The Role of Spin in Ballistic-Mesoscopic Transport

Size: px
Start display at page:

Download "The Role of Spin in Ballistic-Mesoscopic Transport"

Transcription

1 The Role of Spin in Ballistic-Mesoscopic Transport INT Program Chaos and Interactions: From Nuclei to Quantum Dots Seattle, WA 8/12/2 CM Marcus, Harvard University Supported by ARO-MURI, DARPA, NSF

2 Spin-Orbit Coupling Antilocalization and Parallel Fields in Quantum Dots.7 Structure and a Kondo-like state in Point Contacts Spin injection and Detection Using Point Contacts and Quantum Dots Antilocalization in QD. Comparison to new random matrix theory that includes SO and parallel magnetic field. Asymmetry of SO is measured. Gate control of SO coupling..7 structure in point contacts appears spin related, and vanishes at low temperature. Temperature, bias, and field dependence suggest a Kondolike correlated state at low T. Transverse Focusing in a parallel field New theory allows voltage to read out spin polarization. Demonstrate > 7% polarization in a QPC Quantum dot as a gate-tunable spin filter with ~25% filtering and adjustable polarization.

3 Spin-Orbit Coupling, Antilocalization, and Parallel Fields in Quantum Dots D. Zumbühl, J. Miller, J. Folk Material: Campman,Gossard, UCSB

4 weak localization and antilocalization in 2D systems. weak localization T=3mK 114 antilocalization Resistance (Ω) longitudinal resistance [Ω] T=3mK B perp.

5 spin precision affects phase interference (2π in spin space gives -1 to phase) motion in real space coherent backscattering weak localization motion in spin space coherent backscattering + spin rotation antilocalization

6 Spin-Orbit Coupling in -D (Quantum Dots) B V shape1 Statistics of Conductance V shape2 g (e 2 /h) 1. δg Single trace for each shape Average of ~2 traces 1 B (mt) from Huibers, CMM, et al, PRL (1999).

7 [11] 4µm low density, large dot 8 µm 2 [11] low density weaker SO coupling weak localization (WL) dots are on different wafers CEM2385 n= m -2 average conductance < g > (e^2/h) WL T=3mK B perp [mt] Perpendicular Magnetic Field (mt) 4µm high density, large dot 8 µm 2 high density stronger SO coupling antilocalization (AL) SY4 n= m -2 average conductance g (e 2 /h) 1.1 T=3mK WL+AL B (mt) Perpendicular Magnetic Field (mt)

8 Spin-Orbit Coupling in Quantum Dots H 2 p = + α(pyσ 2m x p Rashba x σ y ) + ρ(p x σ x p y σ Dresselhaus gauge transformation using < v > in quantum dots (Halperin et al., PRL86, 216 (21) 1 H = + m p r A r a r σz a r ( ) Z 2 2 l σ r ε 2 h 2 () 1 y ) identify SO terms with different symmetries r a r a h r r n = h 2λ λ = spin-orbit terms z r r h n 6 λ λ 2 z x1σ λ1 1 x2σ + λ Z lx l x = σ ε z + 2 2λ 2λ () (SO Berry s phase keeps and correl.) (provides spin flips) (spin-orbit + B ) 2 ax associated energy scale E = πκ T 2 A λλ L L a = a x + 1 λ λ2 2 h π E = Z L ET λso IL Aleiner and VI Falko, PRL (21)

9 B field scales zero field intermediate field large field

10 Effects of S-O coupling supressed in small quantum dots T=3mK large dot 8 µm 2 RMT 4µm dots are on the same wafer small dot 1.2 µm 2 RMT 1µm T=3mK

11 high density material (SY4) Variance of Conductance low density material (CEM) var (g) var g [ (e^2/h)^2 ] dg 8 µm 2 RMT.6.8 < g > ( e^2/h ) var g ( (e^2 / h )^2 ) var (g) dg 8 µm 2 RMT < g > ( e^2/h ) var g [ (e^2/h)^2 ] var (g) µm 2 RMT dg < g > ( e^2/h ) var g ( (e^2/h)^2 ) var (g) dg 3 µm 2 RMT < g > ( e^2/h ) Perpendicular Magnetic Field (mt) Perpendicular Magnetic Field (mt)

12 Effect of Parallel Magnetic Field on Antilocalization parameters fixed by B = fit T=3 mk

13 S-O coupling asymmetry range 1< ν so < 2 for 2:1 aspect ratio dot

14 Parallel Field Effects on Antilocalization and Weak Localization D. M. Zumbuhl, CMM, et al (22)

15 Time-Reversal Symmetry Breaking by Parallel Field B δg wl(b ) = δgwl() 1 + γ γ B esc 1 γ B = a B 2 + b B 6 γ esc = N h effective random B due to disorder / surface roughness inversion asymmetry of heterostructures V. Fal ko, T. Jungwirth, PRB 65, 8136 (22) J. Meyer, A. Altlland, B. Altshuler, cond-mat 15623

16 Variance of Conductance dependence on Parallel Magnetic Field high density material (SY4) 7x1-6 7x1-6 var g ( (e^2/h)^2 ) var (g) (e 2/ h) µm B par ( mt ) 3.5x1-3 var g ( (e^2/h)^2 ) var (g) (e 2/ h) B par ( mt ) 1.2 µm Parallel Magnetic Field (mt) RMT RMT var g ( (e^2/h)^2 ) var (g) (e 2/ h) 2 var (g) (e2/ h) 2 6x1-6 var g ( (e^2/h)^2 ) (J. A. Folk et al., PRL 86, 212 (21)) low density material (CEM) B par ( mt ) B par ( mt ) 8 µm 2 RMT 3 µm 2 RMT 5 Parallel Magnetic Field (mt)

17 Symmetry of Conductance Fluctuations (Movie) B = 5T.4 V V g -1 mt B perp. +1 mt

18 Effect of Temperature in Antilocalization regime Increased dephasing at higher T. No significant change in SO coupling with T.

19 Using a center gate to Control spin-orbit coupling T=3mK

20 .7 Structure and a Kondo-like state in Point Contacts S. Cronenwett, H. Lynch, D. Goldhaber-Gordon, L. Kouwenhoven, N. Wingreen, K. Hirose Material: Umansky, Heiblum, Weizmann

21 1D System.7 Structure in a Quantum Point Contact

22 Low Temperature Higher Temperature Lo V g V g

23 Critical Questions: What is the characteristic time scale on which the spin is oriented in a particular direction?

24 Nonlinear Transport T =T = 8mK 75 mk, B = TB= T T== 6.6K mk, B =B= T T=8mK T = 75 mk, BB=8T =8T g g (2e2/h) g (2e2/h) g (2e2/h) 3 g 1 g 1-1 Vsd (mv) Vsd Vsd (mv) Vsd 1-1 Vsd (mv) Vsd 1

25 Temperature dependence of zero bias anomaly (at various gate voltages)

26 Kondo-like scaling in a quantum point contact

27 Kondo Temperature and Transport Features

28 In-Plane Field Dependence of Zero Bias Anomaly of a QPC gµb < T K T > T K

29 Spin injection and Detection Using Point Contacts and Quantum Dots J. A. Folk, R. M. Potok Material: Umansky, Heiblum, Weizmann

30 QUANTUM POINT CONTACTS AS SPIN INJECTORS AND SPIN DETECTORS R. M. Potok, J. A. Folk, C. M. Marcus, V. Umansky cond-mat (22).

31 QUANTUM POINT CONTACTS AS SPIN INJECTORS AND SPIN DETECTORS

32 SPIN EMISSION FROM A POLARIZED QUANTUM DOT µ QPC Collector QD Emitter J. A. Folk, R. M. Potok, C. M. Marcus, V. Umansky (in preparation)

33 Injector: PC at 2e 2 /h Collector: PC at.5 e 2 /h No dependence of V BC on V gate Injector: DOT at 2e 2 /h, 2e 2 /h Collector: PC at.5 e 2 /h Fluctuation of V BC when the dot is completed and a parallel field is applied

34 Polarized against field Polarized along field QUANTUM DOT AS SWITCHABLE SPIN FILTER 25% % 25%

35 Mesoscopic Spin Fluctuations collector QPC not spin selective no Zeeman splitting all configurations show UCF

36 Statistics of Fluctuating Polarized Current from a Quantum Dot with P. W. Brouwer

37 SUMMARY Spin-Orbit Coupling Antilocalization and Parallel Fields in Quantum Dots.7 Structure and a Kondo-like state in Point Contacts Spin injection and Detection Using Point Contacts and Quantum Dots Antilocalization in QD. Comparison to new random matrix theory that includes SO and parallel magnetic field. Asymmetry of SO is measured. Gate control of SO coupling..7 structure in point contacts appears spin related and vanishes at low temperature. Temperature, bias, and field dependence suggest a Kondolike correlated state at low T. Transverse Focusing in a parallel field New theory allows voltage to read out spin polarization. Demonstrate > 8% polarization in a QPC Quantum dot as a gate-tunable spin filter with ~25% filtering and adjustable polarization.

Electrical control of spin relaxation in a quantum dot. S. Amasha et al., condmat/

Electrical control of spin relaxation in a quantum dot. S. Amasha et al., condmat/ Electrical control of spin relaxation in a quantum dot S. Amasha et al., condmat/07071656 Spin relaxation In a magnetic field, spin states are split b the Zeeman energ = g µ B B Provides a two-level sstem

More information

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures Kondo Effects in Metals: magnetic impurities

More information

Quantum Transport in Ballistic Cavities Subject to a Strictly Parallel Magnetic Field

Quantum Transport in Ballistic Cavities Subject to a Strictly Parallel Magnetic Field Quantum Transport in Ballistic Cavities Subject to a Strictly Parallel Magnetic Field Cédric Gustin and Vincent Bayot Cermin, Université Catholique de Louvain, Belgium Collaborators Cermin,, Univ. Catholique

More information

Charges and Spins in Quantum Dots

Charges and Spins in Quantum Dots Charges and Spins in Quantum Dots L.I. Glazman Yale University Chernogolovka 2007 Outline Confined (0D) Fermi liquid: Electron-electron interaction and ground state properties of a quantum dot Confined

More information

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University g Q 2 m T + S Mirror U 3 U 1 U 2 U 3 Mirror Detector See Hanson et al., Rev. Mod. Phys.

More information

Spin Currents in Mesoscopic Systems

Spin Currents in Mesoscopic Systems Spin Currents in Mesoscopic Systems Philippe Jacquod - U of Arizona I Adagideli (Sabanci) J Bardarson (Berkeley) M Duckheim (Berlin) D Loss (Basel) J Meair (Arizona) K Richter (Regensburg) M Scheid (Regensburg)

More information

Curriculum Vitae. Joshua A. Folk. Current Address: 2355 East Mall, Rm 118 Vancouver, BC V6T 1Z

Curriculum Vitae. Joshua A. Folk. Current Address: 2355 East Mall, Rm 118 Vancouver, BC V6T 1Z Curriculum Vitae Joshua A. Folk jfolk@physics.ubc.ca Current Address: 2355 East Mall, Rm 118 Vancouver, BC V6T 1Z4 604-827-3206 Education: 1998-2003 PhD in Physics. Stanford University. 1991-1995 Bachelor

More information

Spin Currents in a 2D Electron Gas

Spin Currents in a 2D Electron Gas Spin Currents in a 2D Electron Gas Joshua Folk UBC Asilomar, 2007 Thanks to: My group Sergey Frolov (postdoc) Ananth Venkatesan (postdoc) Mark Lundeberg (PhD) Wing Wa Yu (Masters) Yuan Ren (Masters) Chung-Yu

More information

A Tunable Kondo Effect in Quantum Dots

A Tunable Kondo Effect in Quantum Dots A Tunable Kondo Effect in Quantum Dots Sara M. Cronenwett *#, Tjerk H. Oosterkamp *, and Leo P. Kouwenhoven * * Department of Applied Physics and DIMES, Delft University of Technology, PO Box 546, 26 GA

More information

SPIN TRANSPORT MEASUREMENTS IN GaAs QUANTUM DOTS

SPIN TRANSPORT MEASUREMENTS IN GaAs QUANTUM DOTS SPIN TRANSPORT MEASUREMENTS IN GaAs QUANTUM DOTS a dissertation submitted to the department of physics and the committee on graduate studies of stanford university in partial fulfillment of the requirements

More information

The Kondo Effect in the Unitary Limit

The Kondo Effect in the Unitary Limit The Kondo Effect in the Unitary Limit W.G. van der Wiel 1,*, S. De Franceschi 1, T. Fujisawa 2, J.M. Elzerman 1, S. Tarucha 2,3 and L.P. Kouwenhoven 1 1 Department of Applied Physics, DIMES, and ERATO

More information

Coherence and Correlations in Transport through Quantum Dots

Coherence and Correlations in Transport through Quantum Dots Coherence and Correlations in Transport through Quantum Dots Rolf J. Haug Abteilung Nanostrukturen Institut für Festkörperphysik and Laboratory for Nano and Quantum Engineering Gottfried Wilhelm Leibniz

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information

Few-electron quantum dots for quantum computing

Few-electron quantum dots for quantum computing Few-electron quantum dots for quantum computing I.H. Chan a, P. Fallahi b, A. Vidan b, R.M. Westervelt a,b, M. Hanson c, and A.C. Gossard c. a Department of Physics, Harvard University, Cambridge, MA 02138,

More information

Electron counting with quantum dots

Electron counting with quantum dots Electron counting with quantum dots Klaus Ensslin Solid State Physics Zürich with S. Gustavsson I. Shorubalko R. Leturcq T. Ihn A. C. Gossard Time-resolved charge detection Single photon detection Time-resolved

More information

Tunable Non-local Spin Control in a Coupled Quantum Dot System. N. J. Craig, J. M. Taylor, E. A. Lester, C. M. Marcus

Tunable Non-local Spin Control in a Coupled Quantum Dot System. N. J. Craig, J. M. Taylor, E. A. Lester, C. M. Marcus Tunable Non-local Spin Control in a Coupled Quantum Dot System N. J. Craig, J. M. Taylor, E. A. Lester, C. M. Marcus Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA M. P.

More information

arxiv: v1 [cond-mat.mes-hall] 27 Sep 2010

arxiv: v1 [cond-mat.mes-hall] 27 Sep 2010 Coulomb Blockade in an Open Quantum Dot S. Amasha, 1, I. G. Rau, M. Grobis, 1, R. M. Potok, 1,3, H. Shtrikman, and D. Goldhaber-Gordon 1 1 Department of Physics, Stanford University, Stanford, California

More information

Observation of neutral modes in the fractional quantum hall effect regime. Aveek Bid

Observation of neutral modes in the fractional quantum hall effect regime. Aveek Bid Observation of neutral modes in the fractional quantum hall effect regime Aveek Bid Department of Physics, Indian Institute of Science, Bangalore Nature 585 466 (2010) Quantum Hall Effect Magnetic field

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat, and R. Deblock Laboratoire de Physique des Solides Orsay (France) Theory : P. Simon (LPS),

More information

Quantum Hall Effect in Graphene p-n Junctions

Quantum Hall Effect in Graphene p-n Junctions Quantum Hall Effect in Graphene p-n Junctions Dima Abanin (MIT) Collaboration: Leonid Levitov, Patrick Lee, Harvard and Columbia groups UIUC January 14, 2008 Electron transport in graphene monolayer New

More information

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Determination of the tunnel rates through a few-electron quantum dot

Determination of the tunnel rates through a few-electron quantum dot Determination of the tunnel rates through a few-electron quantum dot R. Hanson 1,I.T.Vink 1, D.P. DiVincenzo 2, L.M.K. Vandersypen 1, J.M. Elzerman 1, L.H. Willems van Beveren 1 and L.P. Kouwenhoven 1

More information

Mesoscopic physics: normal metals, ferromagnets, and magnetic semiconductors

Mesoscopic physics: normal metals, ferromagnets, and magnetic semiconductors Mesoscopic physics: normal metals, ferromagnets, and magnetic semiconductors Douglas Natelson Department of Physics and Astronomy Department of Electrical and Computer Engineering Rice Quantum Institute

More information

Quantum Information Processing with Semiconductor Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

A Tunable Fano System Realized in a Quantum Dot in an Aharonov-Bohm Ring

A Tunable Fano System Realized in a Quantum Dot in an Aharonov-Bohm Ring A Tunable Fano System Realized in a Quantum Dot in an Aharonov-Bohm Ring K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye Institute for Solid State Physics, University of Tokyo, Kashiwanoha, Chiba 277-8581,

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 5 Beforehand Yesterday Today Anderson Localization, Mesoscopic

More information

Title. examples of interplay of interactions and interference. Coulomb Blockade as a Probe of Interactions in Nanostructures

Title. examples of interplay of interactions and interference. Coulomb Blockade as a Probe of Interactions in Nanostructures Coulomb Blockade as a Probe of Interactions in Nanostructures Title Harold U. Baranger, Duke University Introduction: examples of interplay of interactions and interference We need a tool the Coulomb blockade

More information

Coherent Control of a Single Electron Spin with Electric Fields

Coherent Control of a Single Electron Spin with Electric Fields Coherent Control of a Single Electron Spin with Electric Fields Presented by Charulata Barge Graduate student Zumbühl Group Department of Physics, University of Basel Date:- 9-11-2007 Friday Group Meeting

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

What is Quantum Transport?

What is Quantum Transport? What is Quantum Transport? Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, U.S.A. http://www.physics.udel.edu/~bnikolic Semiclassical Transport (is boring!) Bloch-Boltzmann

More information

Carbon Nanotubes part 2 CNT s s as a toy model for basic science. Niels Bohr Institute School 2005

Carbon Nanotubes part 2 CNT s s as a toy model for basic science. Niels Bohr Institute School 2005 Carbon Nanotubes part 2 CNT s s as a toy model for basic science Niels Bohr Institute School 2005 1 Carbon Nanotubes as a model system 2 Christian Schönenberger University of Basel B. Babic W. Belzig M.

More information

arxiv: v2 [cond-mat.mes-hall] 6 Dec 2018

arxiv: v2 [cond-mat.mes-hall] 6 Dec 2018 Spin splitting and switching effect in a four-terminal two-dimensional electron gas nanostructure Zijiang Wang 1, Jianhong He 1,2, Huazhong Guo 1 1 Laboratory of Mesoscopic and Low Dimensional Physics,

More information

Effects of Quantum-Well Inversion Asymmetry on Electron- Nuclear Spin Coupling in the Fractional Quantum Hall Regime

Effects of Quantum-Well Inversion Asymmetry on Electron- Nuclear Spin Coupling in the Fractional Quantum Hall Regime Effects of Quantum-Well Inversion Asymmetry on Electron- Nuclear Spin Coupling in the Fractional Quantum Hall Regime Katsushi Hashimoto,,2,a Koji Muraki,,b Norio Kumada, Tadashi Saku, 3 and Yoshiro Hirayama,2

More information

Single Electron Tunneling Examples

Single Electron Tunneling Examples Single Electron Tunneling Examples Danny Porath 2002 (Schönenberger et. al.) It has long been an axiom of mine that the little things are infinitely the most important Sir Arthur Conan Doyle Books and

More information

Spin-Polarized Current in Coulomb Blockade and Kondo Regime

Spin-Polarized Current in Coulomb Blockade and Kondo Regime Vol. 112 (2007) ACTA PHYSICA POLONICA A No. 2 Proceedings of the XXXVI International School of Semiconducting Compounds, Jaszowiec 2007 Spin-Polarized Current in Coulomb Blockade and Kondo Regime P. Ogrodnik

More information

Distinct Signatures for Coulomb Blockade and Aharonov-Bohm Interference in Electronic Fabry-Perot Interferometers

Distinct Signatures for Coulomb Blockade and Aharonov-Bohm Interference in Electronic Fabry-Perot Interferometers Distinct Signatures for Coulomb lockade and Aharonov-ohm Interference in Electronic Fabry-Perot Interferometers The Harvard community has made this article openly available. Please share how this access

More information

Controlling Spin Qubits in Quantum Dots. C. M. Marcus Harvard University

Controlling Spin Qubits in Quantum Dots. C. M. Marcus Harvard University Controlling Spin Qubits in Quantum Dots C. M. Marcus Harvard University 1 Controlling Spin Qubits in Quantum Dots C. M. Marcus Harvard University GaAs Experiments: David Reilly (Univ. Sydney) Edward Laird

More information

NANOESTRUCTURAS V Escuela Nacional de Física de la Materia Condensada

NANOESTRUCTURAS V Escuela Nacional de Física de la Materia Condensada NANOESTRUCTURAS V Escuela Nacional de Física de la Materia Condensada Parte I Sergio E. Ulloa Department of Physics and Astronomy, CMSS, and Nanoscale and Quantum Phenomena Institute Ohio University, Athens,

More information

DECOHERENCE AND ADIABATIC TRANSPORT IN SEMICONDUCTOR QUANTUM DOTS

DECOHERENCE AND ADIABATIC TRANSPORT IN SEMICONDUCTOR QUANTUM DOTS DECOHERENCE AND ADIABATIC TRANSPORT IN SEMICONDUCTOR QUANTUM DOTS a dissertation submitted to the department of physics and the committee on graduate studies of stanford university in partial fulfillment

More information

Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique

Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique GDR Physique Quantique Mésoscopique, Aussois, 19-22 mars 2007 Simon Gustavsson Matthias Studer Renaud Leturcq Barbara Simovic

More information

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 Kondo Effect in Metals and Quantum Dots Jan von Delft

More information

Lecture 2 2D Electrons in Excited Landau Levels

Lecture 2 2D Electrons in Excited Landau Levels Lecture 2 2D Electrons in Excited Landau Levels What is the Ground State of an Electron Gas? lower density Wigner Two Dimensional Electrons at High Magnetic Fields E Landau levels N=2 N=1 N= Hartree-Fock

More information

Spin Filtering: how to write and read quantum information on mobile qubits

Spin Filtering: how to write and read quantum information on mobile qubits Spin Filtering: how to write and read quantum information on mobile qubits Amnon Aharony Physics Department and Ilse Katz Nano institute Ora Entin-Wohlman (BGU), Guy Cohen (BGU) Yasuhiro Tokura (NTT) Shingo

More information

Charging and Kondo Effects in an Antidot in the Quantum Hall Regime

Charging and Kondo Effects in an Antidot in the Quantum Hall Regime Semiconductor Physics Group Cavendish Laboratory University of Cambridge Charging and Kondo Effects in an Antidot in the Quantum Hall Regime M. Kataoka C. J. B. Ford M. Y. Simmons D. A. Ritchie University

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Collapse of superconductivity in a hybrid tin graphene Josephson junction array by Zheng Han et al. SUPPLEMENTARY INFORMATION 1. Determination of the electronic mobility of graphene. 1.a extraction from

More information

TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES

TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES 1) Berry curvature in superlattice bands 2) Energy scales for Moire superlattices 3) Spin-Hall effect in graphene Leonid Levitov (MIT) @ ISSP U Tokyo MIT Manchester

More information

Electrical Control of the Kondo Effect at the Edge of a Quantum Spin Hall System

Electrical Control of the Kondo Effect at the Edge of a Quantum Spin Hall System Correlations and coherence in quantum systems Évora, Portugal, October 11 2012 Electrical Control of the Kondo Effect at the Edge of a Quantum Spin Hall System Erik Eriksson (University of Gothenburg)

More information

Quantum Dot Spin QuBits

Quantum Dot Spin QuBits QSIT Student Presentations Quantum Dot Spin QuBits Quantum Devices for Information Technology Outline I. Double Quantum Dot S II. The Logical Qubit T 0 III. Experiments I. Double Quantum Dot 1. Reminder

More information

arxiv: v2 [cond-mat.mes-hall] 12 Aug 2008

arxiv: v2 [cond-mat.mes-hall] 12 Aug 2008 Giant fluctuations and gate control of the g-factor in InAs arxiv:0808.1492v2 [cond-mat.mes-hall] 12 Aug 2008 Nanowire Quantum Dots August 12, 2008 S. Csonka 1, L. Hofstetter, F. Freitag, S. Oberholzer

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

8.513 Lecture 14. Coherent backscattering Weak localization Aharonov-Bohm effect

8.513 Lecture 14. Coherent backscattering Weak localization Aharonov-Bohm effect 8.513 Lecture 14 Coherent backscattering Weak localization Aharonov-Bohm effect Light diffusion; Speckle patterns; Speckles in coherent backscattering phase-averaged Coherent backscattering Contribution

More information

QUANTUM INTERFERENCE IN SEMICONDUCTOR RINGS

QUANTUM INTERFERENCE IN SEMICONDUCTOR RINGS QUANTUM INTERFERENCE IN SEMICONDUCTOR RINGS PhD theses Orsolya Kálmán Supervisors: Dr. Mihály Benedict Dr. Péter Földi University of Szeged Faculty of Science and Informatics Doctoral School in Physics

More information

This is a repository copy of Coulomb blockade directional coupler.

This is a repository copy of Coulomb blockade directional coupler. This is a repository copy of Coulomb blockade directional coupler. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/88071/ Version: Accepted Version Article: Pingue, P., Piazza,

More information

Effects of Interactions in Suspended Graphene

Effects of Interactions in Suspended Graphene Effects of Interactions in Suspended Graphene Ben Feldman, Andrei Levin, Amir Yacoby, Harvard University Broken and unbroken symmetries in the lowest LL: spin and valley symmetries. FQHE Discussions with

More information

Nuclear spin spectroscopy for semiconductor hetero and nano structures

Nuclear spin spectroscopy for semiconductor hetero and nano structures (Interaction and Nanostructural Effects in Low-Dimensional Systems) November 16th, Kyoto, Japan Nuclear spin spectroscopy for semiconductor hetero and nano structures Yoshiro Hirayama Tohoku University

More information

Single Electron Spin in Interacting Nuclear Spin Bath Coherence Loss and Restoration

Single Electron Spin in Interacting Nuclear Spin Bath Coherence Loss and Restoration Asilomar, CA, June 6 th, 2007 Single Electron Spin in Interacting Nuclear Spin Bath Coherence Loss and Restoration Wang Yao Department of Physics, University of Texas, Austin Collaborated with: L. J. Sham

More information

Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh. Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu

Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh. Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu Introduction: The Kondo effect in metals de Haas, de Boer

More information

Interference: from quantum mechanics to nanotechnology

Interference: from quantum mechanics to nanotechnology Interference: from quantum mechanics to nanotechnology Andrea Donarini L. de Broglie P. M. A. Dirac A photon interferes only with itself Double slit experiment: (London, 1801) T. Young Phil. Trans. R.

More information

Physics of Semiconductors

Physics of Semiconductors Physics of Semiconductors 13 th 2016.7.11 Shingo Katsumoto Department of Physics and Institute for Solid State Physics University of Tokyo Outline today Laughlin s justification Spintronics Two current

More information

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Luis Dias UT/ORNL Lectures: Condensed Matter II 1 Electronic Transport

More information

Supplementary Information for Pseudospin Resolved Transport Spectroscopy of the Kondo Effect in a Double Quantum Dot. D2 V exc I

Supplementary Information for Pseudospin Resolved Transport Spectroscopy of the Kondo Effect in a Double Quantum Dot. D2 V exc I Supplementary Information for Pseudospin Resolved Transport Spectroscopy of the Kondo Effect in a Double Quantum Dot S. Amasha, 1 A. J. Keller, 1 I. G. Rau, 2, A. Carmi, 3 J. A. Katine, 4 H. Shtrikman,

More information

Quantum mechanical complementarity probed in a closed-loop Aharonov-Bohm interferometer

Quantum mechanical complementarity probed in a closed-loop Aharonov-Bohm interferometer Quantum mechanical complementarity probed in a closed-loop Aharonov-Bohm interferometer Dong-In Chang 1, Gyong Luck Khym 1,2, Kicheon Kang 2, Yunchul Chung 3, Hu-Jong Lee 1,4, Minky Seo 3, Moty Heiblum

More information

Ballistic Electron Spectroscopy of Quantum Mechanical Anti-reflection Coatings for GaAs/AlGaAs Superlattices

Ballistic Electron Spectroscopy of Quantum Mechanical Anti-reflection Coatings for GaAs/AlGaAs Superlattices Ballistic Electron Spectroscopy of Quantum Mechanical Anti-reflection Coatings for GaAs/AlGaAs Superlattices C. Pacher, M. Kast, C. Coquelin, G. Fasching, G. Strasser, E. Gornik Institut für Festkörperelektronik,

More information

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik Majorana single-charge transistor Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Majorana nanowires: Two-terminal device: Majorana singlecharge

More information

Spin blockade in ground state resonance of a quantum dot

Spin blockade in ground state resonance of a quantum dot Europhysics Letters PREPRINT Spin blockade in ground state resonance of a quantum dot A. K. Hüttel 1,H.Qin 1,A.W.Holleitner 1,R.H.Blick 1, K. Neumaier, D. Weinmann 3,K.Eberl 4 and J. P. Kotthaus 1 1 Center

More information

SPIN-POLARIZED CURRENT IN A MAGNETIC TUNNEL JUNCTION: MESOSCOPIC DIODE BASED ON A QUANTUM DOT

SPIN-POLARIZED CURRENT IN A MAGNETIC TUNNEL JUNCTION: MESOSCOPIC DIODE BASED ON A QUANTUM DOT 66 Rev.Adv.Mater.Sci. 14(2007) 66-70 W. Rudziński SPIN-POLARIZED CURRENT IN A MAGNETIC TUNNEL JUNCTION: MESOSCOPIC DIODE BASED ON A QUANTUM DOT W. Rudziński Department of Physics, Adam Mickiewicz University,

More information

Spring 2009 EE 710: Nanoscience and Engineering

Spring 2009 EE 710: Nanoscience and Engineering Spring 009 EE 710: Nanoscience and Engineering Part 8: Sprintronics Images and figures supplied from Goddard, et.al, Handbook of Nanoscience, Engineering, and Technology, CRC Press, 004 and other refereed

More information

Rashba spin-orbit coupling in the oxide 2D structures: The KTaO 3 (001) Surface

Rashba spin-orbit coupling in the oxide 2D structures: The KTaO 3 (001) Surface Rashba spin-orbit coupling in the oxide 2D structures: The KTaO 3 (001) Surface Sashi Satpathy Department of Physics University of Missouri, Columbia, USA E Ref: K. V. Shanavas and S. Satpathy, Phys. Rev.

More information

collaboration D. G. Austing (NTT BRL, moved to NRC) Y. Tokura (NTT BRL) Y. Hirayama (NTT BRL, CREST-JST) S. Tarucha (Univ. of Tokyo, NTT BRL,

collaboration D. G. Austing (NTT BRL, moved to NRC) Y. Tokura (NTT BRL) Y. Hirayama (NTT BRL, CREST-JST) S. Tarucha (Univ. of Tokyo, NTT BRL, This is the viewgraph with the recorded talk at the 26th International Conference on Physics of Semiconductor (ICPS26, Edinburgh, 22). By clicking the upper-left button in each page, you can hear the talk

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 25 Jun 1999

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 25 Jun 1999 CHARGE RELAXATION IN THE PRESENCE OF SHOT NOISE IN COULOMB COUPLED MESOSCOPIC SYSTEMS arxiv:cond-mat/9906386v1 [cond-mat.mes-hall] 25 Jun 1999 MARKUS BÜTTIKER Département de Physique Théorique, Université

More information

Exotic Kondo effects in nanostructures

Exotic Kondo effects in nanostructures Exotic Kondo effects in nanostructures S. Florens Ne el Institute - CNRS Grenoble e d 1.0 NRG S=1 A(E,B,T=0) A(E,B,T=0) 1.0 NRG S=1/2 0.8 0.6 0.8 0.6 0.4 0.4-1.0 0.0 E/kBTK 1.0-1.0 0.0 E/kBTK 1.0 Some

More information

Supporting Information for Quantized Conductance and Large g-factor Anisotropy in InSb Quantum Point Contacts

Supporting Information for Quantized Conductance and Large g-factor Anisotropy in InSb Quantum Point Contacts Supporting Information for Quantized Conductance and Large g-factor Anisotropy in InSb Quantum Point Contacts Fanming Qu, Jasper van Veen, Folkert K. de Vries, Arjan J. A. Beukman, Michael Wimmer, Wei

More information

Semiclassical formulation

Semiclassical formulation The story so far: Transport coefficients relate current densities and electric fields (currents and voltages). Can define differential transport coefficients + mobility. Drude picture: treat electrons

More information

Quantum physics in quantum dots

Quantum physics in quantum dots Quantum physics in quantum dots Klaus Ensslin Solid State Physics Zürich AFM nanolithography Multi-terminal tunneling Rings and dots Time-resolved charge detection Moore s Law Transistors per chip 10 9

More information

Weakly-coupled quasi-1d helical modes in disordered 3D topological insulator quantum wires

Weakly-coupled quasi-1d helical modes in disordered 3D topological insulator quantum wires Weakly-coupled quasi-1d helical modes in disordered 3D topological insulator quantum wires J. Dufouleur, 1 L. Veyrat, 1 B. Dassonneville, 1 E. Xypakis, 2 J. H. Bardarson, 2 C. Nowka, 1 S. Hampel, 1 J.

More information

Quantum coherent transport in Meso- and Nanoscopic Systems

Quantum coherent transport in Meso- and Nanoscopic Systems Quantum coherent transport in Meso- and Nanoscopic Systems Philippe Jacquod pjacquod@physics.arizona.edu U of Arizona http://www.physics.arizona.edu/~pjacquod/ Quantum coherent transport Outline Quantum

More information

Berry Phase Effects on Charge and Spin Transport

Berry Phase Effects on Charge and Spin Transport Berry Phase Effects on Charge and Spin Transport Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Shengyuan Yang, C.P. Chuu, D. Xiao, W. Yao, D. Culcer, J.R.Shi, Y.G. Yao, G. Sundaram, M.C.

More information

Many-body resonances in double quantum-dot systems

Many-body resonances in double quantum-dot systems Many-body resonances in double quantum-dot systems Akinori Nishino Kanagawa University Collaborators Naomichi Hatano IIS, University of Tokyo Takashi Imamura RCAST, University of Tokyo Gonzalo Ordonez

More information

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2 Silicon Spintronics Saroj P. Dash Chalmers University of Technology Microtechnology and Nanoscience-MC2 Göteborg, Sweden Acknowledgement Nth Netherlands University of Technology Sweden Mr. A. Dankert Dr.

More information

Interacting Electrons in Disordered Quantum Wires: Localization and Dephasing. Alexander D. Mirlin

Interacting Electrons in Disordered Quantum Wires: Localization and Dephasing. Alexander D. Mirlin Interacting Electrons in Disordered Quantum Wires: Localization and Dephasing Alexander D. Mirlin Forschungszentrum Karlsruhe & Universität Karlsruhe, Germany I.V. Gornyi, D.G. Polyakov (Forschungszentrum

More information

arxiv:cond-mat/ v3 [cond-mat.mes-hall] 19 Mar 2005

arxiv:cond-mat/ v3 [cond-mat.mes-hall] 19 Mar 2005 Kondo-temperature dependence of the Kondo splitting in a single-electron transistor S. Amasha, 1 I. J. Gelfand, M. A. Kastner, 1, and A. Kogan 1, 1 Department of Physics, Massachusetts Institute of Technology,

More information

Electron Spin Transport in Quantum Dots and Point Contacts

Electron Spin Transport in Quantum Dots and Point Contacts Electron Spin Transport in Quantum Dots and Point Contacts Zernike Institute PhD thesis series 2008-22 ISSN: 1570-1530 ISBN: 978-90-367-3530-8 (printed version) ISBN: 978-90-367-3529-2 (electronic version)

More information

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg Laurens W. Molenkamp Physikalisches Institut, EP3 Universität Würzburg Onsager Coefficients I electric current density J particle current density J Q heat flux, heat current density µ chemical potential

More information

Quantum Transport in Disordered Topological Insulators

Quantum Transport in Disordered Topological Insulators Quantum Transport in Disordered Topological Insulators Vincent Sacksteder IV, Royal Holloway, University of London Quansheng Wu, ETH Zurich Liang Du, University of Texas Austin Tomi Ohtsuki and Koji Kobayashi,

More information

Scanning gate microscopy and individual control of edge-state transmission through a quantum point contact

Scanning gate microscopy and individual control of edge-state transmission through a quantum point contact Scanning gate microscopy and individual control of edge-state transmission through a quantum point contact Stefan Heun NEST, CNR-INFM and Scuola Normale Superiore, Pisa, Italy Coworkers NEST, Pisa, Italy:

More information

Anisotropic spin splitting in InGaAs wire structures

Anisotropic spin splitting in InGaAs wire structures Available online at www.sciencedirect.com Physics Physics Procedia Procedia 3 (010) 00 (009) 155 159 000 000 14 th International Conference on Narrow Gap Semiconductors and Systems Anisotropic spin splitting

More information

Broken Symmetry States and Divergent Resistance in Suspended Bilayer Graphene

Broken Symmetry States and Divergent Resistance in Suspended Bilayer Graphene Broken Symmetry States and Divergent Resistance in Suspended Bilayer Graphene The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

More information

single-electron electron tunneling (SET)

single-electron electron tunneling (SET) single-electron electron tunneling (SET) classical dots (SET islands): level spacing is NOT important; only the charging energy (=classical effect, many electrons on the island) quantum dots: : level spacing

More information

Impact of disorder and topology in two dimensional systems at low carrier densities

Impact of disorder and topology in two dimensional systems at low carrier densities Impact of disorder and topology in two dimensional systems at low carrier densities A Thesis Submitted For the Degree of Doctor of Philosophy in the Faculty of Science by Mohammed Ali Aamir Department

More information

SIGNATURES OF SPIN-ORBIT DRIVEN ELECTRONIC TRANSPORT IN TRANSITION- METAL-OXIDE INTERFACES

SIGNATURES OF SPIN-ORBIT DRIVEN ELECTRONIC TRANSPORT IN TRANSITION- METAL-OXIDE INTERFACES SIGNATURES OF SPIN-ORBIT DRIVEN ELECTRONIC TRANSPORT IN TRANSITION- METAL-OXIDE INTERFACES Nicandro Bovenzi Bad Honnef, 19-22 September 2016 LAO/STO heterostructure: conducting interface between two insulators

More information

Spin and Charge transport in Ferromagnetic Graphene

Spin and Charge transport in Ferromagnetic Graphene Spin and Charge transport in Ferromagnetic Graphene Hosein Cheraghchi School of Physics, Damghan University Recent Progress in D Systems, Oct, 4, IPM Outline: Graphene Spintronics Background on graphene

More information

Spin Superfluidity and Graphene in a Strong Magnetic Field

Spin Superfluidity and Graphene in a Strong Magnetic Field Spin Superfluidity and Graphene in a Strong Magnetic Field by B. I. Halperin Nano-QT 2016 Kyiv October 11, 2016 Based on work with So Takei (CUNY), Yaroslav Tserkovnyak (UCLA), and Amir Yacoby (Harvard)

More information

Topological Quantum Computation with Majorana Zero Modes. Roman Lutchyn. Microsoft Station

Topological Quantum Computation with Majorana Zero Modes. Roman Lutchyn. Microsoft Station Topological Quantum Computation with Majorana Zero Modes Roman Lutchyn Microsoft Station IPAM, 08/28/2018 Outline Majorana zero modes in proximitized nanowires Experimental and material science progress

More information

Mesoscopics with Superconductivity. Philippe Jacquod. U of Arizona. R. Whitney (ILL, Grenoble)

Mesoscopics with Superconductivity. Philippe Jacquod. U of Arizona. R. Whitney (ILL, Grenoble) Mesoscopics with Superconductivity Philippe Jacquod U of Arizona R. Whitney (ILL, Grenoble) Mesoscopics without superconductivity Mesoscopic = between «microscopic» and «macroscopic»; N. van Kampen 81

More information

Phase transitions in Bi-layer quantum Hall systems

Phase transitions in Bi-layer quantum Hall systems Phase transitions in Bi-layer quantum Hall systems Ming-Che Chang Department of Physics Taiwan Normal University Min-Fong Yang Departmant of Physics Tung-Hai University Landau levels Ferromagnetism near

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES SUPPLEMENTARY FIGURES Sheet Resistance [k Ω ] 1.6 1.2.8.4 Sheet Resistance [k Ω ].32.3.28.26.24.22 Vg 1V Vg V (a).1.1.2.2.3 Temperature [K].2 (b) 2 4 6 8 1 12 14 16 18 µ H[Tesla].1 Hall Resistance [k Ω].1.2.3

More information

Coherent nonlinear transport in quantum rings

Coherent nonlinear transport in quantum rings Physica E 35 (26) 327 331 www.elsevier.com/locate/physe Coherent nonlinear transport in quantum rings R. Leturcq a,, R. Bianchetti a, G. Go tz a, T. Ihn a, K. Ensslin a, D.C. Driscoll b, A.C. Gossard b

More information