaces 1 Role of surface effects in mesoscopic

More information

Physics and Material Science of Semiconductor Nanostructures

Physics and Material Science of Semiconductor Nanostructures Physics and Material Science of Semiconductor Nanostructures PHYS 570P Prof. Oana Malis Email: omalis@purdue.edu Course website: http://www.physics.purdue.edu/academic_programs/courses/phys570p/ 1 Introduction

More information

ERRATA. Observation of the Local Structure of Landau Bands in a Disordered Conductor [Phys. Rev. Lett. 78, 1540 (1997)]

ERRATA. Observation of the Local Structure of Landau Bands in a Disordered Conductor [Phys. Rev. Lett. 78, 1540 (1997)] ERRATA Observation of the Local Structure of Landau Bands in a Disordered Conductor [Phys. Rev. Lett. 78, 1540 (1997)] T. Schmidt, R. J. Haug, Vladimir I. Fal ko, K. v. Klitzing, A. Förster, and H. Lüth

More information

Components Research, TMG Intel Corporation *QinetiQ. Contact:

Components Research, TMG Intel Corporation *QinetiQ. Contact: 1 High-Performance 4nm Gate Length InSb P-Channel Compressively Strained Quantum Well Field Effect Transistors for Low-Power (V CC =.5V) Logic Applications M. Radosavljevic,, T. Ashley*, A. Andreev*, S.

More information

Carbon based Nanoscale Electronics

Carbon based Nanoscale Electronics Carbon based Nanoscale Electronics 09 02 200802 2008 ME class Outline driving force for the carbon nanomaterial electronic properties of fullerene exploration of electronic carbon nanotube gold rush of

More information

Anderson Localization Looking Forward

Anderson Localization Looking Forward Anderson Localization Looking Forward Boris Altshuler Physics Department, Columbia University Collaborations: Also Igor Aleiner Denis Basko, Gora Shlyapnikov, Vincent Michal, Vladimir Kravtsov, Lecture2

More information

The Role of Spin in Ballistic-Mesoscopic Transport

The Role of Spin in Ballistic-Mesoscopic Transport The Role of Spin in Ballistic-Mesoscopic Transport INT Program Chaos and Interactions: From Nuclei to Quantum Dots Seattle, WA 8/12/2 CM Marcus, Harvard University Supported by ARO-MURI, DARPA, NSF Spin-Orbit

More information

Single ion implantation for nanoelectronics and the application to biological systems. Iwao Ohdomari Waseda University Tokyo, Japan

Single ion implantation for nanoelectronics and the application to biological systems. Iwao Ohdomari Waseda University Tokyo, Japan Single ion implantation for nanoelectronics and the application to biological systems Iwao Ohdomari Waseda University Tokyo, Japan Contents 1.History of single ion implantation (SII) 2.Novel applications

More information

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York All optical quantum computation by engineering semiconductor macroatoms Irene D Amico Dept. of Physics, University of York (Institute for Scientific Interchange, Torino) GaAs/AlAs, GaN/AlN Eliana Biolatti

More information

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems * Mesoscopic Nano-Electro-Mechanics of Shuttle Systems Robert Shekhter University of Gothenburg, Sweden Lecture1: Mechanically assisted single-electronics Lecture2: Quantum coherent nano-electro-mechanics

More information

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots O. Krebs, B. Eble (PhD), S. Laurent (PhD), K. Kowalik (PhD) A. Kudelski, A. Lemaître, and P. Voisin Laboratoire

More information

Quantum physics in quantum dots

Quantum physics in quantum dots Quantum physics in quantum dots Klaus Ensslin Solid State Physics Zürich AFM nanolithography Multi-terminal tunneling Rings and dots Time-resolved charge detection Moore s Law Transistors per chip 10 9

More information

Fabrication / Synthesis Techniques

Fabrication / Synthesis Techniques Quantum Dots Physical properties Fabrication / Synthesis Techniques Applications Handbook of Nanoscience, Engineering, and Technology Ch.13.3 L. Kouwenhoven and C. Marcus, Physics World, June 1998, p.35

More information

Charge transport in oxides and metalinsulator

Charge transport in oxides and metalinsulator Charge transport in oxides and metalinsulator transitions M. Gabay School on modern topics in Condensed matter Singapore, 28/01 8/02 2013 Down the rabbit hole Scaling down impacts critical parameters of

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

single-electron electron tunneling (SET)

single-electron electron tunneling (SET) single-electron electron tunneling (SET) classical dots (SET islands): level spacing is NOT important; only the charging energy (=classical effect, many electrons on the island) quantum dots: : level spacing

More information

Electronic and Optoelectronic Properties of Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures Electronic and Optoelectronic Properties of Semiconductor Structures Jasprit Singh University of Michigan, Ann Arbor CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE INTRODUCTION xiii xiv 1.1 SURVEY OF ADVANCES

More information

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf Scattering theory of current-induced forces Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf Overview Current-induced forces in mesoscopic systems: In molecule/dot with slow mechanical

More information

Coherence and Correlations in Transport through Quantum Dots

Coherence and Correlations in Transport through Quantum Dots Coherence and Correlations in Transport through Quantum Dots Rolf J. Haug Abteilung Nanostrukturen Institut für Festkörperphysik and Laboratory for Nano and Quantum Engineering Gottfried Wilhelm Leibniz

More information

Vortex States in a Non-Abelian Magnetic Field

Vortex States in a Non-Abelian Magnetic Field Vortex States in a Non-Abelian Magnetic Field Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University SESAPS November 10, 2016 Acknowledgments Collin Broholm IQM

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 25 Jun 1999

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 25 Jun 1999 CHARGE RELAXATION IN THE PRESENCE OF SHOT NOISE IN COULOMB COUPLED MESOSCOPIC SYSTEMS arxiv:cond-mat/9906386v1 [cond-mat.mes-hall] 25 Jun 1999 MARKUS BÜTTIKER Département de Physique Théorique, Université

More information

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently,

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, suggesting that the results is reproducible. Supplementary Figure

More information

Probing a Metallic Spin Glass Nanowire via Coherent Electronic Waves Diffusion

Probing a Metallic Spin Glass Nanowire via Coherent Electronic Waves Diffusion Probing a Metallic Spin Glass Nanowire via Coherent Electronic Waves Diffusion D. Carpentier, (Ecole Normale Supérieure de Lyon) Theory : A. Fedorenko, E. Orignac, G. Paulin (PhD) (Ecole Normale Supérieure

More information

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego Michigan Quantum Summer School Ann Arbor, June 16-27, 2008. Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego 1. Motivation: Quantum superiority in superposition

More information

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e)

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e) (a) (b) Supplementary Figure 1. (a) An AFM image of the device after the formation of the contact electrodes and the top gate dielectric Al 2 O 3. (b) A line scan performed along the white dashed line

More information

Quantum Interference and Decoherence in Hexagonal Antidot Lattices

Quantum Interference and Decoherence in Hexagonal Antidot Lattices Quantum Interference and Decoherence in Hexagonal Antidot Lattices Yasuhiro Iye, Masaaki Ueki, Akira Endo and Shingo Katsumoto Institute for Solid State Physics, University of Tokyo, -1- Kashiwanoha, Kashiwa,

More information

Transport properties through double-magnetic-barrier structures in graphene

Transport properties through double-magnetic-barrier structures in graphene Chin. Phys. B Vol. 20, No. 7 (20) 077305 Transport properties through double-magnetic-barrier structures in graphene Wang Su-Xin( ) a)b), Li Zhi-Wen( ) a)b), Liu Jian-Jun( ) c), and Li Yu-Xian( ) c) a)

More information

Correlated 2D Electron Aspects of the Quantum Hall Effect

Correlated 2D Electron Aspects of the Quantum Hall Effect Correlated 2D Electron Aspects of the Quantum Hall Effect Outline: I. Introduction: materials, transport, Hall effects II. III. IV. Composite particles FQHE, statistical transformations Quasiparticle charge

More information

NEW VERSION OF LETI-UTSOI2 FEATURING FURTHER IMPROVED PREDICTABILITY, AND A NEW STRESS MODEL FOR FDSOI TECHNOLOGY

NEW VERSION OF LETI-UTSOI2 FEATURING FURTHER IMPROVED PREDICTABILITY, AND A NEW STRESS MODEL FOR FDSOI TECHNOLOGY NEW VERSION OF LETI-UTSOI2 FEATURING FURTHER IMPROVED PREDICTABILITY, AND A NEW STRESS MODEL FOR FDSOI TECHNOLOGY T. Poiroux, P. Scheer*, O. Rozeau, B. de Salvo, A. Juge*, J. C. Barbé, M. Vinet CEA-Leti,

More information

Electrostatic Tuning of Superconductivity. Allen M. Goldman School of Physics and Astronomy University of Minnesota

Electrostatic Tuning of Superconductivity. Allen M. Goldman School of Physics and Astronomy University of Minnesota Electrostatic Tuning of Superconductivity Allen M. Goldman School of Physics and Astronomy University of Minnesota Paarticipating Graduate Students Yen-Hsiang Lin Kevin Parendo (US Patent Office) Sarwa

More information

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation Fabrication and Measurement of Spin Devices Zhihong Chen School of Electrical and Computer Engineering Birck Nanotechnology Center, Discovery Park Purdue University Purdue Birck Presentation zhchen@purdue.edu

More information

Oliver Portugall Laboratoire National des Champs Magnétiques Intenses (LNCMI) Toulouse & Grenoble, France

Oliver Portugall Laboratoire National des Champs Magnétiques Intenses (LNCMI) Toulouse & Grenoble, France Oliver Portugall Laboratoire National des Champs Magnétiques Intenses (LNCMI) Toulouse & Grenoble, France 1 Building & Infrastructure 2 3 Industrial building (steel panel construction) 6 explosion proof

More information

single-layer transition metal dichalcogenides MC2

single-layer transition metal dichalcogenides MC2 single-layer transition metal dichalcogenides MC2 Period 1 1 H 18 He 2 Group 1 2 Li Be Group 13 14 15 16 17 18 B C N O F Ne 3 4 Na K Mg Ca Group 3 4 5 6 7 8 9 10 11 12 Sc Ti V Cr Mn Fe Co Ni Cu Zn Al Ga

More information

introduction: what is spin-electronics?

introduction: what is spin-electronics? Spin-dependent transport in layered magnetic metals Patrick Bruno Max-Planck-Institut für Mikrostrukturphysik, Halle, Germany Summary: introduction: what is spin-electronics giant magnetoresistance (GMR)

More information

Can we find metal-insulator transitions in 2-dimensional systems?

Can we find metal-insulator transitions in 2-dimensional systems? Can we find metal-insulator transitions in 2-dimensional systems? Marcelo Kuroda Term Essay for PHYS498ESM, Spring 2004 It has been almost a quarter of a century since the belief of the non existence metallic

More information

Electrostatics of Nanowire Transistors

Electrostatics of Nanowire Transistors Electrostatics of Nanowire Transistors Jing Guo, Jing Wang, Eric Polizzi, Supriyo Datta and Mark Lundstrom School of Electrical and Computer Engineering Purdue University, West Lafayette, IN, 47907 ABSTRACTS

More information

How a single defect can affect silicon nano-devices. Ted Thorbeck

How a single defect can affect silicon nano-devices. Ted Thorbeck How a single defect can affect silicon nano-devices Ted Thorbeck tedt@nist.gov The Big Idea As MOS-FETs continue to shrink, single atomic scale defects are beginning to affect device performance Gate Source

More information

Part 5: Quantum Effects in MOS Devices

Part 5: Quantum Effects in MOS Devices Quantum Effects Lead to Phenomena such as: Ultra Thin Oxides Observe: High Leakage Currents Through the Oxide - Tunneling Depletion in Poly-Si metal gate capacitance effect Thickness of Inversion Layer

More information

There's Plenty of Room at the Bottom

There's Plenty of Room at the Bottom There's Plenty of Room at the Bottom 12/29/1959 Feynman asked why not put the entire Encyclopedia Britannica (24 volumes) on a pin head (requires atomic scale recording). He proposed to use electron microscope

More information

Study of Carrier Transport in Strained and Unstrained SOI Tri-gate and Omega-gate Si Nanowire MOSFETs

Study of Carrier Transport in Strained and Unstrained SOI Tri-gate and Omega-gate Si Nanowire MOSFETs 42nd ESSDERC, Bordeaux, France, 17-21 Sept. 2012 A2L-E, High Mobility Devices, 18 Sept. Study of Carrier Transport in Strained and Unstrained SOI Tri-gate and Omega-gate Si Nanowire MOSFETs M. Koyama 1,4,

More information

Study of semiconductors with positrons. Outlook:

Study of semiconductors with positrons. Outlook: Study of semiconductors with positrons V. Bondarenko, R. Krause-Rehberg Martin-Luther-University Halle-Wittenberg, Halle, Germany Introduction Positron trapping into defects Methods of positron annihilation

More information

Large Storage Window in a-sinx/nc-si/a-sinx Sandwiched Structure

Large Storage Window in a-sinx/nc-si/a-sinx Sandwiched Structure 2017 Asia-Pacific Engineering and Technology Conference (APETC 2017) ISBN: 978-1-60595-443-1 Large Storage Window in a-sinx/nc-si/a-sinx Sandwiched Structure Xiang Wang and Chao Song ABSTRACT The a-sin

More information

OUTLINE. II - The temperature dependence:- an apparent metal-insulator transition in 2D

OUTLINE. II - The temperature dependence:- an apparent metal-insulator transition in 2D OUTLINE I - Brief History II - The temperature dependence:- an apparent metal-insulator transition in 2D Partial list of theoretical suggestions Important question: Mundane? e. g. oxide traps Profound?

More information