Disordered Superconductors

Size: px
Start display at page:

Download "Disordered Superconductors"

Transcription

1 Cargese 2016 Disordered Superconductors Claude Chapelier, INAC-PHELIQS, CEA-Grenoble

2 Superconductivity in pure metals Kamerlingh Onnes, H., "Further experiments with liquid helium. C. On the change of electric resistance of pure metals at very low temperatures, etc. IV. The resistance of pure mercury at helium temperatures." Comm. Phys. Lab. Univ. Leiden; No. 120b, 1911.

3 Superconductivity in pure metals and alloys Kamerlingh Onnes, H., "Further experiments with liquid helium. C. On the change of electric resistance of pure metals at very low temperatures, etc. IV. The resistance of pure mercury at helium temperatures." Comm. Phys. Lab. Univ. Leiden; No. 120b, J.P. Burger la supraconductivité des métaux, des alliages et des films minces (Ed.Masson)

4 BCS theory for clean systems Bloch plane waves J. Bardeen, L.N. Cooper and J.R. Schrieffer, Phys. Rev. B. 108, 1175, (1957) J. Bardeen, L.N. Cooper and J.R. Schrieffer, Phys. Rev. 106, 162, (1957)

5 Theory of dirty superconductors The scatterers are non-magnetic (time-reversed symmetry) P.W. Anderson, J. Phys. Chem. Solids. 11, 26, (1959) A.A. Abrikosov & I.P. Gorkov, Sov. Phys. JETP 8, 1090, (1959) In superconducting grains, superconductivity disappears when the mean level spacing between different electronic states becomes greater than the superconducting gap Anderson criterion for superconductivity : ν Δ L 3 > 1

6 Localization in disordered metals P.W. Anderson, Absence of diffusion in certain random lattices Phys. Rev. 109, 1492(1958)

7 Localization in disordered metals P.A. Lee and T.V. Ramakrishnan Disordered electronic systems Rev. Mod. Phys. 57, 287(1985) P.W. Anderson, Absence of diffusion in certain random lattices Phys. Rev. 109, 1492(1958)

8 Localization in disordered metals P.A. Lee and T.V. Ramakrishnan Disordered electronic systems Rev. Mod. Phys. 57, 287(1985) P.W. Anderson, Absence of diffusion in certain random lattices Phys. Rev. 109, 1492(1958) Are Cooper pairs getting localized?

9 Localization in disordered metals P.A. Lee and T.V. Ramakrishnan Disordered electronic systems Rev. Mod. Phys. 57, 287(1985) P.W. Anderson, Absence of diffusion in certain random lattices Phys. Rev. 109, 1492(1958) Are Cooper pairs getting localized? Leggett s argument : every Bose system is superfluid at T=0 A.J. Legett, Topics in the theory of Helium Physica Fennica 8, 125 (1973)

10 Localization in disordered metals P.A. Lee and T.V. Ramakrishnan Disordered electronic systems Rev. Mod. Phys. 57, 287(1985) P.W. Anderson, Absence of diffusion in certain random lattices Phys. Rev. 109, 1492(1958) Are Cooper pairs getting localized? Leggett s argument : every Bose system is superfluid at T=0 A.J. Legett, Topics in the theory of Helium Physica Fennica 8, 125 (1973)

11 Localization in disordered metals P.A. Lee and T.V. Ramakrishnan Disordered electronic systems Rev. Mod. Phys. 57, 287(1985) P.W. Anderson, Absence of diffusion in certain random lattices Phys. Rev. 109, 1492(1958) Are Cooper pairs getting localized? Leggett s argument : every Bose system is superfluid at T=0 A.J. Legett, Topics in the theory of Helium Physica Fennica 8, 125 (1973) d = d = D.B. Haviland, Y. Lui, A.M. Goldman, PRL 62, 2180 (1989)

12 Localization in disordered metals P.A. Lee and T.V. Ramakrishnan Disordered electronic systems Rev. Mod. Phys. 57, 287(1985) P.W. Anderson, Absence of diffusion in certain random lattices Phys. Rev. 109, 1492(1958) Are Cooper pairs getting localized? Leggett s argument : every Bose system is superfluid at T=0 A.J. Legett, Topics in the theory of Helium Physica Fennica 8, 125 (1973) d = d = Strong localization, fluctuations and Coulomb interactions D.B. Haviland, Y. Lui, A.M. Goldman, PRL 62, 2180 (1989)

13 Localization in disordered superconductors 3D localization Insulator Metal Inhomogeneous superconducting state k F l 1 ν Δ ξ 3 loc ~ 1 k F l ~ 1 k F l 1 A. Kapitulnik, G. Kotliar, Phys. Rev. Lett. 54, 473, (1985) M. Ma, P.A. Lee, Phys. Rev. B 32, 5658, (1985) G. Kotliar, A. Kapitulnik, Phys. Rev. B 33, 3146 (1986) M.V. Sadowskii, Phys. Rep., 282, 225 (1997) A. Ghosal et al., PRL 81, 3940 (1998) ; PRB 65, (2001) M. Feigel man et al., Phys. Rev. Lett. 98, (2007) ; Ann.Phys. 325, 1390 (2010)

14 Localization in disordered superconductors Insulator Inhomogeneous superconducting state 3D localization Metal H 2D numerical simulation n n i.. int i i H t c c h c V n 0 i j i i, i, j, i, k F l 1 ν Δ ξ 3 loc ~ 1 k F l ~ 1 k F l 1 A. Kapitulnik, G. Kotliar, Phys. Rev. Lett. 54, 473, (1985) M. Ma, P.A. Lee, Phys. Rev. B 32, 5658, (1985) G. Kotliar, A. Kapitulnik, Phys. Rev. B 33, 3146 (1986) M.V. Sadowskii, Phys. Rep., 282, 225 (1997) A. Ghosal et al., PRL 81, 3940 (1998) ; PRB 65, (2001) M. Feigel man et al., Phys. Rev. Lett. 98, (2007) ; Ann.Phys. 325, 1390 (2010)

15 Localization in disordered superconductors Insulator Inhomogeneous superconducting state 3D localization Metal H 2D numerical simulation n n i.. int i i H t c c h c V n 0 i j i i, i, j, i, k F l 1 ν Δ ξ 3 loc ~ 1 k F l ~ 1 k F l 1 A. Kapitulnik, G. Kotliar, Phys. Rev. Lett. 54, 473, (1985) M. Ma, P.A. Lee, Phys. Rev. B 32, 5658, (1985) G. Kotliar, A. Kapitulnik, Phys. Rev. B 33, 3146 (1986) M.V. Sadowskii, Phys. Rep., 282, 225 (1997) A. Ghosal et al., PRL 81, 3940 (1998) ; PRB 65, (2001) M. Feigel man et al., Phys. Rev. Lett. 98, (2007) ; Ann.Phys. 325, 1390 (2010)

16 Localization in disordered superconductors Insulator Inhomogeneous superconducting state 3D localization Metal H 2D Monte Carlo calculation n n i.. int i i H t c c h c V n 0 i j i i, i, j, i, k F l 1 ν Δ ξ 3 loc ~ 1 k F l ~ 1 k F l 1 Cooper pairing beyond the mobility edge leads to an inhomogeneous superconductor The transition to an insulator requires quantum fluctuations A. Kapitulnik, G. Kotliar, Phys. Rev. Lett. 54, 473, (1985) M. Ma, P.A. Lee, Phys. Rev. B 32, 5658, (1985) G. Kotliar, A. Kapitulnik, Phys. Rev. B 33, 3146 (1986) M.V. Sadowskii, Phys. Rep., 282, 225 (1997) A. Ghosal et al., PRL 81, 3940 (1998) ; PRB 65, (2001) M. Feigel man et al., Phys. Rev. Lett. 98, (2007) ; Ann.Phys. 325, 1390 (2010)

17 Superconducting fluctuations Thermal fluctuations ψ op = T eiφ T A. Larkin and A. Varlamov, Theory of fluctuations in superconductors, Oxford University Press (2006)

18 Superconducting fluctuations Thermal fluctuations ψ op = T eiφ T T > T c Amplitude fluctuations ξ(t) τ = π ђ 8 k B (T T c ) A. Larkin and A. Varlamov, Theory of fluctuations in superconductors, Oxford University Press (2006)

19 Superconducting fluctuations Thermal fluctuations ψ op = T eiφ T T > T c Amplitude fluctuations T > T c Amplitude and phase fluctuations ξ(t) ξ(t) τ = π ђ 8 k B (T T c ) A. Larkin and A. Varlamov, Theory of fluctuations in superconductors, Oxford University Press (2006)

20 Superconducting fluctuations Thermal fluctuations ψ op = T eiφ T T > T c Amplitude fluctuations T > T c Amplitude and phase fluctuations 2D : Berezinskii Kosterlitz - Thouless ξ(t) ξ(t) τ = π ђ 8 k B (T T c ) A. Larkin and A. Varlamov, Theory of fluctuations in superconductors, Oxford University Press (2006)

21 Superconducting fluctuations Thermal fluctuations ψ op = T eiφ T T > T c Amplitude fluctuations T > T c Amplitude and phase fluctuations 2D : Berezinskii Kosterlitz - Thouless ξ(t) ξ(t) τ = π ђ 8 k B (T T c ) δt c T c ~ G i(d) 1 ν k B T c ξ 0 d 2 4 d Clean 3D superconductor : G i(3) 80 k BT c E F 4 ~ Dirty 2D superconductor : 3D localized superconductor : G i(2) ν Δ ξ 3 loc ~ 1 e2 23 ђ R ξ 0 ~ξ loc G i ~1 A. Larkin and A. Varlamov, Theory of fluctuations in superconductors, Oxford University Press (2006)

22 Superconducting fluctuations Thermal fluctuations ψ op = T eiφ T T > T c Amplitude fluctuations T > T c Amplitude and phase fluctuations 2D : Berezinskii Kosterlitz - Thouless ξ(t) ξ(t) τ = π ђ 8 k B (T T c ) δt c T c ~ G i(d) 1 ν k B T c ξ 0 d 2 4 d Clean 3D superconductor : G i(3) 80 k BT c E F 4 ~ Dirty 2D superconductor : 3D localized superconductor : e2 G i(2) 23 ђ R ν Δ ξ 3 loc ~ 1 ξ 0 ~ξ loc G i ~1 Disorder drastically enhances thermal fluctuations A. Larkin and A. Varlamov, Theory of fluctuations in superconductors, Oxford University Press (2006)

23 TIN Superconductor-Insulator transition TiN R [k ] ,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 T [K] TiN 1 TiN 2 TiN 3 T. I. Baturina, et al.prl 99, (2007) Sacépé et al., PRL 101, (2008)

24 TIN Superconductor-Insulator transition R [k ] ,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 T [K] TiN 1 TiN 2 TiN 3 Sacépé et al., PRL 101, (2008)

25 TIN Superconductor-Insulator transition Sacépé et al., PRL 101, (2008)

26 TIN Superconductor-Insulator transition Sacépé et al., PRL 101, (2008)

27 Superconducting fluctuations Quantum fluctuations ψ op = e iφ K.B. Efetov, Phase transition in granulated superconductors, JETP 51, 1016 (1980) K.A. Matveev and A.I. Larkin Parity effect in ground state energies of ultrasmall superconducting grains, Phys. Rev. Lett. 78, 3749(1997)

28 Superconducting fluctuations Quantum fluctuations ψ op = e iφ D N φ > 1 2 N, φ E J = h π Δ 8 e 2 R t th( Δ 2T ) E c = e 2 4 π ϵ 0 D δ = 1 ν D 3 δ = 1 3 ν ξ loc K.B. Efetov, Phase transition in granulated superconductors, JETP 51, 1016 (1980) K.A. Matveev and A.I. Larkin Parity effect in ground state energies of ultrasmall superconducting grains, Phys. Rev. Lett. 78, 3749(1997)

29 Superconducting fluctuations Quantum fluctuations ψ op = e iφ D N φ > 1 2 E J = h π Δ 8 e 2 R t th( Δ 2T ) N, φ Gallium E c = e 2 4 π ϵ 0 D δ = 1 ν D 3 δ = 1 3 ν ξ loc H. M. Jaeger, et al. Phys.Rev.B 34, 4920 (1986) K.B. Efetov, Phase transition in granulated superconductors, JETP 51, 1016 (1980) K.A. Matveev and A.I. Larkin Parity effect in ground state energies of ultrasmall superconducting grains, Phys. Rev. Lett. 78, 3749(1997)

30 Superconducting fluctuations Quantum fluctuations N φ > 1 2 E J = h π Δ 8 e 2 R t th( Δ 2T ) E c = e 2 4 π ϵ 0 D δ = 1 ν D 3 δ = 1 3 ν ξ loc ψ op = e iφ N, φ D Gallium H 2D Monte Carlo calculation n n i.. int i i H t c c h c V n 0 i j i i, i, j, i, H. M. Jaeger, et al. Phys.Rev.B 34, 4920 (1986) K.B. Efetov, Phase transition in granulated superconductors, JETP 51, 1016 (1980) K.A. Matveev and A.I. Larkin Parity effect in ground state energies of ultrasmall superconducting grains, Phys. Rev. Lett. 78, 3749(1997) K.A. Matveev and A.I. Larkin Parity effect in ground state energies of ultrasmall superconducting grains, Phys. Rev. Lett. 78, 3749(1997)

31 Superconducting fluctuations Quantum fluctuations N φ > 1 2 E J = h π Δ 8 e 2 R t th( Δ 2T ) E c = e 2 4 π ϵ 0 D δ = 1 ν D 3 δ = 1 3 ν ξ loc ψ op = e iφ N, φ D Gallium H 2D Monte Carlo calculation n n i.. int i i H t c c h c V n 0 i j i i, i, j, i, Parity gap H. M. Jaeger, et al. Phys.Rev.B 34, 4920 (1986) Δ p = δ 2 ln δ Δ = 1.76 k B T c K.B. Efetov, Phase transition in granulated superconductors, JETP 51, 1016 (1980) K.A. Matveev and A.I. Larkin Parity effect in ground state energies of ultrasmall superconducting grains, Phys. Rev. Lett. 78, 3749(1997) E g = + p K.A. Matveev and A.I. Larkin Parity effect in ground state energies of ultrasmall superconducting grains, Phys. Rev. Lett. 78, 3749(1997)

32 Coulomb depairing in disordered superconductors A.M Finkelstein Pis sma Zh. Esk. Theor. Fiz., 45, 46 (1987)

33 Coulomb depairing in disordered superconductors A.M Finkelstein Pis sma Zh. Esk. Theor. Fiz., 45, 46 (1987) R. A. Smith, M.Y. Reizer, and J. W. WIlkins Phys. Rev. B 51, 6470(1995)

34 Coulomb depairing in disordered superconductors A.M Finkelstein Pis sma Zh. Esk. Theor. Fiz., 45, 46 (1987) R. A. Smith, M.Y. Reizer, and J. W. WIlkins Phys. Rev. B 51, 6470(1995) Short range Coulomb interaction continuously decreases Tc and Δ in the same proportion

35 Superconductor-insulator transition : two scenarios Amorphous films Granular films Gallium Bismuth d = ψ op = T eiφ T d = D.B. Haviland, Y. Lui, A.M. Goldman, PRL 62, 2180 (1989) H. M. Jaeger, et al. Phys.Rev.B 34, 4920 (1986) Continuous decrease of T c Cooper pairing suppressed at the SIT Competition between E C and E J Cooper pairs localized in grains

36 Superconductor-insulator transition : two scenarios Amorphous films Granular films Frydman, A., Physica C : Superconductivity 391, 189 (2003) Hsu, S.-Y., and Valles, J. M. Phys. Rev. B 48, 4164 (1993) Continuous decrease of T c Cooper pairing suppressed at the SIT SIT due to phase fluctuations Cooper pairs localized in grains

37 TIN Superconductor-Insulator transition TiN R [k ] ,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 T [K] TiN 1 TiN 2 TiN 3 Sacépé et al., PRL 101, (2008)

38 TIN Superconductor-Insulator transition TiN R [k ] ,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 T [K] TiN 1 TiN 2 TiN 3 Sacépé et al., PRL 101, (2008)

39 TIN Superconductor-Insulator transition TiN R [k ] ,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 T [K] TiN 1 TiN 2 TiN 3 2,0 2,0 2,0 G(V), normalized 1,5 1,0 0,5 = 154 µev T eff = 0,35 K G(V), normalized 1,5 1,0 0,5 = 225 µev T eff = 0,32 K G(V), normalized 1,5 1,0 0,5 = 260 µev T eff = 0,25 K 0,0-1,0-0,5 0,0 0,5 1,0 V [mv] 0,0-1,0-0,5 0,0 0,5 1,0 V [mv] 0,0-1,0-0,5 0,0 0,5 1,0 V [mv] Increasing disorder Sacépé et al., PRL 101, (2008)

40 TIN Superconductor-Insulator transition TiN R [k ] ,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 T [K] TiN 1 TiN 2 TiN 3 2,0 2,0 2,0 G(V), normalized 1,5 1,0 0,5 = 154 µev T eff = 0,35 K G(V), normalized 1,5 1,0 0,5 = 225 µev T eff = 0,32 K G(V), normalized 1,5 1,0 0,5 = 260 µev T eff = 0,25 K 0,0-1,0-0,5 0,0 0,5 1,0 V [mv] 0,0-1,0-0,5 0,0 0,5 1,0 V [mv] 0,0-1,0-0,5 0,0 0,5 1,0 V [mv] Increasing disorder Sacépé et al., PRL 101, (2008)

41 TIN Superconductor-Insulator transition TiN T c [K] Δ/T c ,0 2,0 2,0 G(V), normalized 1,5 1,0 0,5 = 154 µev T eff = 0,35 K G(V), normalized 1,5 1,0 0,5 = 225 µev T eff = 0,32 K G(V), normalized 1,5 1,0 0,5 = 260 µev T eff = 0,25 K 0,0-1,0-0,5 0,0 0,5 1,0 V [mv] 0,0-1,0-0,5 0,0 0,5 1,0 V [mv] 0,0-1,0-0,5 0,0 0,5 1,0 V [mv] Increasing disorder Sacépé et al., PRL 101, (2008)

42 TIN Superconductor-Insulator transition T c [K] Δ/T c Sacépé et al., PRL 101, (2008)

43 TIN Superconductor-Insulator transition T c [K] Δ/T c Sacépé et al., PRL 101, (2008)

44 Superconductivity and Coulomb interaction M. A. Skvortsov and M. V. Feigel man, Phys. Rev. Lett. 95, , (2005) Spatial fluctuations of Tc

45 Superconductivity and Coulomb interaction M. A. Skvortsov and M. V. Feigel man, Phys. Rev. Lett. 95, , (2005) Spatial fluctuations of Tc M.V. Feigelman and M.A. Skvortsov, Phys. Rev. Lett. 109, (2012) A.I. Larkin and Yu. N. Ovchinnikov, Sov. JETP 34, 1144 (1972)

46 Thermal dependence of the Density of States W. Escoffier, et al., PRL 93, , (2004)

47 Thermal dependence of the Density of States W. Escoffier, et al., PRL 93, , (2004)

48 Thermal dependence of the Density of States Pseudogap above Tc B. Sacépé et al., Nat. Comm., (2010)

49 Thermal dependence of the Density of States Pseudogap above Tc B. Sacépé et al., Nat. Comm., (2010)

50 Thermal dependence of the Density of States Pseudogap above Tc Pseudogap is due to pre-formed Cooper pairs B. Sacépé et al., Nat. Comm., (2010)

51 InOx Superconductor-Insulator transition InO x InO#2 V. F. Gantmakher et al., JETP 82, 951 (1996) InO#1 D. Shahar and Z. Ovadyahu, Phys. Rev. B 46, (1992)

52 InOx Superconductor-Insulator transition InO x InO#2 V. F. Gantmakher et al., JETP 82, 951 (1996) InO#1 D. Shahar and Z. Ovadyahu, Phys. Rev. B 46, (1992)

53 Thermal dependence of the Density of States InO x Pseudogap above Tc B. Sacépé et al., Nat. Phys. (2011)

54 Thermal dependence of the Density of States InO x Pseudogap above Tc Spectra without coherence peaks are the signature of localized pre-formed Cooper pairs B. Sacépé et al., Nat. Phys. (2011)

55 Point-Contact Andreev Spectroscopy Parity gap How to measure the order parameter? E g = + p T = Z 2 Normal metal Superconductor

56 Point-Contact Andreev Spectroscopy Parity gap How to measure the order parameter? E g = + p

57 Point-Contact Andreev Spectroscopy Parity gap How to measure the order parameter? E g = + p T = Z 2 Normal metal Superconductor Blonder, G. E., Tinkham, M., and Klapwijk T.M. Phys. Rev. B 25, (1982) Contact regime Z value Z» 1 Z ~ 1 T = 300 mk Z «1 Tunnel regime

58 Point-Contact Andreev Spectroscopy Parity gap How to measure the order parameter? E g = + p T = Z 2 Normal metal Superconductor Blonder, G. E., Tinkham, M., and Klapwijk T.M. Phys. Rev. B 25, (1982) Contact regime Tip Z value Z» 1 Sample Tip Z ~ 1 Sample T = 300 mk Z «1 Tunnel regime Tip Sample

59 Point-Contact Andreev Spectroscopy Parity gap How to measure the order parameter? E g = + p T = Z 2 Normal metal Superconductor Blonder, G. E., Tinkham, M., and Klapwijk T.M. Phys. Rev. B 25, (1982) Contact regime Z value Z» 1 Tip Sample E g = + p Z ~ 1 Tip Sample T = 300 mk Z «1 Tunnel regime Tip Sample E g = + p

60 Point-Contact Andreev Spectroscopy InO x InOx film far from the Superconductor-Insulator Transition : Tc = 3.5K Homogeneous No pseudogap

61 Point-Contact Andreev Spectroscopy Close to the superconductor-insulator transition E g = + p Contact regime Z value Z» 1 Tip Sample E g = + p Z ~ 1 Tip Sample T = 300 mk Z «1 Tunnel regime Tip Sample E g = + p

62 Point-Contact Andreev Spectroscopy Close to the superconductor-insulator transition E g = + p Contact regime Z value Z» 1 Tip Sample E g = + p Z ~ 1 Tip Sample T = 300 mk Z «1 Tunnel regime Tip Sample E g = + p E g = + p

63 Superconductivity, disorder, Coulomb interaction and localization Disorder : Stong superconducting fluctuations above Tc Pseudogap due to preformed Cooper pairs Disorder & Coulomb interaction : Continuous decrease of Tc and with disorder Keeps /Tc ratio constant Spatial mesoscopic fluctuations of Tc Disorder & Localization : Tc decreases faster than with disorder : huge /Tc ratio Parity gap Strong spatial fluctuations of Localized Cooper pairs characterized by spectra without coherence peaks

64 Magnetic field studies through the SIT InO x G. Sambandamurthy et al., Phys. Rev. Lett. 92, , (2004) G. Kopnov et al., Phys. Rev. Lett. 109, , (2012)

65 Magnetic field studies through the SIT InO x Bi ϕ = h 2e G. Sambandamurthy et al., Phys. Rev. Lett. 92, , (2004) Stewart, Jr. et al., Science 318, 1273, (2007) H.Q. Nguyen et al., Phys. Rev. Lett. 103, (2009) G. Kopnov et al., Phys. Rev. Lett. 109, , (2012)

66 Magnetic field studies through the SIT InO x Bi ϕ = h 2e G. Sambandamurthy et al., Phys. Rev. Lett. 92, , (2004) Stewart, Jr. et al., Science 318, 1273, (2007) H.Q. Nguyen et al., Phys. Rev. Lett. 103, (2009) G. Kopnov et al., Phys. Rev. Lett. 109, , (2012) Cooper pair insulator?

67 Magnetic field studies through the SIT D. Sherman et al., Phys. Rev. Lett. 108, , (2012)

Superconducting fluctuations, interactions and disorder : a subtle alchemy

Superconducting fluctuations, interactions and disorder : a subtle alchemy Les défis actuels de la supraconductivité Dautreppe 2011 Superconducting fluctuations, interactions and disorder : a subtle alchemy Claude Chapelier, Benjamin Sacépé, Thomas Dubouchet INAC-SPSMS-LaTEQS,

More information

Superconductor to insulator transition: a short overview on recent ideas. C.Castellani

Superconductor to insulator transition: a short overview on recent ideas. C.Castellani Superconductor to insulator transition: a short overview on recent ideas C.Castellani Collaborations L.Benfatto and J.Lorenzana (Roma), G.Seibold (Cottbus) G.Lemarié (Toulouse),D.Bucheli(PhD,Roma) References

More information

Visualizing out-of-equilibrium superconductivity

Visualizing out-of-equilibrium superconductivity Strongly disordered and inhomogenous superconductivity- Grenoble -2016 Visualizing out-of-equilibrium superconductivity Claude Chapelier, INAC, CEA - UGA Eduard Driessen, IRAM 1- Superconducting Photon

More information

Purely electronic transport in dirty boson insulators

Purely electronic transport in dirty boson insulators Purely electronic transport in dirty boson insulators Markus Müller Ann. Phys. (Berlin) 18, 849 (2009). Discussions with M. Feigel man, M.P.A. Fisher, L. Ioffe, V. Kravtsov, Abdus Salam International Center

More information

The Higgs particle in condensed matter

The Higgs particle in condensed matter The Higgs particle in condensed matter Assa Auerbach, Technion N. H. Lindner and A. A, Phys. Rev. B 81, 054512 (2010) D. Podolsky, A. A, and D. P. Arovas, Phys. Rev. B 84, 174522 (2011)S. Gazit, D. Podolsky,

More information

Conference on Superconductor-Insulator Transitions May 2009

Conference on Superconductor-Insulator Transitions May 2009 2035-10 Conference on Superconductor-Insulator Transitions 18-23 May 2009 Phase transitions in strongly disordered magnets and superconductors on Bethe lattice L. Ioffe Rutgers, the State University of

More information

Scaling Analysis of the Magnetic Field Tuned Quantum Transition in Superconducting Amorphous In O Films 1

Scaling Analysis of the Magnetic Field Tuned Quantum Transition in Superconducting Amorphous In O Films 1 JETP Letters, Vol., No. 4, 2, pp. 4. From Pis ma v Zhurnal Éksperimental noœ i Teoreticheskoœ Fiziki, Vol., No. 4, 2, pp. 2 2. Original English Text Copyright 2 by Gantmakher, Golubkov, Dolgopolov, Tsydynzhapov,

More information

BKT transition in thin superconducting films and artificial nanostructures

BKT transition in thin superconducting films and artificial nanostructures BKT transition in thin superconducting films and artificial nanostructures Ilaria Maccari Supervisors: Lara Benfatto and Claudio Castellani April 5, 2016 Introduction Formulated within the class of the

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Josephson supercurrent through a topological insulator surface state M. Veldhorst, M. Snelder, M. Hoek, T. Gang, V. K. Guduru, X. L.Wang, U. Zeitler, W. G. van der Wiel, A. A. Golubov, H. Hilgenkamp and

More information

Conductor Insulator Quantum

Conductor Insulator Quantum Conductor Insulator Quantum Phase Transitions Edited by Vladimir Dobrosavljevic, Nandini Trivedi, James M. Valles, Jr. OXPORD UNIVERSITY PRESS Contents List of abbreviations List of contributors xiv xvi

More information

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Origin of High-Temperature Superconductivity Nature s great puzzle C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Basic characteristics of superconductors: Perfect electrical conduction

More information

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4 Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4 Dragana Popović National High Magnetic Field Laboratory Florida State University, Tallahassee, FL, USA Collaborators

More information

Conference on Superconductor-Insulator Transitions May 2009

Conference on Superconductor-Insulator Transitions May 2009 2035-7 Conference on Superconductor-Insulator Transitions 18-23 May 2009 Tunneling studies in a disordered s-wave superconductor close to the Fermi glass regime P. Raychaudhuri Tata Institute of Fundamental

More information

Magnetically Induced Electronic States in 2D Superconductors

Magnetically Induced Electronic States in 2D Superconductors Magnetically Induced Electronic States in D Superconductors Jongsoo Yoon University of Virginia B Insulator normal metal (linear I-V) Carlos Vicente Yongho Seo Yongguang Qin Yize Li Metal (U) SC T Christine

More information

Superconductivity in low-dimensional systems

Superconductivity in low-dimensional systems Superconductivity in low-dimensional systems Marco Grilli Dipar,mento di Fisica Lecture 2: SC in low (actually 2) dimensions. What s up with SC? Breaking news and old revisited stuff Aim: show how the

More information

Enhancement of the finite-frequency superfluid response in the pseudogap regime of strongly disordered superconducting films , Rome, Italy.

Enhancement of the finite-frequency superfluid response in the pseudogap regime of strongly disordered superconducting films , Rome, Italy. Enhancement of the finite-frequency superfluid response in the pseudogap regime of strongly disordered superconducting films Mintu Mondal a, Anand Kamlapure a, omesh Chandra Ganguli a, John Jesudasan a,

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 8 Jan 2006

arxiv:cond-mat/ v1 [cond-mat.supr-con] 8 Jan 2006 JETP Letters 81, 10 (2005) Anomalous Behavior near T c and Synchronization of Andreev Reflection in Two-Dimensional Arrays of SNS Junctions arxiv:cond-mat/0601142v1 [cond-mat.supr-con] 8 Jan 2006 T.I.

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 17 Jun 1998

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 17 Jun 1998 Evidence of Vortices on the Insulating Side of the Superconductor-Insulator Transition N. Marković, A. M. Mack, G. Martinez-Arizala,C. Christiansen and A. M. Goldman School of Physics and Astronomy, University

More information

Phase fluctuations in a strongly disordered s-wave NbN superconductor close to the metal-insulator transition

Phase fluctuations in a strongly disordered s-wave NbN superconductor close to the metal-insulator transition Phase fluctuations in a strongly disordered s-wave NbN superconductor close to the metal-insulator transition Mintu Mondal 1, Anand Kamlapure 1*, Madhavi Chand 1, Garima Saraswat 1, Sanjeev Kumar 1, John

More information

Features of the melting dynamics of a vortex lattice in a high-t c superconductor in the presence of pinning centers

Features of the melting dynamics of a vortex lattice in a high-t c superconductor in the presence of pinning centers Features of the melting dynamics of a vortex lattice in a high-t c superconductor in the presence of pinning centers M. E. Gracheva, V. A. Kashurnikov, a) and I. A. Rudnev Moscow State Engineering Physics

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Collapse of superconductivity in a hybrid tin graphene Josephson junction array by Zheng Han et al. SUPPLEMENTARY INFORMATION 1. Determination of the electronic mobility of graphene. 1.a extraction from

More information

arxiv: v1 [cond-mat.supr-con] 13 Oct 2008

arxiv: v1 [cond-mat.supr-con] 13 Oct 2008 APS/123-QED Thickness-tuned Superconductor-to-Insulator Transitions under magnetic field in a-nbsi C.A. Marrache-Kikuchi CSNSM (CNRS-UMR8609), Université Paris Sud, Bat. 108, 91405 Orsay Campus, France

More information

NMR in Strongly Correlated Electron Systems

NMR in Strongly Correlated Electron Systems NMR in Strongly Correlated Electron Systems Vesna Mitrović, Brown University Journée Claude Berthier, Grenoble, September 211 C. Berthier, M. H. Julien, M. Horvatić, and Y. Berthier, J. Phys. I France

More information

1 Interaction of Quantum Fields with Classical Sources

1 Interaction of Quantum Fields with Classical Sources 1 Interaction of Quantum Fields with Classical Sources A source is a given external function on spacetime t, x that can couple to a dynamical variable like a quantum field. Sources are fundamental in the

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1 Point-contact spectra of a Pt-Ir tip/lto film junction. The main panel shows differential conductance at 2, 12, 13, 16 K (0 T), and 10 K (2 T) to demonstrate

More information

arxiv: v1 [cond-mat.supr-con] 28 Sep 2012

arxiv: v1 [cond-mat.supr-con] 28 Sep 2012 Multiple Quantum Phase Transitions at the superconducting LaTiO 3 /SrTiO 3 interface J. Biscaras 1, N. Bergeal 1, S. Hurand 1, C. Feuillet-Palma 1, A. Rastogi 2, R. C. Budhani 2,3, M. Grilli 4, S. Caprara

More information

Vortex drag in a Thin-film Giaever transformer

Vortex drag in a Thin-film Giaever transformer Vortex drag in a Thin-film Giaever transformer Yue (Rick) Zou (Caltech) Gil Refael (Caltech) Jongsoo Yoon (UVA) Past collaboration: Victor Galitski (UMD) Matthew Fisher (station Q) T. Senthil (MIT) Outline

More information

Collapse of superconductivity in a hybrid tin-graphene

Collapse of superconductivity in a hybrid tin-graphene Author manuscript, published in "Nature Physics 10, 5 (2014) 380" DOI : 10.1038/NPHYS2929 Collapse of superconductivity in a hybrid tin-graphene Josephson junction array Zheng Han 1,2, Adrien Allain 1,2,

More information

Superconductivity: approaching the century jubilee

Superconductivity: approaching the century jubilee SIMTECH KICK-OFF MEETING, March, 18, 2011 Superconductivity: approaching the century jubilee Andrey Varlamov Institute of Superconductivity & Innovative Materials (SPIN), Consiglio Nazionale delle Ricerche,

More information

M.C. Escher. Angels and devils (detail), 1941

M.C. Escher. Angels and devils (detail), 1941 M.C. Escher Angels and devils (detail), 1941 1 Coherent Quantum Phase Slip: Exact quantum dual to Josephson Tunneling (Coulomb blockade is a partial dual) Degree of freedom in superconductor: Phase and

More information

Cooper pair islanding model of insulating nanohoneycomb films

Cooper pair islanding model of insulating nanohoneycomb films University of New Hampshire University of New Hampshire Scholars' Repository Physics Scholarship Physics 2002 Cooper pair islanding model of insulating nanohoneycomb films Shawna M. Hollen University of

More information

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION Subir Sachdev Center for Theoretical Physics, P.O. Box 6666 Yale University, New Haven, CT 06511 This paper reviews recent progress in understanding the

More information

Interplay of interactions and disorder in two dimensions

Interplay of interactions and disorder in two dimensions Interplay of interactions and disorder in two dimensions Sergey Kravchenko in collaboration with: S. Anissimova, V.T. Dolgopolov, A. M. Finkelstein, T.M. Klapwijk, A. Punnoose, A.A. Shashkin Outline Scaling

More information

Superconducting properties of carbon nanotubes

Superconducting properties of carbon nanotubes Superconducting properties of carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf A. De Martino, F. Siano Overview Superconductivity in ropes of nanotubes

More information

High-Temperature Superconductors: Playgrounds for Broken Symmetries

High-Temperature Superconductors: Playgrounds for Broken Symmetries High-Temperature Superconductors: Playgrounds for Broken Symmetries Gauge / Phase Reflection Time Laura H. Greene Department of Physics Frederick Seitz Materials Research Laboratory Center for Nanoscale

More information

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Jaeger, Orr, Goldman, Kuper (1986) Dissipation driven QCP s Haviland, Liu, and Goldman Phys. Rev.

More information

Numerical study of localization in antidot lattices

Numerical study of localization in antidot lattices PHYSICAL REVIEW B VOLUME 58, NUMBER 16 Numerical study of localization in antidot lattices 15 OCTOBER 1998-II Seiji Uryu and Tsuneya Ando Institute for Solid State Physics, University of Tokyo, 7-22-1

More information

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Dynamics of fluctuations in high temperature superconductors far from equilibrium L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Superconductors display amazing properties: Dissipation-less

More information

Josephson Effect in FS/I/N/I/FS Tunnel Junctions

Josephson Effect in FS/I/N/I/FS Tunnel Junctions Commun. Theor. Phys. Beijing, China 52 29 pp. 72 725 c Chinese Physical Society and IOP Publishing Ltd Vol. 52, No. 4, October 5, 29 Josephson Effect in FS/I/N/I/FS Tunnel Junctions LI Xiao-Wei Department

More information

Tunneling Spectroscopy of PCCO

Tunneling Spectroscopy of PCCO Tunneling Spectroscopy of PCCO Neesha Anderson and Amlan Biswas Department of Physics, University of Florida, Gainesville, Florida Abstract A point-contact probe capable of operating down to temperatures

More information

Superconductivity. S2634: Physique de la matière condensée & nano-objets. Miguel Anía Asenjo Alexandre Le Boité Christine Lingblom

Superconductivity. S2634: Physique de la matière condensée & nano-objets. Miguel Anía Asenjo Alexandre Le Boité Christine Lingblom Superconductivity S2634: Physique de la matière condensée & nano-objets Miguel Anía Asenjo Alexandre Le Boité Christine Lingblom 1 What is superconductivity? 2 Superconductivity Superconductivity generally

More information

Enhancement of superconducting Tc near SIT

Enhancement of superconducting Tc near SIT Enhancement of superconducting Tc near SIT Vladimir Kravtsov, ICTP (Trieste) Collaboration: Michael Feigelman (Landau Institute) Lev Ioffe (Rutgers) Emilio Cuevas (University of Murcia) KITP, Santa Barbara,

More information

Anomalous Metals and Failed Superconductors. With B. Spivak and A. Kapitulnik (also P. Oreto)

Anomalous Metals and Failed Superconductors. With B. Spivak and A. Kapitulnik (also P. Oreto) Anomalous Metals and Failed Superconductors With B. Spivak and A. Kapitulnik (also P. Oreto) Tallahassee 2018 Pillars the Theory of Quantum Mater From B Spivak Α proof of the Fermi liquid theory is based

More information

Superconductivity at high magnetic field

Superconductivity at high magnetic field Superconductivity at high magnetic field How can we achieve superconductivity at very high magnetic fields? What sort of materials should we choose to look at? Theory - introduction to superconductivity

More information

F. Rullier-Albenque 1, H. Alloul 2 1

F. Rullier-Albenque 1, H. Alloul 2 1 Distinct Ranges of Superconducting Fluctuations and Pseudogap in Cuprates Glassy29-2/7/29 F. Rullier-Albenque 1, H. Alloul 2 1 Service de Physique de l Etat Condensé, CEA, Saclay, France 2 Physique des

More information

Enhancing superconductivity: Magnetic impurities and their quenching by magnetic fields

Enhancing superconductivity: Magnetic impurities and their quenching by magnetic fields EUROPHYSICS LETTERS 5 September 2006 Europhys. Lett., 75 (6, pp. 943 949 (2006 DOI: 0.209/epl/i2006-028-2 Enhancing superconductivity: Magnetic impurities and their quenching by magnetic fields T.-C. Wei,

More information

nuclear level densities from exactly solvable pairing models

nuclear level densities from exactly solvable pairing models nuclear level densities from exactly solvable pairing models Stefan Rombouts In collaboration with: Lode Pollet, Kris Van Houcke, Dimitri Van Neck, Kris Heyde, Jorge Dukelsky, Gerardo Ortiz Ghent University

More information

FROM NODAL LIQUID TO NODAL INSULATOR

FROM NODAL LIQUID TO NODAL INSULATOR FROM NODAL LIQUID TO NODAL INSULATOR Collaborators: Urs Ledermann and Maurice Rice John Hopkinson (Toronto) GORDON, 2004, Oxford Doped Mott insulator? Mott physics: U Antiferro fluctuations: J SC fluctuations

More information

What's so unusual about high temperature superconductors? UBC 2005

What's so unusual about high temperature superconductors? UBC 2005 What's so unusual about high temperature superconductors? UBC 2005 Everything... 1. Normal State - doped Mott insulator 2. Pairing Symmetry - d-wave 2. Short Coherence Length - superconducting fluctuations

More information

arxiv: v1 [cond-mat.supr-con] 16 Feb 2009

arxiv: v1 [cond-mat.supr-con] 16 Feb 2009 arxiv:0902.2732v1 [cond-mat.supr-con] 16 Feb 2009 Nernst effect as a probe of superconducting fluctuations in disordered thin films Submitted to: New J. Phys. A Pourret, P Spathis, H Aubin and K Behnia

More information

New Quantum Transport Results in Type-II InAs/GaSb Quantum Wells

New Quantum Transport Results in Type-II InAs/GaSb Quantum Wells New Quantum Transport Results in Type-II InAs/GaSb Quantum Wells Wei Pan Sandia National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,

More information

Electrostatic Tuning of Superconductivity. Allen M. Goldman School of Physics and Astronomy University of Minnesota

Electrostatic Tuning of Superconductivity. Allen M. Goldman School of Physics and Astronomy University of Minnesota Electrostatic Tuning of Superconductivity Allen M. Goldman School of Physics and Astronomy University of Minnesota Paarticipating Graduate Students Yen-Hsiang Lin Kevin Parendo (US Patent Office) Sarwa

More information

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES studies of cuprates Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Goals of lecture Understand why gaps are important and various ways that gap

More information

Superconductivity and Superfluidity

Superconductivity and Superfluidity Superconductivity and Superfluidity Contemporary physics, Spring 2015 Partially from: Kazimierz Conder Laboratory for Developments and Methods, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland Resistivity

More information

Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover

Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei and CNISM, Università di Padova INO-CNR, Research

More information

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Anatoli Polkovnikov Boston University Ehud Altman Weizmann Vladimir Gritsev Harvard Mikhail

More information

Quantum Phase Slip Junctions

Quantum Phase Slip Junctions Quantum Phase Slip Junctions Joël Peguiron Insitute of Physics, University of Basel Monday Morning Meeting, 24 April 2006 1 Goal Monday Morning Meeting, 24 April 2006 2 Evidence for Thermodynamic Fluctuations

More information

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3 4D-XY Quantum Criticality in Underdoped High-T c cuprates M. Franz University of British Columbia franz@physics.ubc.ca February 22, 2005 In collaboration with: A.P. Iyengar (theory) D.P. Broun, D.A. Bonn

More information

April Schafroth s bosons? 2. BCS paired electrons? 3. Lattice Bosons?! -- new paradigm of metallic conductivity

April Schafroth s bosons? 2. BCS paired electrons? 3. Lattice Bosons?! -- new paradigm of metallic conductivity April 2011 1. Schafroth s bosons? 2. BCS paired electrons? 3. Lattice Bosons?! -- new paradigm of metallic conductivity Energy transport solar cells nuclear energy wind energy 15% of electric power is

More information

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Introduction to Superconductivity Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Meissner Effect Magnetic field expelled. Superconducting surface current ensures

More information

Real Space Bogoliubov de Gennes Equations Study of the Boson Fermion Model

Real Space Bogoliubov de Gennes Equations Study of the Boson Fermion Model Vol. 114 2008 ACTA PHYSICA POLONICA A No. 1 Proceedings of the XIII National School of Superconductivity, L adek Zdrój 2007 Real Space Bogoliubov de Gennes Equations Study of the Boson Fermion Model J.

More information

Scanning Tunnelling Microscopy Observations of Superconductivity

Scanning Tunnelling Microscopy Observations of Superconductivity Department of physics Seminar I a Scanning Tunnelling Microscopy Observations of Superconductivity Author: Tim Verbovšek Mentor: dr. Rok Žitko Co-Mentor: dr. Erik Zupanič Ljubljana, February 013 Abstract

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

arxiv: v2 [cond-mat.supr-con] 24 Aug 2012

arxiv: v2 [cond-mat.supr-con] 24 Aug 2012 Point contact spectroscopy of Cu 0.2 Bi 2 Se 3 single crystals arxiv:1111.5805v2 [cond-mat.supr-con] 24 Aug 2012 T. Kirzhner, 1 E. Lahoud, 1 K.B. Chaska, 1 Z. Salman, 2 and A. Kanigel 1 1 Physics Department,

More information

Superconductivity. 24 February Paul Wilson Tutor: Justin Evans

Superconductivity. 24 February Paul Wilson Tutor: Justin Evans Superconductivity 24 February 2009 Paul Wilson Tutor: Justin Evans 1 Intended Audience This report is intended for anyone wishing to understand the fundamentals of superconductors and their growing importance

More information

Supplementary figures

Supplementary figures Supplementary figures Supplementary Figure 1. A, Schematic of a Au/SRO113/SRO214 junction. A 15-nm thick SRO113 layer was etched along with 30-nm thick SRO214 substrate layer. To isolate the top Au electrodes

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

Nonequilibrium dynamics in Coulomb glasses near the metal-insulator transition

Nonequilibrium dynamics in Coulomb glasses near the metal-insulator transition Nonequilibrium dynamics in Coulomb glasses near the metal-insulator transition Dragana Popović National High Magnetic Field Laboratory Florida State University, Tallahassee, FL, USA Boulder 2009 Summer

More information

A typical medium approach to Anderson localization in correlated systems.

A typical medium approach to Anderson localization in correlated systems. A typical medium approach to Anderson localization in correlated systems. N.S.Vidhyadhiraja Theoretical Sciences Unit Jawaharlal Nehru center for Advanced Scientific Research Bangalore, India Outline Models

More information

Ginzburg-Landau theory of supercondutivity

Ginzburg-Landau theory of supercondutivity Ginzburg-Landau theory of supercondutivity Ginzburg-Landau theory of superconductivity Let us apply the above to superconductivity. Our starting point is the free energy functional Z F[Ψ] = d d x [F(Ψ)

More information

Pomiędzy nadprzewodnictwem a kondensacją Bosego-Einsteina. Piotr Magierski (Wydział Fizyki Politechniki Warszawskiej)

Pomiędzy nadprzewodnictwem a kondensacją Bosego-Einsteina. Piotr Magierski (Wydział Fizyki Politechniki Warszawskiej) Pomiędzy nadprzewodnictwem a kondensacją Bosego-Einsteina Piotr Magierski (Wydział Fizyki Politechniki Warszawskiej) 100 years of superconductivity and superfluidity in Fermi systems Discovery: H. Kamerlingh

More information

arxiv:cond-mat/ v1 16 Jun 1993

arxiv:cond-mat/ v1 16 Jun 1993 Comment on Theory of Impure Superconductors: Anderson versus Abrikosov and Gor kov R. J. Radtke Department of Physics and the James Franck Institute, arxiv:cond-mat/9306037v1 16 Jun 1993 The University

More information

Tuning a short coherence length Josephson junction through a metal-insulator transition

Tuning a short coherence length Josephson junction through a metal-insulator transition Tuning a short coherence length Josephson junction through a metal-insulator transition J. K. Freericks, B. Nikolić, and P. Miller * Department of Physics, Georgetown University, Washington, DC 20057 *

More information

Theory of Lifetime Effects in Point-Contacts: Application to Cd 2 Re 2 O 7

Theory of Lifetime Effects in Point-Contacts: Application to Cd 2 Re 2 O 7 Theory of Lifetime Effects in Point-Contacts: Application to Cd 2 Re 2 O 7 Božidar Mitrović Department of Physics Brock University St. Catharines, Ontario, Canada McMaster, May 24, 2013 Outline Tunneling

More information

Principles of Electron Tunneling Spectroscopy

Principles of Electron Tunneling Spectroscopy Principles of Electron Tunneling Spectroscopy Second Edition E. L. Wolf Polytechnic Institute of New York University, USA OXFORD UNIVERSITY PRESS Contents 1 Introduction 1.1 Concepts of quantum mechanical

More information

Supersolidity of excitons

Supersolidity of excitons Supersolidity of excitons Michał Matuszewski Institute of Physics, Polish Academy of Sciences, Warsaw Thomas R. Taylor and Alexey V. Kavokin University of Southampton, UK ISNP 2012, Phuket Outline 1. What

More information

Using Disorder to Detect Order: Hysteresis and Noise of Nematic Stripe Domains in High Temperature Superconductors

Using Disorder to Detect Order: Hysteresis and Noise of Nematic Stripe Domains in High Temperature Superconductors Using Disorder to Detect Order: Hysteresis and Noise of Nematic Stripe Domains in High Temperature Superconductors Erica Carlson Karin Dahmen Eduardo Fradkin Steven Kivelson Dale Van Harlingen Michael

More information

Disordered Ultracold Gases

Disordered Ultracold Gases Disordered Ultracold Gases 1. Ultracold Gases: basic physics 2. Methods: disorder 3. Localization and Related Measurements Brian DeMarco, University of Illinois bdemarco@illinois.edu Localization & Related

More information

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Nadya Mason Travis Dirk, Yung-Fu Chen, Cesar Chialvo Taylor Hughes, Siddhartha Lal, Bruno Uchoa Paul Goldbart University

More information

I. PLATEAU TRANSITION AS CRITICAL POINT. A. Scaling flow diagram

I. PLATEAU TRANSITION AS CRITICAL POINT. A. Scaling flow diagram 1 I. PLATEAU TRANSITION AS CRITICAL POINT The IQHE plateau transitions are examples of quantum critical points. What sort of theoretical description should we look for? Recall Anton Andreev s lectures,

More information

Nanoelectronics 14. [( ) k B T ] 1. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture.

Nanoelectronics 14. [( ) k B T ] 1. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture. Nanoelectronics 14 Atsufumi Hirohata Department of Electronics 09:00 Tuesday, 27/February/2018 (P/T 005) Quick Review over the Last Lecture Function Fermi-Dirac distribution f ( E) = 1 exp E µ [( ) k B

More information

1 Quantum Theory of Matter

1 Quantum Theory of Matter Quantum Theory of Matter: Superfluids & Superconductors Lecturer: Derek Lee Condensed Matter Theory Blackett 809 Tel: 020 7594 7602 dkk.lee@imperial.ac.uk Level 4 course: PT4.5 (Theory Option) http://www.cmth.ph.ic.ac.uk/people/dkk.lee/teach/qtm

More information

Interference experiments with ultracold atoms

Interference experiments with ultracold atoms Interference experiments with ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Serena Fagnocchi, Vladimir Gritsev, Mikhail Lukin,

More information

Superfluidity of a 2D Bose gas (arxiv: v1)

Superfluidity of a 2D Bose gas (arxiv: v1) Superfluidity of a 2D Bose gas (arxiv:1205.4536v1) Christof Weitenberg, Rémi Desbuquois, Lauriane Chomaz, Tarik Yefsah, Julian Leonard, Jérôme Beugnon, Jean Dalibard Trieste 18.07.2012 Phase transitions

More information

Visualization of atomic-scale phenomena in superconductors

Visualization of atomic-scale phenomena in superconductors Visualization of atomic-scale phenomena in superconductors Andreas Kreisel, Brian Andersen Niels Bohr Institute, University of Copenhagen, 2100 København, Denmark Peayush Choubey, Peter Hirschfeld Department

More information

Topological Quantum Computation with Majorana Zero Modes. Roman Lutchyn. Microsoft Station

Topological Quantum Computation with Majorana Zero Modes. Roman Lutchyn. Microsoft Station Topological Quantum Computation with Majorana Zero Modes Roman Lutchyn Microsoft Station IPAM, 08/28/2018 Outline Majorana zero modes in proximitized nanowires Experimental and material science progress

More information

Crossover from phase fluctuation to amplitudedominated superconductivity: A model system

Crossover from phase fluctuation to amplitudedominated superconductivity: A model system Santa Clara University Scholar Commons Physics College of Arts & Sciences 3-6-2001 Crossover from phase fluctuation to amplitudedominated superconductivity: A model system Richard P. Barber Jr. Santa Clara

More information

From single magnetic adatoms to coupled chains on a superconductor

From single magnetic adatoms to coupled chains on a superconductor From single magnetic adatoms to coupled chains on a superconductor Michael Ruby, Benjamin Heinrich, Yang Peng, Falko Pientka, Felix von Oppen, Katharina Franke Magnetic adatoms on a superconductor Sample

More information

Can we find metal-insulator transitions in 2-dimensional systems?

Can we find metal-insulator transitions in 2-dimensional systems? Can we find metal-insulator transitions in 2-dimensional systems? Marcelo Kuroda Term Essay for PHYS498ESM, Spring 2004 It has been almost a quarter of a century since the belief of the non existence metallic

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University January 25, 2011 2 Chapter 12 Collective modes in interacting Fermi

More information

Superfluid Helium-3: From very low Temperatures to the Big Bang

Superfluid Helium-3: From very low Temperatures to the Big Bang Superfluid Helium-3: From very low Temperatures to the Big Bang Universität Frankfurt; May 30, 2007 Dieter Vollhardt Contents: The quantum liquids 3 He and 4 He Superfluid phases of 3 He Broken symmetries

More information

Superconductivity. The Discovery of Superconductivity. Basic Properties

Superconductivity. The Discovery of Superconductivity. Basic Properties Superconductivity Basic Properties The Discovery of Superconductivity Using liquid helium, (b.p. 4.2 K), H. Kamerlingh Onnes found that the resistivity of mercury suddenly dropped to zero at 4.2 K. H.

More information

Quantum Processes in Josephson Junctions & Weak Links. J. A. Sauls

Quantum Processes in Josephson Junctions & Weak Links. J. A. Sauls CMS Colloquium, Los Alamos National Laboratory, December 9, 2015 Quantum Processes in Josephson Junctions & Weak Links J. A. Sauls Northwestern University e +iφ 2 e +iφ 1 111000 00000000 111111110000000

More information

BCS in Russia: the end of 50 s early 60 s

BCS in Russia: the end of 50 s early 60 s BCS in Russia: the end of 50 s early 60 s ( Developing Quantum Field theory approach to superconductivity) Lev P. Gor kov (National High Magnetic Field Laboratory, FSU, Tallahassee) UIUC, October 10, 2007

More information

On the Higgs mechanism in the theory of

On the Higgs mechanism in the theory of On the Higgs mechanism in the theory of superconductivity* ty Dietrich Einzel Walther-Meißner-Institut für Tieftemperaturforschung Bayerische Akademie der Wissenschaften D-85748 Garching Outline Phenomenological

More information

Superconductivity - Overview

Superconductivity - Overview Superconductivity - Overview Last week (20-21.11.2017) This week (27-28.11.2017) Classification of Superconductors - Theory Summary - Josephson Effect - Paraconductivity Reading tasks Kittel: Chapter:

More information

SHANGHAI JIAO TONG UNIVERSITY LECTURE

SHANGHAI JIAO TONG UNIVERSITY LECTURE Lecture 4 SHANGHAI JIAO TONG UNIVERSITY LECTURE 4 017 Anthony J. Leggett Department of Physics University of Illinois at Urbana-Champaign, USA and Director, Center for Complex Physics Shanghai Jiao Tong

More information

Vortices in superconductors& low temperature STM

Vortices in superconductors& low temperature STM Vortices in superconductors& low temperature STM José Gabriel Rodrigo Low Temperature Laboratory Universidad Autónoma de Madrid, Spain (LBT-UAM) Cryocourse, 2011 Outline -Vortices in superconductors -Vortices

More information

A strongly inhomogeneous superfluid in an iron-based superconductor

A strongly inhomogeneous superfluid in an iron-based superconductor A strongly inhomogeneous superfluid in an iron-based superconductor D. Cho*,1, K.M. Bastiaans*,1, D. Chatzopoulos*,1, G.D. Gu 2, M.P. Allan 1 1 Leiden Institute of Physics, Leiden University, Niels Bohrweg

More information

Superconductivity and Quantum Coherence

Superconductivity and Quantum Coherence Superconductivity and Quantum Coherence Lent Term 2008 Credits: Christoph Bergemann, David Khmelnitskii, John Waldram, 12 Lectures: Mon, Wed 10-11am Mott Seminar Room 3 Supervisions, each with one examples

More information