OUTLINE. II - The temperature dependence:- an apparent metal-insulator transition in 2D

Size: px
Start display at page:

Download "OUTLINE. II - The temperature dependence:- an apparent metal-insulator transition in 2D"

Transcription

1

2 OUTLINE I - Brief History II - The temperature dependence:- an apparent metal-insulator transition in 2D Partial list of theoretical suggestions Important question: Mundane? e. g. oxide traps Profound? e. g. new ground state III - The effect of magnetic field applied parallel to the plane IV - Scaling of the magnetoconductance - Evidence for a divergence in the susceptibility χ, g*m*, m* Quantum phase transition; to what new ground state??

3 No metallic state is possible in non-interacting 2D electron systems Abrahams, Anderson, Licciardello and Ramakishnana, 1979 Weak disorder: σ = ne 2 τ/m*+ A(e 2 /h) ln (T/T 0 ) Strong disorder: σ ~ exp [-(T/T 0 ) 1/p ] p=1,2,3 No metallic state is possible in weakly interacting 2D electron systems stronger localization Altshuler, Aronov, Lee 1980

4 Uren, Davies and Pepper, J. Phys. C 13, L985 (1980)

5 Dolan and Osheroff, PRL 43, 721 (1979) Bishop, Tsui and Dynes, PRL 44, 1153 (1980) 2.03x10 12 cm x10 12 cm -2

6

7

8 OUTLINE I - Brief History II - The temperature dependence:- an apparent metal-insulator transition in 2D -

9 Kravchenko, Mason, Bowker, Furneaux, Pudalov, D Iorio PRB 52, 7038 (1995)

10 Kravchenko, Mason, Bowker, Furneaux, Pudalov, D Iorio PRB 52, 7038 (1995)

11 Temperature scaling Kravchenko, Mason, Bowker, Furneaux, Pudalov, D Iorio PRB 51, 7038 (1995)

12 Electric field scaling Kravchenko, Simonian, Sarachik, Mason, Furneaux, PRL 77, 4938 (1996)

13 Kravchenko, Simonian, Sarachik, Mason, Furneaux, PRL 77, 4938 (1996) (Z+1)ν = 2.7 Zν = 1.2 z= 0.8 ν = 1.5

14 QUESTION: Why had this transition not been seen in Earlier experiments in silicon MOSFET s? Why had this not been seen in 2D systems in other materials?

15 Hanein, Meirav, Shahar, Li, Tsui, Shtrikman, PRL 80, 1288 (1998)

16 In silicon MOSFET s Fermi energy: E F = n s πh 2 /2m = 0.63 mev Electron-electron interaction energy: E ee ~ e 2 /εa ~ e 2 (πn s ) 1/2 /ε ~ 10 mev E ee / E F > 1 E ee / E F ~ n -1/2

17

18 No metallic state is possible in non-interacting 2D electron systems Abrahams, Anderson, Licciardello and Ramakishnana, 1979 Weak disorder: σ = ne 2 τ/m*+ A(e 2 /h) ln (T/T 0 ) Strong disorder: σ ~ exp [-(T/T 0 ) 1/p ] p=1, 2, 3 No metallic state is possible in weakly interacting 2D electron systems stronger localization Altshuler, Aronov, Lee 1980 Can strong electron-electron interactions cause delocalization? Finkelstein, 1983 Castellani, DiCastro, Lee and Ma, 1984 Efros and Pikus, 1995

19 OUTLINE I - Brief History II - The temperature dependence:- an apparent metal-insulator transition in 2D Partial list of theoretical suggestions Important question: Mundane? e. g. oxide traps Profound? e. g. new ground state

20

21

22 OUTLINE I - Brief History II - The temperature dependence:- an apparent metal-insulator transition in 2D III - The effect of magnetic field applied parallel to the plane

23 Simonian, Kravchenko, Sarachik, Pudalov, PRL 79, 2304 (1997)

24 Simonian, Kravchenko, Sarachik, Pudalov, PRL 79, 2304 (1997)

25

26 Sarachik and Kravchenko, Proc Natl. Acad. Sci. USA 96, 5900 (1999)

27 Pudalov, Brunthaler, Prinz, Bauer, JETP Lett. 65, 932 (1997)

28 Yoon, Li, Shahar, Tsui, Shayegan, PRL 84, 4421 (2000)

29 Shubnikov-de Haas measurement 2DEG V dc silicon φ H I dc

30

31

32 SCALING OF THE MAGNETOCONDUCTANCE

33 Vitkalov, Zheng, Mertes, Sarachik, Klapwijk, PRL 87, (2001)

34 Vitkalov, Zheng, Mertes, Sarachik, Klapwijk, PRL 87, (2001) SCALING: [σ (0) - σ (H)] / [σ (0) - σ ( )] = φ (H/H σ )

35

36 (σ(0)-σ(h))/(σ(0)-σ(inf)) K 0.50 K 1.0 K 1.5 K 2.0 K 3.1 K Conductivity (e 2 /h) n = cm K 0.25 K 1.0 K 1.5 K 2.0 K Field (T) H/H σ

37

38

39

40 SCALING OF THE MAGNETOCONDUCTANCE Spin susceptibility diverges at finite density g*m* at n o ~ n c Quantum phase transition to a new ground state?

41 Pudalov, Gershenson, Kojima, Butch, Dizhur, Brunthaler, Prinz, Bauer, PRL 88, (2002)

42 Shashkin, Kravchenko, Dolgopolov and Klapwijk, PRL 87, (2001). Shashkin, Kravchenko, Dolgopolov and Klapwijk, PRB 66, (2002).

43 Vitkalov, Sarachik, Klapwijk, PRB 65, (2002)

44 SUMMARY II - The temperature dependence:- an apparent metal-insulator transition in 2D III - The effect of magnetic field applied parallel to the plane IV - Scaling of the magnetoconductance - Evidence for a divergence in the susceptibility χ, g*m*, m* Important question: Mundane? e. g. oxide traps Profound? e. g. new ground state

45 Sarachik and Kravchenko, Proc Natl. Acad. Sci. USA 96, 5900 (1999)

46 Sarachik and Kravchenko, Proc Natl. Acad. Sci. USA 96, 5900 (1999)

47 Vitkalov, Sarachik, Klapwijk, PRB 65, (2002)

48 Vitkalov, Sarachik, Klapwijk, PRB 65, (2002)

49

50

51 τ = µm*c/e Sarachik, Europhys. Lett. 57, 546 (2002)

52 Sarachik and Kravchenko, Proc Natl. Acad. Sci. USA 96, 5900 (1999)

53 Bogdanovich and Popovic, PRL 88, (2001) Noise power µ 1/f α

54 Kravchenko and Klapwijk, PRL 84, 2909 (2000)

55 Shashkin, Kravchenko, Dolgopolov and Klapwijk, PRL 87, (2001).

56

57 Sarachik and Kravchenko, Proc Natl. Acad. Sci. USA 96, 5900 (1999)

58

59

60

61 Vitkalov and Sarachik, J. Phys. Soc. Jap. (2003)

Interplay of interactions and disorder in two dimensions

Interplay of interactions and disorder in two dimensions Interplay of interactions and disorder in two dimensions Sergey Kravchenko in collaboration with: S. Anissimova, V.T. Dolgopolov, A. M. Finkelstein, T.M. Klapwijk, A. Punnoose, A.A. Shashkin Outline Scaling

More information

Density dependence of critical magnetic fields at the metal-insulator bifurcation in two dimensions

Density dependence of critical magnetic fields at the metal-insulator bifurcation in two dimensions PHYSICAL REVIEW B 67, 045310 2003 Density dependence of critical magnetic fields at the metal-insulator bifurcation in two dimensions D. J. W. Geldart 1,2,3 and D. Neilson 1,4 1 School of Physics, University

More information

Quantum spin glass transition in the two-dimensional electron gas

Quantum spin glass transition in the two-dimensional electron gas Quantum spin glass transition in the two-dimensional electron gas Subir Sachdev Department of Physics, Yale University, P.O. Box 20820, New Haven, CT 06520-820 (September 7, 200 We discuss the possibility

More information

Can we find metal-insulator transitions in 2-dimensional systems?

Can we find metal-insulator transitions in 2-dimensional systems? Can we find metal-insulator transitions in 2-dimensional systems? Marcelo Kuroda Term Essay for PHYS498ESM, Spring 2004 It has been almost a quarter of a century since the belief of the non existence metallic

More information

arxiv: v2 [cond-mat.dis-nn] 10 Dec 2009

arxiv: v2 [cond-mat.dis-nn] 10 Dec 2009 Transport in strongly correlated two dimensional electron fluids B. Spivak Department of Physics, University of Washington, Seattle, Washington 98195, USA S. V. Kravchenko Physics Department, Northeastern

More information

Nonlinear screening and percolation transition in 2D electron liquid. Michael Fogler

Nonlinear screening and percolation transition in 2D electron liquid. Michael Fogler Dresden 005 Nonlinear screening and percolation transition in D electron liquid Michael Fogler UC San Diego, USA Support: A.P. Sloan Foundation; C. & W. Hellman Fund Tunable D electron systems MOSFET Heterostructure

More information

Thermal transport in the disordered electron liquid

Thermal transport in the disordered electron liquid Thermal transport in the disordered electron liquid Georg Schwiete Johannes Gutenberg Universität Mainz Alexander Finkel stein Texas A&M University, Weizmann Institute of Science, and Landau Institute

More information

arxiv: v1 [cond-mat.mes-hall] 16 Aug 2010

arxiv: v1 [cond-mat.mes-hall] 16 Aug 2010 Temperature dependence of piezoresistance of composite Fermions with a valley degree of freedom T. Gokmen, Medini Padmanabhan, and M. Shayegan Department of Electrical Engineering, Princeton University,

More information

Corrections. Cooper. channel. channel. electron hole. channel

Corrections. Cooper. channel. channel. electron hole. channel Corrections PHYSICS. For the article Branch-cut singularities in thermodynamics of Fermi liquid systems, by Arkady Shekhter and Alexander M. Finkel stein, which appeared in issue, October, 006, of Proc

More information

Thermal conductivity of the disordered Fermi and electron liquids

Thermal conductivity of the disordered Fermi and electron liquids Thermal conductivity of the disordered Fermi and electron liquids Georg Schwiete Johannes Gutenberg Universität Mainz Alexander Finkel stein Texas A&M University, Weizmann Institute of Science, and Landau

More information

Evolution of the Second Lowest Extended State as a Function of the Effective Magnetic Field in the Fractional Quantum Hall Regime

Evolution of the Second Lowest Extended State as a Function of the Effective Magnetic Field in the Fractional Quantum Hall Regime CHINESE JOURNAL OF PHYSICS VOL. 42, NO. 3 JUNE 2004 Evolution of the Second Lowest Extended State as a Function of the Effective Magnetic Field in the Fractional Quantum Hall Regime Tse-Ming Chen, 1 C.-T.

More information

I. PLATEAU TRANSITION AS CRITICAL POINT. A. Scaling flow diagram

I. PLATEAU TRANSITION AS CRITICAL POINT. A. Scaling flow diagram 1 I. PLATEAU TRANSITION AS CRITICAL POINT The IQHE plateau transitions are examples of quantum critical points. What sort of theoretical description should we look for? Recall Anton Andreev s lectures,

More information

Charge transport in oxides and metalinsulator

Charge transport in oxides and metalinsulator Charge transport in oxides and metalinsulator transitions M. Gabay School on modern topics in Condensed matter Singapore, 28/01 8/02 2013 Down the rabbit hole Scaling down impacts critical parameters of

More information

QUANTUM HALL EFFECT IN HIGHLY ORIENTED PYROLYTIC GRAPHITE

QUANTUM HALL EFFECT IN HIGHLY ORIENTED PYROLYTIC GRAPHITE QUANTUM HALL EFFECT IN HIGHLY ORIENTED PYROLYTIC GRAPHITE Heiko Kempa 1, Pablo Esquinazi 1 and Yakov Kopelevich 2 1 Superconductivity and Magnetism Division, Universität Leipzig, Linnéstrasse 5 D-04103

More information

Magnetically Induced Electronic States in 2D Superconductors

Magnetically Induced Electronic States in 2D Superconductors Magnetically Induced Electronic States in D Superconductors Jongsoo Yoon University of Virginia B Insulator normal metal (linear I-V) Carlos Vicente Yongho Seo Yongguang Qin Yize Li Metal (U) SC T Christine

More information

Brazilian Journal of Physics, vol. 26, no. 1, March, D Electron Transport in Selectively Doped

Brazilian Journal of Physics, vol. 26, no. 1, March, D Electron Transport in Selectively Doped Brazilian Journal of Physics, vol. 26, no. 1, March, 1996 313 2D Electron Transport in Selectively Doped GaAs/In x Ga 1;xAs Multiple Quantum Well Structures V. A. Kulbachinskii, V. G. Kytin, T. S. Babushkina,

More information

The spin susceptibility enhancement in wide AlAs quantum wells

The spin susceptibility enhancement in wide AlAs quantum wells The spin susceptibility enhancement in wide AlAs quantum wells Mariapia Marchi, S. De Palo, S. Moroni, and G. Senatore SISSA and University of Trieste, Trieste (Italy) QMC in the Apuan Alps, Vallico di

More information

Nonequilibrium dynamics in Coulomb glasses near the metal-insulator transition

Nonequilibrium dynamics in Coulomb glasses near the metal-insulator transition Nonequilibrium dynamics in Coulomb glasses near the metal-insulator transition Dragana Popović National High Magnetic Field Laboratory Florida State University, Tallahassee, FL, USA Boulder 2009 Summer

More information

Spin polarization in modulation-doped GaAs quantum wires

Spin polarization in modulation-doped GaAs quantum wires Linköping University Postprint Spin polarization in modulation-doped GaAs quantum wires M. Evaldsson, S. Ihnatsenka, and I. V. Zozoulenko N.B.: When citing this work, cite the original article. Original

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 5 Beforehand Yesterday Today Anderson Localization, Mesoscopic

More information

Metal-insulator transition in heavily doped semiconductors: disorder, magnetic moments and electron-electron interactions

Metal-insulator transition in heavily doped semiconductors: disorder, magnetic moments and electron-electron interactions (TH) Metal-insulator transition in heavily doped semiconductors: disorder, magnetic moments and electron-electron interactions Hilbert v. Löhneysen Institute of Technology (KIT) Physikalisches Institut

More information

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION Subir Sachdev Center for Theoretical Physics, P.O. Box 6666 Yale University, New Haven, CT 06511 This paper reviews recent progress in understanding the

More information

New Quantum Transport Results in Type-II InAs/GaSb Quantum Wells

New Quantum Transport Results in Type-II InAs/GaSb Quantum Wells New Quantum Transport Results in Type-II InAs/GaSb Quantum Wells Wei Pan Sandia National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,

More information

240 References. Cambridge University Press, 1997.

240 References. Cambridge University Press, 1997. References [1] G.S. Ohm. Bestimmung des Gesetzes, nach welchem Metalle die Kontakt Elektrizität leiten, nebst einem Entwurfe zu einer Theorie des Voltaschen Apparates und des Schweiggerschen Multiplikators.

More information

The Metal-Insulator Transition in Correlated Disordered Systems

The Metal-Insulator Transition in Correlated Disordered Systems Page 1 of 6 Institution: RUTGERS UNIVERSITY Sign In as Individual FAQ Access Rights Join AAAS The Metal-Insulator Transition in Correlated Disordered Systems Summary of this Article debates: Submit a response

More information

Magnetic field induced insulator to metal transition in amorphous-gd x Si 1 x

Magnetic field induced insulator to metal transition in amorphous-gd x Si 1 x PERGAMON Solid State Communications 114 (2000) 81 86 www.elsevier.com/locate/ssc Magnetic field induced insulator to metal transition in amorphous-gd x Si 1 x W. Teizer*, F. Hellman, R.C. Dynes Department

More information

Quantum transport in disordered systems: Part II. Alexander D. Mirlin

Quantum transport in disordered systems: Part II. Alexander D. Mirlin Quantum transport in disordered systems: Part II Alexander D. Mirlin Research Center Karslruhe & University Karlsruhe & PNPI St. Petersburg http://www-tkm.physik.uni-karlsruhe.de/ mirlin/ Renormalization

More information

Vortex drag in a Thin-film Giaever transformer

Vortex drag in a Thin-film Giaever transformer Vortex drag in a Thin-film Giaever transformer Yue (Rick) Zou (Caltech) Gil Refael (Caltech) Jongsoo Yoon (UVA) Past collaboration: Victor Galitski (UMD) Matthew Fisher (station Q) T. Senthil (MIT) Outline

More information

Low-Dimensional Disordered Electronic Systems (Experimental Aspects)

Low-Dimensional Disordered Electronic Systems (Experimental Aspects) Low-Dimensional Disordered Electronic Systems (Experimental Aspects) or ГалопомпоРазупорядоченнымСистемам Michael Gershenson Dept. of Physics and Astronomy Rutgers, the State University of New Jersey Low-Temperature

More information

Numerical study of localization in antidot lattices

Numerical study of localization in antidot lattices PHYSICAL REVIEW B VOLUME 58, NUMBER 16 Numerical study of localization in antidot lattices 15 OCTOBER 1998-II Seiji Uryu and Tsuneya Ando Institute for Solid State Physics, University of Tokyo, 7-22-1

More information

Coherence and Correlations in Transport through Quantum Dots

Coherence and Correlations in Transport through Quantum Dots Coherence and Correlations in Transport through Quantum Dots Rolf J. Haug Abteilung Nanostrukturen Institut für Festkörperphysik and Laboratory for Nano and Quantum Engineering Gottfried Wilhelm Leibniz

More information

CCMS Summer 2007 Lecture Series Fermi- and non-fermi Liquids Lecture 3: Fermi-liquid Theory

CCMS Summer 2007 Lecture Series Fermi- and non-fermi Liquids Lecture 3: Fermi-liquid Theory CCMS Summer 2007 Lecture Series Fermi- and non-fermi Liquids Lecture 3: Fermi-liquid Theory Dmitrii L. Maslov maslov@phys.ufl.edu (Dated: July 22, 2007) 1 Notation 1 Here and thereafter, L1 stands for

More information

Tunneling Spectroscopy of Disordered Two-Dimensional Electron Gas in the Quantum Hall Regime

Tunneling Spectroscopy of Disordered Two-Dimensional Electron Gas in the Quantum Hall Regime Tunneling Spectroscopy of Disordered Two-Dimensional Electron Gas in the Quantum Hall Regime The Harvard community has made this article openly available. Please share how this access benefits you. Your

More information

Landau quantization, Localization, and Insulator-quantum. Hall Transition at Low Magnetic Fields

Landau quantization, Localization, and Insulator-quantum. Hall Transition at Low Magnetic Fields Landau quantization, Localization, and Insulator-quantum Hall Transition at Low Magnetic Fields Tsai-Yu Huang a, C.-T. Liang a, Gil-Ho Kim b, C.F. Huang c, C.P. Huang a and D.A. Ritchie d a Department

More information

EUROPHYSICS LETTERS OFFPRINT

EUROPHYSICS LETTERS OFFPRINT EUROPHYSICS LETTERS OFFPRINT Vol. 6 Number 4 pp. 499 505 Hot-hole effects in a dilute two-dimensional gas in SiGe R. Leturcq, D. L Hôte, R. Tourbot, V. Senz, U. Gennser, T. Ihn, K. Ensslin, G. Dehlinger

More information

Disordered Superconductors

Disordered Superconductors Cargese 2016 Disordered Superconductors Claude Chapelier, INAC-PHELIQS, CEA-Grenoble Superconductivity in pure metals Kamerlingh Onnes, H., "Further experiments with liquid helium. C. On the change of

More information

Quantum Hall Effect in Vanishing Magnetic Fields

Quantum Hall Effect in Vanishing Magnetic Fields Quantum Hall Effect in Vanishing Magnetic Fields Wei Pan Sandia National Labs Sandia is a multi-mission laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department

More information

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST Laboratoire National des Champs Magnétiques Intenses Toulouse Collaborations D. Vignolles B. Vignolle C. Jaudet J.

More information

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4 Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4 Dragana Popović National High Magnetic Field Laboratory Florida State University, Tallahassee, FL, USA Collaborators

More information

Probing Wigner Crystals in the 2DEG using Microwaves

Probing Wigner Crystals in the 2DEG using Microwaves Probing Wigner Crystals in the 2DEG using Microwaves G. Steele CMX Journal Club Talk 9 September 2003 Based on work from the groups of: L. W. Engel (NHMFL), D. C. Tsui (Princeton), and collaborators. CMX

More information

Giant enhanced g-factors in an InSb two-dimensional gas

Giant enhanced g-factors in an InSb two-dimensional gas Giant enhanced g-factors in an InSb two-dimensional gas B. Nedniyom, 1 R. J. Nicholas, 1, * M. T. Emeny, 2 L. Buckle, 2 A. M. Gilbertson, 2 P. D. Buckle, 2 and T. Ashley 2 1 Department of Physics, Oxford

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

Scaling Analysis of the Magnetic Field Tuned Quantum Transition in Superconducting Amorphous In O Films 1

Scaling Analysis of the Magnetic Field Tuned Quantum Transition in Superconducting Amorphous In O Films 1 JETP Letters, Vol., No. 4, 2, pp. 4. From Pis ma v Zhurnal Éksperimental noœ i Teoreticheskoœ Fiziki, Vol., No. 4, 2, pp. 2 2. Original English Text Copyright 2 by Gantmakher, Golubkov, Dolgopolov, Tsydynzhapov,

More information

Intensity distribution of scalar waves propagating in random media

Intensity distribution of scalar waves propagating in random media PHYSICAL REVIEW B 71, 054201 2005 Intensity distribution of scalar waves propagating in random media P. Markoš 1,2, * and C. M. Soukoulis 1,3 1 Ames Laboratory and Department of Physics and Astronomy,

More information

Rashba spin-orbit coupling in the oxide 2D structures: The KTaO 3 (001) Surface

Rashba spin-orbit coupling in the oxide 2D structures: The KTaO 3 (001) Surface Rashba spin-orbit coupling in the oxide 2D structures: The KTaO 3 (001) Surface Sashi Satpathy Department of Physics University of Missouri, Columbia, USA E Ref: K. V. Shanavas and S. Satpathy, Phys. Rev.

More information

arxiv: v1 [cond-mat.other] 19 Aug 2008

arxiv: v1 [cond-mat.other] 19 Aug 2008 Localized states and interaction induced delocalization in Bose gases with quenched disorder G.M. Falco 1, T. Nattermann 1 & V.L. Pokrovsky 2,3 arxiv:0808.2565v1 [cond-mat.other] 19 Aug 2008 1 Institut

More information

Anderson localization, topology, and interaction

Anderson localization, topology, and interaction Anderson localization, topology, and interaction Pavel Ostrovsky in collaboration with I. V. Gornyi, E. J. König, A. D. Mirlin, and I. V. Protopopov PRL 105, 036803 (2010), PRB 85, 195130 (2012) Cambridge,

More information

INTERACTION EFFECTS IN HIGH-MOBILITY Si MOSFETs AT ULTRA-LOW TEMPERATURES NIKOLAI N. KLIMOV. A Dissertation submitted to the

INTERACTION EFFECTS IN HIGH-MOBILITY Si MOSFETs AT ULTRA-LOW TEMPERATURES NIKOLAI N. KLIMOV. A Dissertation submitted to the INTERACTION EFFECTS IN HIGH-MOBILITY Si MOSFETs AT ULTRA-LOW TEMPERATURES by NIKOLAI N. KLIMOV A Dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey

More information

Constrained-path quantum Monte Carlo simulations of the zero-temperature disordered two-dimensional Hubbard model

Constrained-path quantum Monte Carlo simulations of the zero-temperature disordered two-dimensional Hubbard model PHYSICAL REVIEW B, VOLUME 64, 184402 Constrained-path quantum Monte Carlo simulations of the zero-temperature disordered two-dimensional Hubbard model M. Enjalran, 1,4, * F. Hébert, 2 G. G. Batrouni, 2

More information

Search for time reversal symmetry effects in disordered conductors and insulators beyond weak localization. Marc Sanquer CEA/DRF/INAC & UGA

Search for time reversal symmetry effects in disordered conductors and insulators beyond weak localization. Marc Sanquer CEA/DRF/INAC & UGA Search for time reversal symmetry effects in disordered conductors and insulators beyond weak localization. Marc Sanquer CEA/DRF/INAC & UGA 40 years of Mesoscopics Physics: Colloquium in memory of Jean-Louis

More information

Purely electronic transport in dirty boson insulators

Purely electronic transport in dirty boson insulators Purely electronic transport in dirty boson insulators Markus Müller Ann. Phys. (Berlin) 18, 849 (2009). Discussions with M. Feigel man, M.P.A. Fisher, L. Ioffe, V. Kravtsov, Abdus Salam International Center

More information

Quantum coherent transport in Meso- and Nanoscopic Systems

Quantum coherent transport in Meso- and Nanoscopic Systems Quantum coherent transport in Meso- and Nanoscopic Systems Philippe Jacquod pjacquod@physics.arizona.edu U of Arizona http://www.physics.arizona.edu/~pjacquod/ Quantum coherent transport Outline Quantum

More information

Quantum transport in nanoscale solids

Quantum transport in nanoscale solids Quantum transport in nanoscale solids The Landauer approach Dietmar Weinmann Institut de Physique et Chimie des Matériaux de Strasbourg Strasbourg, ESC 2012 p. 1 Quantum effects in electron transport R.

More information

Anderson Localization in the Seventies and Beyond David Thouless University of Washington Seattle, WA APS March Meeting, Pittsburgh March 19,

Anderson Localization in the Seventies and Beyond David Thouless University of Washington Seattle, WA APS March Meeting, Pittsburgh March 19, Anderson Localization in the Seventies and Beyond David Thouless University of Washington Seattle, WA 98195 APS March Meeting, Pittsburgh March 19, 2009 1 Importance of Anderson s 1958 paper on Absence

More information

Quantum Transport in Disordered Topological Insulators

Quantum Transport in Disordered Topological Insulators Quantum Transport in Disordered Topological Insulators Vincent Sacksteder IV, Royal Holloway, University of London Quansheng Wu, ETH Zurich Liang Du, University of Texas Austin Tomi Ohtsuki and Koji Kobayashi,

More information

arxiv: v1 [cond-mat.mtrl-sci] 13 Jul 2013

arxiv: v1 [cond-mat.mtrl-sci] 13 Jul 2013 Saturated Low-Temperature Conductivity in Ultrafast Semiconductor Nanocomposites arxiv:1307.3605v1 [cond-mat.mtrl-sci] 13 Jul 2013 W. Zhang, E. R. Brown, and M. Martin Terahertz Sensor Laboratory, Depts.

More information

Topological Phases under Strong Magnetic Fields

Topological Phases under Strong Magnetic Fields Topological Phases under Strong Magnetic Fields Mark O. Goerbig ITAP, Turunç, July 2013 Historical Introduction What is the common point between graphene, quantum Hall effects and topological insulators?...

More information

What is Quantum Transport?

What is Quantum Transport? What is Quantum Transport? Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, U.S.A. http://www.physics.udel.edu/~bnikolic Semiclassical Transport (is boring!) Bloch-Boltzmann

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

J. D. Thompson with Tuson Park, Zohar Nussinov, John L. Sarrao Los Alamos National Laboratory and Sang-Wook Cheong Rutgers University

J. D. Thompson with Tuson Park, Zohar Nussinov, John L. Sarrao Los Alamos National Laboratory and Sang-Wook Cheong Rutgers University Dielectric Glassiness in Hole-Doped but Insulating Cuprates and Nickelates J. D. Thompson with Tuson Park, Zohar Nussinov, John L. Sarrao Los Alamos National Laboratory and Sang-Wook Cheong Rutgers University

More information

High-Temperature Superconductors: Playgrounds for Broken Symmetries

High-Temperature Superconductors: Playgrounds for Broken Symmetries High-Temperature Superconductors: Playgrounds for Broken Symmetries Gauge / Phase Reflection Time Laura H. Greene Department of Physics Frederick Seitz Materials Research Laboratory Center for Nanoscale

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 3 Beforehand Weak Localization and Mesoscopic Fluctuations Today

More information

Application of interface to Wannier90 : anomalous Nernst effect Fumiyuki Ishii Kanazawa Univ. Collaborator: Y. P. Mizuta, H.

Application of interface to Wannier90 : anomalous Nernst effect Fumiyuki Ishii Kanazawa Univ. Collaborator: Y. P. Mizuta, H. Application of interface to Wannier90 : anomalous Nernst effect Fumiyuki Ishii Kanazawa Univ. Collaborator: Y. P. Mizuta, H. Sawahata, 스키루미온 Outline 1. Interface to Wannier90 2. Anomalous Nernst effect

More information

Disordered metals without quasiparticles, and charged black holes

Disordered metals without quasiparticles, and charged black holes HARVARD Disordered metals without quasiparticles, and charged black holes String Theory: Past and Present (SpentaFest) International Center for Theoretical Sciences, Bengaluru January 11-13, 2017 Subir

More information

Fermi liquids and fractional statistics in one dimension

Fermi liquids and fractional statistics in one dimension UiO, 26. april 2017 Fermi liquids and fractional statistics in one dimension Jon Magne Leinaas Department of Physics University of Oslo JML Phys. Rev. B (April, 2017) Related publications: M Horsdal, M

More information

Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor

Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor T (K) 1 5 Fe.8 Co.2 Si ρ xy (µω cm) J.F. DiTusa N. Manyala LSU Y. Sidis D.P. Young G. Aeppli UCL Z. Fisk FSU T C 1 Nature Materials 3, 255-262 (24)

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Intermediate valence in Yb Intermetallic compounds

Intermediate valence in Yb Intermetallic compounds Intermediate valence in Yb Intermetallic compounds Jon Lawrence University of California, Irvine This talk concerns rare earth intermediate valence (IV) metals, with a primary focus on certain Yb-based

More information

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Nadya Mason Travis Dirk, Yung-Fu Chen, Cesar Chialvo Taylor Hughes, Siddhartha Lal, Bruno Uchoa Paul Goldbart University

More information

The Higgs particle in condensed matter

The Higgs particle in condensed matter The Higgs particle in condensed matter Assa Auerbach, Technion N. H. Lindner and A. A, Phys. Rev. B 81, 054512 (2010) D. Podolsky, A. A, and D. P. Arovas, Phys. Rev. B 84, 174522 (2011)S. Gazit, D. Podolsky,

More information

8.513 Lecture 14. Coherent backscattering Weak localization Aharonov-Bohm effect

8.513 Lecture 14. Coherent backscattering Weak localization Aharonov-Bohm effect 8.513 Lecture 14 Coherent backscattering Weak localization Aharonov-Bohm effect Light diffusion; Speckle patterns; Speckles in coherent backscattering phase-averaged Coherent backscattering Contribution

More information

BF 3 -doped polyaniline: A novel conducting polymer

BF 3 -doped polyaniline: A novel conducting polymer PRAMANA c Indian Academy of Sciences Vol. 67, No. 1 journal of July 2006 physics pp. 135 139 BF 3 -doped polyaniline: A novel conducting polymer DEBANGSHU CHAUDHURI and D D SARMA Solid State and Structural

More information

Zooming in on the Quantum Hall Effect

Zooming in on the Quantum Hall Effect Zooming in on the Quantum Hall Effect Cristiane MORAIS SMITH Institute for Theoretical Physics, Utrecht University, The Netherlands Capri Spring School p.1/31 Experimental Motivation Historical Summary:

More information

The integer quantum Hall effect and Anderson localisation

The integer quantum Hall effect and Anderson localisation The integer quantum Hall effect and Anderson localisation J. T. Chalker Theoretical Physics, Oxford University, 1 Keble Road, Oxford OX1 3NP, United Kingdom I. INTRODUCTION The existence of the integer

More information

Phase diagram of the Kane-Mele Hubbard model

Phase diagram of the Kane-Mele Hubbard model Phase diagram of the Kane-Mele Hubbard model Fakher F. Assaad (Emergent Quantum Phases in Condensed Ma4er, ISSP 3/6/203 ) Ø Model and method Ø Quantum phases transitions Topological insulator (TI ) à Antiferromagnetic

More information

Semiclassical formulation

Semiclassical formulation The story so far: Transport coefficients relate current densities and electric fields (currents and voltages). Can define differential transport coefficients + mobility. Drude picture: treat electrons

More information

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 ORIGINS E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 P.W. Anderson, Absence of Diffusion in Certain Random Lattices ; Phys.Rev., 1958, v.109, p.1492 L.D. Landau, Fermi-Liquid

More information

PHY 140A: Solid State Physics. Solution to Homework #7

PHY 140A: Solid State Physics. Solution to Homework #7 PHY 14A: Solid State Physics Solution to Homework #7 Xun Jia 1 December 5, 26 1 Email: jiaxun@physics.ucla.edu Fall 26 Physics 14A c Xun Jia (December 5, 26) Problem #1 Static magnetoconductivity tensor.

More information

HOPPING AND RELATED PHENOMENA

HOPPING AND RELATED PHENOMENA Advances in Disordered Semiconductors - Vol. 2 HOPPING AND RELATED PHENOMENA Edited by Hellmut Fritzsche The James Franck Institute The University of Chicago Chicago, USA Michael Pollak University ot California

More information

Information to energy conversion in an electronic Maxwell s demon and thermodynamics of measurements.

Information to energy conversion in an electronic Maxwell s demon and thermodynamics of measurements. Information to energy conversion in an electronic Maxwell s demon and thermodynamics of measurements Stony Brook University, SUNY Dmitri V Averin and iang Deng Low-Temperature Lab, Aalto University Jukka

More information

Interference of magnetointersubband and phonon-induced resistance oscillations in single GaAs quantum wells with two populated subbands

Interference of magnetointersubband and phonon-induced resistance oscillations in single GaAs quantum wells with two populated subbands Interference of magnetointersubband and phonon-induced resistance oscillations in single GaAs quantum wells with two populated subbands A.A.Bykov and A.V.Goran Institute of Semiconductor Physics, Russian

More information

Bad Metal Behavior and Mott Quantum Criticality

Bad Metal Behavior and Mott Quantum Criticality Bad Metal Behavior and Mott Quantum Criticality Vladimir Dobrosavljevic Florida State University http://badmetals.magnet.fsu.edu Collaborators: Jaksa Vucicevic (Belgrade, Serbia) Hanna Terletska (FSU,

More information

arxiv: v1 [cond-mat.mes-hall] 7 Jun 2017

arxiv: v1 [cond-mat.mes-hall] 7 Jun 2017 Density-controlled quantum Hall ferromagnetic transition in a two-dimensional hole system arxiv:1706.02044v1 [cond-mat.mes-hall] 7 Jun 2017 T. M. Lu, 1, L. A. Tracy, 1 D. Laroche, 1 S.-H. Huang, 2, 3 Y.

More information

arxiv: v1 [cond-mat.dis-nn] 31 Aug 2011

arxiv: v1 [cond-mat.dis-nn] 31 Aug 2011 Suppression of the virtual Anderson transition in a narrow impurity band of doped quantum well structures. N.V. Agrinskaya, V.I. Kozub, and D.S. Poloskin Ioffe Physical-Technical Institute of the Russian

More information

Topological insulators

Topological insulators http://www.physik.uni-regensburg.de/forschung/fabian Topological insulators Jaroslav Fabian Institute for Theoretical Physics University of Regensburg Stara Lesna, 21.8.212 DFG SFB 689 what are topological

More information

Magnetic Moment Collapse drives Mott transition in MnO

Magnetic Moment Collapse drives Mott transition in MnO Magnetic Moment Collapse drives Mott transition in MnO J. Kuneš Institute of Physics, Uni. Augsburg in collaboration with: V. I. Anisimov, A. V. Lukoyanov, W. E. Pickett, R. T. Scalettar, D. Vollhardt,

More information

Transformation of electrical transport from variable range hopping to hard gap resistance in Zn 1 x Fe x O 1 v magnetic semiconductor films

Transformation of electrical transport from variable range hopping to hard gap resistance in Zn 1 x Fe x O 1 v magnetic semiconductor films JOURNAL OF APPLIED PHYSICS 100, 103901 2006 Transformation of electrical transport from variable range hopping to hard gap resistance in Zn 1 x Fe x O 1 v magnetic semiconductor films Y. F. Tian, a Shi-shen

More information

Orbital magnetic field effects in spin liquid with spinon Fermi sea: Possible application to (ET)2Cu2(CN)3

Orbital magnetic field effects in spin liquid with spinon Fermi sea: Possible application to (ET)2Cu2(CN)3 Orbital magnetic field effects in spin liquid with spinon Fermi sea: Possible application to (ET)2Cu2(CN)3 Olexei Motrunich (KITP) PRB 72, 045105 (2005); PRB 73, 155115 (2006) with many thanks to T.Senthil

More information

The diagonal and off-diagonal AC conductivity of two-dimensional electron gases with contactless Corbino geometry in the quantum Hall regime

The diagonal and off-diagonal AC conductivity of two-dimensional electron gases with contactless Corbino geometry in the quantum Hall regime The diagonal and off-diagonal AC conductivity of two-dimensional electron gases with contactless Corbino geometry in the quantum Hall regime Christian Leth Petersen a) Mikroelektronik Centret, Technical

More information

Physics of Semiconductors

Physics of Semiconductors Physics of Semiconductors 13 th 2016.7.11 Shingo Katsumoto Department of Physics and Institute for Solid State Physics University of Tokyo Outline today Laughlin s justification Spintronics Two current

More information

Spin liquids on the triangular lattice

Spin liquids on the triangular lattice Spin liquids on the triangular lattice ICFCM, Sendai, Japan, Jan 11-14, 2011 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Classification of spin liquids Quantum-disordering magnetic order

More information

GEOMETRICALLY FRUSTRATED MAGNETS. John Chalker Physics Department, Oxford University

GEOMETRICALLY FRUSTRATED MAGNETS. John Chalker Physics Department, Oxford University GEOMETRICLLY FRUSTRTED MGNETS John Chalker Physics Department, Oxford University Outline How are geometrically frustrated magnets special? What they are not Evading long range order Degeneracy and fluctuations

More information

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spinon magnetic resonance. Oleg Starykh, University of Utah Spinon magnetic resonance Oleg Starykh, University of Utah May 17-19, 2018 Examples of current literature 200 cm -1 = 6 THz Spinons? 4 mev = 1 THz The big question(s) What is quantum spin liquid? No broken

More information

Variation of the density of states in amorphous GdSi at the metal-insulator transition

Variation of the density of states in amorphous GdSi at the metal-insulator transition PHYSICAL REVIEW B 69, 235111 (2004) Variation of the density of states in amorphous GdSi at the metal-insulator transition L. Bokacheva, 1 W. Teizer, 2 F. Hellman, 1 and R. C. Dynes 1 1 Department of Physics,

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 12 Mar 1997

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 12 Mar 1997 Light scattering from a periodically modulated two dimensional arxiv:cond-mat/9703119v1 [cond-mat.mes-hall] 12 Mar 1997 electron gas with partially filled Landau levels Arne Brataas 1 and C. Zhang 2 and

More information

First Program & Quantum Cybernetics

First Program & Quantum Cybernetics First Program & Quantum Cybernetics 15 December 2011 Kyoto Development of Optical Lattice Quantum Simulator Kyoto University, JST Y. Takahashi First Program : Analogue Quantum Computer/Quantum Simulation

More information

Charge fluctuators, their temperature and their response to sudden electrical fields

Charge fluctuators, their temperature and their response to sudden electrical fields Charge fluctuators, their temperature and their response to sudden electrical fields Outline Charge two-level fluctuators Measuing noise with an SET Temperature and bias dependence of the noise TLF temperature

More information

Quantum Impurities In and Out of Equilibrium. Natan Andrei

Quantum Impurities In and Out of Equilibrium. Natan Andrei Quantum Impurities In and Out of Equilibrium Natan Andrei HRI 1- Feb 2008 Quantum Impurity Quantum Impurity - a system with a few degrees of freedom interacting with a large (macroscopic) system. Often

More information

An impurity in a Fermi sea on a narrow Feshbach resonance: A variational study of the polaronic and dimeronic branches

An impurity in a Fermi sea on a narrow Feshbach resonance: A variational study of the polaronic and dimeronic branches An impurity in a Fermi sea on a narrow Feshbach resonance: A variational study of the polaronic and dimeronic branches Christian Trefzger Laboratoire Kastler Brossel ENS Paris Introduction: The system

More information

Tb 2 Hf 2 O 7 R 2 B 2 7 R B R 3+ T N

Tb 2 Hf 2 O 7 R 2 B 2 7 R B R 3+ T N Tb Hf O 7 7 χ ac(t ) χ(t ) M(H) C p(t ) µ χ ac(t ) µ 7 7 7 R B 7 R B R 3+ 111 7 7 7 7 111 θ p = 19 7 7 111 7 15 7 7 7 7 7 7 7 7 T N.55 3+ 7 µ µ B 7 7 7 3+ 4f 8 S = 3 L = 3 J = 6 J + 1 = 13 7 F 6 3+ 7 7

More information