Carbon Nanotubes part 2 CNT s s as a toy model for basic science. Niels Bohr Institute School 2005

Size: px
Start display at page:

Download "Carbon Nanotubes part 2 CNT s s as a toy model for basic science. Niels Bohr Institute School 2005"

Transcription

1 Carbon Nanotubes part 2 CNT s s as a toy model for basic science Niels Bohr Institute School

2 Carbon Nanotubes as a model system 2 Christian Schönenberger University of Basel B. Babic W. Belzig M. Buitelaar C. Bruder M. Calame M. Choi J. Furer A. Levy-Yeati M. Gräber C. Hoffmann S. Ifadir T. Kontos T. Nussbaumer S. Sahoo Swiss National Science Foundation national center BBW László Forró Ecole Polytechnique Fédérale de Lausanne R. Egger very fruitful collaboration

3 Basic Science low-dimensional conductor pronounced interaction effects, which can be explored both in 1d and 0d many electron physics as for example: Luttinger liquid behaviour in 1d Kondo physics in 0d 3

4 great hybrid system 4

5 Goodies no Peierls instability suppressed backscattering robust (unlike real molecules) high Young s modulus, low specific weight 5 best conductor on the 1 nm-scale great model system to study physics in 1d and 0d

6 controversial results ballistic at room temperature? 6

7 de Heer s experiment T=300 K they conclude that R < 0.2 kω/μm 7 Frank et al. Science Vol 280, 1744 (98)

8 8 mean-free path >> 1 μm Multiwalled carbon nanotubes can have large elastic scattering length exceeding one micrometer even at room temperature

9 Perpendicular Magnetotransport diffusive or at best quasi-ballistic 9

10 UCF in MWNTs long tube (7.4 μm) agrees with UCF self-averaging for a wire δg ( l / L) ϕ 3/ 2 l ϕ T 1/3 10

11 T~1 limit (SWNTs) 5 mv -5 mv gate voltage V 11 W. Liang et al., Nature 411, p 665 (2001)

12 12 MWNTs (high G limit)

13 SWNT s s <-> < > MWNT s s today SWNT MWNT D. Codben et al. M. Buitelaar et al. SWNTs are not perfect even if claimed by experts SWNT are ballistic and MWNTs are diffusive is a wrong statement ballistic is not the same for all 13

14 Summarizing some facts SWNTs 1d TDOS E F -0.3 ev (tunable) n cm -2 (1 dopant per 10 3 C atoms) #modes = 2 (not counting spin) l mfp > 1 μm D > 10 4 cm 2 /s (v F = 10 6 m/s) μ > 10 5 cm 2 /Vs MWNTs quasi 1d E F -0.3 ev (tunable) n cm -2 (1 dopant per 10 3 C atoms) #modes 10 (not counting spin) l mfp = 10 nm... 1 μm typically 100 nm D ~ 10 3 cm 2 /s (v F = 10 6 m/s) μ 10 4 cm 2 /Vs 14

15 controversial results ballistic at room temperature? intrinsic superconductivity? 15

16 Superconductivity TaAu 16

17 Superconductivity TaAu PtAu 17

18 Spectroscopy multi-wall nanotube 18

19 controversial results ballistic at room temperature? intrinsic superconductivity? is it a Luttinger liquid? 19

20 20 Quantum Dot Physics

21 21 Quantum Dots

22 22 Quantum Dots

23 ( conventional )) Quantum dots planar dot planar double-dot vertical dot 23

24 Quantum Dot? 2 μm 24

25 CNT as a 1d quantum dot 2 μm Γ < δe for any quantum dot 25 Note: if δe < (Γ,eV,kT) transition to wire regime. Note also that there is more to Γ than just the coupling to the leads!

26 Three Regimes (simplified...) ideal quantum dot has: δe easy, if U << Γ resonant tunneling easy, if U >> Γ single-electron tunneling not easy, if U Γ correlated electron transport 26

27 Open Nanotube Dot Γ>> U (Normal Leads) 27

28 T~1 Limit (interaction-free wire) bias voltage 5 mv -5 mv gate voltage V 28 W. Liang et al., Nature 411, p 665 (2001)

29 T~1 Limit (wire) T ( E) = 2 1+ R C + TC 2R cos( Θ + C 2δ R ) Θ = L( k + k ) round-trip phase depends on E I V = e 2 { T ( ev / 2) + T ( ev / 2) } 29 W. Liang et al., Nature 411, p 665 (2001)

30 Fabry-Perot (interference) 5 mv -5 mv their data gate voltage V simple model 30

31 quantum interference L = 800nm d = 1.5 nm J. King et al. PRL 87, (2001) origin of beating? disorder, other tube, second shell, new intrinsic mechanism? 31

32 quantum interference works even for MWNTs 32

33 quantum interference 33 B. Babic et al. (unpublished)

34 Closed Nanotube Dot Γ<< U (Normal Leads) 34

35 Single-Electron Electron-Tunneling if tunneling probability p of each junction is small : N+1 N current determined by accessible levels in dot i.e. by level spacing and Coulomb charging energy uncorrelated sequential tunneling dominates. Current I p 35

36 Tutorial on di/dv Plots V sd (mv) ΔE add add addition energy, i.e. sum of: single-electron charging energy U C V g level-spacing δe 36 Change V sd Change V g

37 even even even odd odd odd filling of states according to S = 1/2 0 1/2... odd number of electrons: ΔΕ add = UC even number of electrons: ΔΕ add = UC + δe 37

38 shell structure δe level spacing N=3 E F shell (shell pattern) K K MWNT s SWNT s Mark Buitelaar et al., PRL 88, (2002) Wenjie Liang et al. PRL 88, (2002) 38

39 state filling as spin pairs B δe δε S = 1/2 0 1/2... g=2 MWNTs Mark Buitelaar et al., PRL 88, (2002) 39

40 Open Nanotube Dot Γ U Correlated Transport (Normal Leads) 40

41 Co-Tunneling if tunneling probability p of each junction is large : if tunneling probability p of each junction is small : uncorrelated sequential tunneling dominates. Current I p coherent 2nd (and higher) order processes add substantially p 2 we call this co-tunneling 41

42 V sd (mv) δe ~ 0.55 mev U C ~ 0.45 mev V g Elastic co-tunneling Inelastic co-tunneling 42

43 V sd (mv) Correlated Transport When the number of electrons on the quantum dot is odd, spin-flip processes (which screen the spin on the dot) lead to the formation of a narrow resonance in the density-of-states at the Fermi energy of the leads. This is called the Kondo effect V g 43 or the Abrikosov Suhl resonance

44 50 mk δe ~ 0.6 mev U C ~ 0.4 mev Γ 0.3 mev 44 Mark Buitelaar et al. PRL 89, (2002)

45 Kondo Effect resistance R(T) of a piece of metal log( T / T K ) conductance G(T) through a single magnetic impurity (e.g. a spin ½ quantum dot) unitary limit 2e 2 /h T K ideal metal, e.g. Au wire superconductor, e.g. Pb magnetic impurities in ideal metal e.g. (ppm)fe:au Kondo system T K 45 from L. Kouwenhoven & L. Glazman, Physics World, June 2001

46 Kondo first Kondo in Nanotubes, what about shell structure? 46 first in CNTs: J.Nygard et al, Nature 408, 342 (2000)

47 Kondo and shell pattern in CVD-grown SWNTs 47

48 Kondo and shell structure in SWNTs B=0 T B=5 T Kondo peak T K = K G(e 2 /h) G(T) ~ -ln(t/t K ) 0.6 T(K) T(K) groundstate? in particular at N=2 48 δe 5 mev U C 5 mev and Γ 0.5 mev B. Babic et al. Phys. Rev. B 70, (2004)

49 N=1,3 ground-state B=0T δe N=1 δe δε δε X 1 =δε V g 2X 1 δε = 0.9 mev δe N=3 δe δε δε 2X 3 δε = 0.8 mev X 3 =δε 49 B. Babic et al. Phys. Rev. B 70, (2004)

50 N=2 ground-state B=0T δe N=2 δe T δε δε X 2 (S)=δε-J 2X 2 V g X 2 = 0.9 mev δe N=2 δe δε δε 2X 3 δε = 0.8 mev X 2 (T)=J-δε J is small, i.e. J < 0.1 mev 50 B. Babic et al. Phys. Rev. B 70, (2004)

51 Kondo effect at N=2? B=0T δe N=2 δe T δε δε X 2 (S)=δε-J V g Why Kondo for N=2? (it has been argued that this is a spin triplet Kondo) key point: the two states S and T can only be distinguished provided that: δε-j > Γ δe δε N=2 δe δε Γ increases (and δe decreases) with larger gate voltage X 2 (T)=J-δε = 51 B. Babic et al. Phys. Rev. B 70, (2004)

52 more in recent literature Phys. Rev. B 71, (2005) 52 Nature 434, 484 (2005)

53 from a quantum dot to an open weak -link 53

54 from charge dot to q-wire T << 1 T <~ 1 T ~ 1 different devices Jespers Nygard, David Cobden and Poul-Eric Lindelof

55 from CB to Fano 55 B. Babic and C. Schönenberger, cond-mat/

56 what is it? e.g. ionization 56 U. Fano, Phys. Rev. 124, 1866 (1961)

57 interference effect G = G nonres + G res ( ε + q) 2 ε transmisson o o o 57 hybridization via the leads bonding- and antibonding state orbital phase M. L. Ladron de Guevara, et al. Phys. Rev. B, 67, , (2003).

58 resonance 2 58 B. Babic and C. Schönenberger, cond-mat/

59 59 is it intrinsic or extrinsic Fano?

60 60 more?

61 number of possible exp. X NT Y where X,Y = {N,S,F} NT = {m-swnt,s-swnt,mwnt...} = {bad,intermediate,good} amounts to 200 about 14 have been done beyond that, there are additional opportunities, for example: suspended tubes, multiterminal 61 N-NT-N, S-NT-S, F-NT-F

62 Kondo physics and supreconductivity 62

63 Kondo Physics + Superconductivity Kondo effect Superconductivity Al Δ Δ Kondo effect and superconductivity are many-electron effects can Kondo and superconductivity coexist or do they exclude each other? 63

64 Spin 1/2 Kondo + S-LeadsS normal case superconducting case U E F 1. a gap opens in the leads 2. Cooper pairs have S=0 Kondo effect is the screening of the spin-degree of the dot spin by exchange with electrons from Fermi-reservoirs (the leads) Hence: Kondo effect suppressed, but Mark Buitelaar et al. PRL 89, (2002)

65 Kondo effect Superconductivity Δ Δ Cooper pair S = 0 Cooper pair S = 0 Energy scale : ~ k b T K Energy scale : ~ Δ A cross-over expected at k b T K ~ Δ 65 Mark Buitelaar et al. PRL 91, (2003)

66 Kondo <-> > Proximity Kondo effect & Superconductivity 2Δ Energy scale : ~ k b T K Energy scale : ~ Δ A cross-over over at k B T K ~Δ exp.: Phys. Rev. Lett. 89, (2002) 66 plus further theory work: cond-mat/

67 Limiting cases: (Glazman & Matveev JETP Lett. `89): Weak coupling (T K << Δ): strongly suppressed supercurrent [due to Coulomb interaction] Open contact (T K >> Δ): full ballistic supercurrent [transport through Kondo-(Abrikosov-Suhl) resonance] Weak coupling: (Spivak & Kivelson PRB `91) π shift due to interchange of electrons 67

68 NRG results Pair amplitude on dot: π-junction Sign change of pair-amplitude amplitude 0-π transition Open channel limit: (T K >>Δ) Weakly coupled dot: (T K < Δ) Choi et al., cond-mat/

69 phase diffusion model resistively & capacitively shunted Josephson junction: overdamped limit: β c < 1 C E J R Relation between resistance and supercurrent: theory experiment Δ = 0.1 mev or 1.16 K Buitelaar et al. PRL 88, (2002) 69 Choi et al., cond-mat/

70 MAR in a q-dotq another recent result 70

71 MAR in a Quantum Dot experiment theory di/dv sd 2Δ di/dv sd dot level (center) 2Δ/ 2 2Δ/ 3 2Δ/ 4 V gate V sd Multiple Andreev Reflection (MAR) trough a single level 71 M. Buitelaar et al. Phys. Rev. Lett. 91, (2003)

72 72 more?

73 number of possible exp. X NT Y where X,Y = {N,S,F} NT = {m-swnt,s-swnt,mwnt...} = {bad,intermediate,good} amounts to 200 about 14 have been done beyond that, there are additional opportunities, for example: suspended tubes, multiterminal 73 N-NT-N, S-NT-S, F-NT-F

74 NT-Spintronics NT H 63 Pd PdNi PdNi Pd TMR V g R (kω) S = -2%/T -0.2%/T 200 nm TMR + 3.8% + 2.9% 0.0 V -3.1 V %/T -0.2%/T - 3.1% - 3.5% -5.0 V -3.3 V H (T) 74

75 NT-Spintronics G (e 2 /h) TMR (%) experiment 1 theory V g (V) T = 1.85K 75

76 NT-Spintronics 76

77 77 many thanks to

78 this should be clear now, right! our nanotubes have such a diameter! voilà, here is the prove! 78

79 Kondo physics and supreconductivity 79

80 Q-dot between S-contacts Device parameters: Leads Al/Au bilayers: 135/45nm T c ~1.2K Distance between electrodes: 250nm Length of CNT: 1.5 mm 250

81 V sd (mv) ΔE ~ 0.55 mev U C ~ 0.45 mev V g Elastic co-tunneling Inelastic co-tunneling

82 results: normal contacts 50 mk ΔE ~ 0.6 mev UC ~ 0.4 mev Γ 0.3 mev Transport through single levels Coulomb blockade diamonds conductance ~e 2 /h! good contacts Zero bias anomaly for odd number of electrons Kondo effect Buitelaar, Nussbaumer, Schönenberger, PRL 89, (2002)

83 Experimental results: superconducting contacts N Kondo ridge A : 0.75 K Kondo ridge B : 1.11 K V g Kondo ridge C : 0.96 K S A: decreasing conductance B: increasing conductance C: decreasing conductance V g Questions: Origin of fine structure? Zero-bias conductance? Buitelaar, Belzig, Nussbaumer, Babic, Bruder, Schönenberger PRL 91, (2003)

84 cross-over over & supercurrent Kondo effect Superconductivity 2Δ Energy scale : ~ k b T K S = 0 Cooper pair Energy scale : ~ Δ S = 0 A cross-over over expected at k B T K ~Δ

85 Phys. Rev. Lett. 89, (2002) cross-over over

86 different Kondo temperatures T K =0.71 K T K =0.96 K T K =1.11 K T K =1.86 K

87 Low TK High TK normal state superconducting state Δ = 0.1 mev or 1.16 K Buitelaar et al. PRL 88, (2002)

88 Limiting cases: (Glazman & Matveev JETP Lett. `89): Weak coupling (T K < Δ): strongly suppressed supercurrent [due to Coulomb interaction] Open contact (T K > Δ): full ballistic supercurrent [transport through Kondo-(Abrikosov-Suhl) resonance] Weak coupling: (Spivak & Kivelson PRB `91) π shift due to interchange of electrons

89 NRG results Pair amplitude on dot: π-junction Sign change of pair-amplitude amplitude 0-π transition Open channel limit: (T K >>Δ) Weakly coupled dot: (T K < Δ) Choi et al., cond-mat/

90 phase diffusion model resistively & capacitively shunted Josephson junction: overdamped limit: β c < 1 C E J R Relation between resistance and supercurrent: theory experiment Δ = 0.1 mev or 1.16 K Buitelaar et al. PRL 88, (2002) Choi et al., cond-mat/

91 I V B S-CNT-N Aluminum Gold V G M.R. Buitelaar et al., PRL 88, (2002) & PRL 89, (2002)

92 Electrical Transport Bias Voltage (mv) V sd [mv] T = 90 mk Gate Voltage (V) N-1 O N N+1 E M. Gräber et al. (unpublished) V gate [V] Gate Voltage (V) Conductance (e 2 / h) Conductance (e 2 / h) B = 25 mt, T = 90 mk B = 0 mt, T = 90 mk B = 25 mt, T = 90 mk Bias Voltage (mv) Ridge A T K ~ 0.8 K Bias Voltage (mv) Ridge A T K ~ 0.8 K

93 Kondo (N-S-case) B = 0 mt, T = 90 mk B = 25 mt, T = 90 mk Ridge A T K ~ 0.8 K N LDOS S Conductance (e 2 / h) μ Ν k B T K 2Δ 1.00 Bias Voltage (mv) 0.75 Bias Voltage (mv) Gate Voltage (V) M. Gräber et al. (unpublished)

94 MAR in a q-dotq another recent result 94

95 95 finite bias structure

96 finite bias structure Andreev reflection 96

97 finite bias structure multiple Andreev reflection (MAR) 97

98 MAR has been explored in weak links and in single atom contacts (break junctions) theory: Cuevas et al. PRB 54, 7366 (99) 98

99 MAR has been explored in weak links and in single atom contacts (break junctions) but not in quantum dots dot level dot level Γ Δ (Γ 3Δ) 99

100 100 theory (non-interacting)

101 101 2Δ/2 2Δ/3

102 2Δ 2Δ/ 2 2Δ/ 3 2Δ/ 4 102

103 experiment theory 103

104 experiment 104 theory

Carbon Nanotube Quantum Dot with Superconducting Leads. Kondo Effect and Andreev Reflection in CNT s

Carbon Nanotube Quantum Dot with Superconducting Leads. Kondo Effect and Andreev Reflection in CNT s Carbon Nanotube Quantum Dot with Superconducting Leads Kondo Effect and Andreev Reflection in CNT s Motivation Motivation S NT S Orsay group: reported enhanced I C R N product S A. Yu. Kasumov et al. N

More information

Single Electron Tunneling Examples

Single Electron Tunneling Examples Single Electron Tunneling Examples Danny Porath 2002 (Schönenberger et. al.) It has long been an axiom of mine that the little things are infinitely the most important Sir Arthur Conan Doyle Books and

More information

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures Kondo Effects in Metals: magnetic impurities

More information

Superconducting properties of carbon nanotubes

Superconducting properties of carbon nanotubes Superconducting properties of carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf A. De Martino, F. Siano Overview Superconductivity in ropes of nanotubes

More information

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Nadya Mason Travis Dirk, Yung-Fu Chen, Cesar Chialvo Taylor Hughes, Siddhartha Lal, Bruno Uchoa Paul Goldbart University

More information

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot A. Kumar, M. Gaim, D. Steininger, A. Levy Yeyati, A. Martín-Rodero, A. K. Hüttel, and C. Strunk Phys. Rev. B 89,

More information

single-electron electron tunneling (SET)

single-electron electron tunneling (SET) single-electron electron tunneling (SET) classical dots (SET islands): level spacing is NOT important; only the charging energy (=classical effect, many electrons on the island) quantum dots: : level spacing

More information

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble The Nanotube SQUID J.-P. Cleuziou,, Th. Ondarçuhu uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble Outline Sample fabrication Proximity effect in CNT The CNT superconducting

More information

Charges and Spins in Quantum Dots

Charges and Spins in Quantum Dots Charges and Spins in Quantum Dots L.I. Glazman Yale University Chernogolovka 2007 Outline Confined (0D) Fermi liquid: Electron-electron interaction and ground state properties of a quantum dot Confined

More information

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate transport through the single molecule magnet Mn12 Herre van der Zant H.B. Heersche, Z. de Groot (Delft) C. Romeike, M. Wegewijs (RWTH Aachen) D. Barreca, E. Tondello (Padova) L. Zobbi, A. Cornia (Modena)

More information

Supplementary Information

Supplementary Information Supplementary Information Quantum supercurrent transistors in carbon nanotubes Pablo Jarillo-Herrero, Jorden A. van Dam, Leo P. Kouwenhoven Device Fabrication The nanotubes were grown by chemical vapour

More information

METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT

METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT S. Krompiewski Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland OUTLINE 1. Introductory

More information

Cotunneling and Kondo effect in quantum dots. Part I/II

Cotunneling and Kondo effect in quantum dots. Part I/II & NSC Cotunneling and Kondo effect in quantum dots Part I/II Jens Paaske The Niels Bohr Institute & Nano-Science Center Bad Honnef, September, 2010 Dias 1 Lecture plan Part I 1. Basics of Coulomb blockade

More information

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik Majorana single-charge transistor Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Majorana nanowires: Two-terminal device: Majorana singlecharge

More information

Effet Kondo dans les nanostructures: Morceaux choisis

Effet Kondo dans les nanostructures: Morceaux choisis Effet Kondo dans les nanostructures: Morceaux choisis Pascal SIMON Rencontre du GDR Méso: Aussois du 05 au 08 Octobre 2009 OUTLINE I. The traditional (old-fashioned?) Kondo effect II. Direct access to

More information

QUANTUM TRANSPORT IN BOTTOM-UP SEMICONDUCTOR NANOSTRUCTURES

QUANTUM TRANSPORT IN BOTTOM-UP SEMICONDUCTOR NANOSTRUCTURES QUANTUM TRANSPORT IN BOTTOM-UP SEMICONDUCTOR NANOSTRUCTURES Silvano De Franceschi INAC/SPSMS/LaTEQS: Laboratory of quantum electron transport and superconductivity http://www-drfmc.cea.fr/pisp/55/silvano.de_franceschi.html

More information

The Physics of Nanoelectronics

The Physics of Nanoelectronics The Physics of Nanoelectronics Transport and Fluctuation Phenomena at Low Temperatures Tero T. Heikkilä Low Temperature Laboratory, Aalto University, Finland OXFORD UNIVERSITY PRESS Contents List of symbols

More information

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg Laurens W. Molenkamp Physikalisches Institut, EP3 Universität Würzburg Onsager Coefficients I electric current density J particle current density J Q heat flux, heat current density µ chemical potential

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Coulomb Blockade and Kondo Effect in Nanostructures

Coulomb Blockade and Kondo Effect in Nanostructures Coulomb Blockade and Kondo Effect in Nanostructures Marcin M. Wysokioski 1,2 1 Institute of Physics Albert-Ludwigs-Universität Freiburg 2 Institute of Physics Jagiellonian University, Cracow, Poland 2.VI.2010

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat, and R. Deblock Laboratoire de Physique des Solides Orsay (France) Theory : P. Simon (LPS),

More information

Electronic transport in low dimensional systems

Electronic transport in low dimensional systems Electronic transport in low dimensional systems For example: 2D system l

More information

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 23 Jun 2004

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 23 Jun 2004 Observation of Fano-Resonances in Single-Wall Carbon Nanotubes arxiv:cond-mat/0406571v1 [cond-mat.mtrl-sci] 23 Jun 2004 B. Babić and C. Schönenberger Institut für Physik, Universität Basel, Klingelbergstr.

More information

Electrical and Optical Properties. H.Hofmann

Electrical and Optical Properties. H.Hofmann Introduction to Nanomaterials Electrical and Optical Properties H.Hofmann Electrical Properties Ohm: G= σw/l where is the length of the conductor, measured in meters [m], A is the cross-section area of

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Nov 2001

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Nov 2001 Published in: Single-Electron Tunneling and Mesoscopic Devices, edited by H. Koch and H. Lübbig (Springer, Berlin, 1992): pp. 175 179. arxiv:cond-mat/0111505v1 [cond-mat.mes-hall] 27 Nov 2001 Resonant

More information

Intrinsic Charge Fluctuations and Nuclear Spin Order in GaAs Nanostructures

Intrinsic Charge Fluctuations and Nuclear Spin Order in GaAs Nanostructures Physics Department, University of Basel Intrinsic Charge Fluctuations and Nuclear Spin Order in GaAs Nanostructures Dominik Zumbühl Department of Physics, University of Basel Basel QC2 Center and Swiss

More information

Quantum Noise Measurement of a Carbon Nanotube Quantum dot in the Kondo Regime

Quantum Noise Measurement of a Carbon Nanotube Quantum dot in the Kondo Regime Quantum Noise Measurement of a Carbon Nanotube Quantum dot in the Kondo Regime J. Basset, 1 A.Yu. Kasumov, 1 C.P. Moca, G. Zarand,, 3 P. Simon, 1 H. Bouchiat, 1 and R. Deblock 1 1 Laboratoire de Physique

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 22 Aug 2006

arxiv:cond-mat/ v1 [cond-mat.supr-con] 22 Aug 2006 Gate-controlled superconductivity in diffusive multiwalled carbon nanotube arxiv:cond-mat/0608479v1 [cond-mat.supr-con] 22 Aug 2006 T. Tsuneta 1, L. Lechner 1,2, and P. J. Hakonen 1 1 Low Temperature Laboratory,

More information

Single Electron Transistor (SET)

Single Electron Transistor (SET) Single Electron Transistor (SET) e - e - dot C g V g A single electron transistor is similar to a normal transistor (below), except 1) the channel is replaced by a small dot. 2) the dot is separated from

More information

The Role of Spin in Ballistic-Mesoscopic Transport

The Role of Spin in Ballistic-Mesoscopic Transport The Role of Spin in Ballistic-Mesoscopic Transport INT Program Chaos and Interactions: From Nuclei to Quantum Dots Seattle, WA 8/12/2 CM Marcus, Harvard University Supported by ARO-MURI, DARPA, NSF Spin-Orbit

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Collapse of superconductivity in a hybrid tin graphene Josephson junction array by Zheng Han et al. SUPPLEMENTARY INFORMATION 1. Determination of the electronic mobility of graphene. 1.a extraction from

More information

Three-terminal quantum-dot thermoelectrics

Three-terminal quantum-dot thermoelectrics Three-terminal quantum-dot thermoelectrics Björn Sothmann Université de Genève Collaborators: R. Sánchez, A. N. Jordan, M. Büttiker 5.11.2013 Outline Introduction Quantum dots and Coulomb blockade Quantum

More information

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Luis Dias UT/ORNL Lectures: Condensed Matter II 1 Electronic Transport

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 2 Mar 2007

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 2 Mar 2007 Even-odd effect in Andreev Transport through a Carbon Nanotube Quantum Dot arxiv:cond-mat/0703082v1 [cond-mat.mes-hall] 2 Mar 2007 A. Eichler, M. Weiss, S. Oberholzer, and C. Schönenberger Institut für

More information

Carbon based Nanoscale Electronics

Carbon based Nanoscale Electronics Carbon based Nanoscale Electronics 09 02 200802 2008 ME class Outline driving force for the carbon nanomaterial electronic properties of fullerene exploration of electronic carbon nanotube gold rush of

More information

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Michael Ruby, Nino Hatter, Benjamin Heinrich Falko Pientka, Yang Peng, Felix von Oppen, Nacho Pascual, Katharina

More information

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab Nanoscience, MCC026 2nd quarter, fall 2012 Quantum Transport, Lecture 1/2 Tomas Löfwander Applied Quantum Physics Lab Quantum Transport Nanoscience: Quantum transport: control and making of useful things

More information

Manipulation of Majorana fermions via single charge control

Manipulation of Majorana fermions via single charge control Manipulation of Majorana fermions via single charge control Karsten Flensberg Niels Bohr Institute University of Copenhagen Superconducting hybrids: from conventional to exotic, Villard de Lans, France,

More information

Coulomb blockade and single electron tunnelling

Coulomb blockade and single electron tunnelling Coulomb blockade and single electron tunnelling Andrea Donarini Institute of theoretical physics, University of Regensburg Three terminal device Source System Drain Gate Variation of the electrostatic

More information

Nonlocal transport properties due to Andreev scattering

Nonlocal transport properties due to Andreev scattering Charles Univ. in Prague, 5 X 2015 Nonlocal transport properties due to Andreev scattering Tadeusz Domański Marie Curie-Skłodowska University, Lublin, Poland http://kft.umcs.lublin.pl/doman/lectures Outline

More information

Odd-Frequency Pairing in Superconducting Heterostructures

Odd-Frequency Pairing in Superconducting Heterostructures Odd-Frequency Pairing in Superconducting Heterostructures Alexander Golubov Twente University, The Netherlands Y. Tanaka Nagoya University, Japan Y. Asano Hokkaido University, Japan S. Kawabata AIST, Tsukuba,

More information

Chapter 8: Coulomb blockade and Kondo physics

Chapter 8: Coulomb blockade and Kondo physics Chater 8: Coulomb blockade and Kondo hysics 1) Chater 15 of Cuevas& Scheer. REFERENCES 2) Charge transort and single-electron effects in nanoscale systems, J.M. Thijssen and H.S.J. Van der Zant, Phys.

More information

Nano devices for single photon source and qubit

Nano devices for single photon source and qubit Nano devices for single photon source and qubit, Acknowledgement K. Gloos, P. Utko, P. Lindelof Niels Bohr Institute, Denmark J. Toppari, K. Hansen, S. Paraoanu, J. Pekola University of Jyvaskyla, Finland

More information

Quantum dots and Majorana Fermions Karsten Flensberg

Quantum dots and Majorana Fermions Karsten Flensberg Quantum dots and Majorana Fermions Karsten Flensberg Center for Quantum Devices University of Copenhagen Collaborator: Martin Leijnse and R. Egger M. Kjærgaard K. Wölms Outline: - Introduction to Majorana

More information

Cooper-pair splitter: towards an efficient source of spin-entangled EPR pairs

Cooper-pair splitter: towards an efficient source of spin-entangled EPR pairs Cooper-pair splitter: towards an efficient source of spin-entangled EPR pairs L. Hofstetter 1, A. Kleine 1, S. Csonka 1,2, A. Geresdi 2, M. Aagesen 3, J. Nygard 3, A. Baumgartner 1, J. Trbovic 1, and C.

More information

Modeling Schottky barrier SINIS junctions

Modeling Schottky barrier SINIS junctions Modeling Schottky barrier SINIS junctions J. K. Freericks, B. Nikolić, and P. Miller * Department of Physics, Georgetown University, Washington, DC 20057 * Department of Physics, Brandeis University, Waltham,

More information

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Prof. Luis Gregório Dias DFMT PG5295 Muitos Corpos 1 Electronic Transport in Quantum

More information

Persistent orbital degeneracy in carbon nanotubes

Persistent orbital degeneracy in carbon nanotubes PHYSICAL REVIEW B 74, 155431 26 Persistent orbital degeneracy in carbon nanotubes A. Makarovski, 1 L. An, 2 J. Liu, 2 and G. Finkelstein 1 1 Department of Physics, Duke University, Durham, North Carolina

More information

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube Objective: learn about nano-manipulation techniques with a STM or an AFM. 5.1: With a nanotube Moving a nanotube Cutting a nanotube Images at large distance At small distance : push the NT Voltage pulse

More information

Transport through interacting Majorana devices. Reinhold Egger Institut für Theoretische Physik

Transport through interacting Majorana devices. Reinhold Egger Institut für Theoretische Physik Transport through interacting Maorana devices Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Maorana nanowires: Two-terminal device: Maorana

More information

Tunable Non-local Spin Control in a Coupled Quantum Dot System. N. J. Craig, J. M. Taylor, E. A. Lester, C. M. Marcus

Tunable Non-local Spin Control in a Coupled Quantum Dot System. N. J. Craig, J. M. Taylor, E. A. Lester, C. M. Marcus Tunable Non-local Spin Control in a Coupled Quantum Dot System N. J. Craig, J. M. Taylor, E. A. Lester, C. M. Marcus Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA M. P.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2011.138 Graphene Nanoribbons with Smooth Edges as Quantum Wires Xinran Wang, Yijian Ouyang, Liying Jiao, Hailiang Wang, Liming Xie, Justin Wu, Jing Guo, and

More information

ELECTRICAL PROPERTIES OF CARBON NANOTUBES: SPECTROSCOPY, LOCALIZATION AND ELECTRICAL BREAKDOWN

ELECTRICAL PROPERTIES OF CARBON NANOTUBES: SPECTROSCOPY, LOCALIZATION AND ELECTRICAL BREAKDOWN ELECTRICAL PROPERTIES OF CARBON NANOTUBES: SPECTROSCOPY, LOCALIZATION AND ELECTRICAL BREAKDOWN Phaedon Avouris, 1 Richard Martel, 1 Hiroya Ikeda 1, Mark Hersam, 1 Herbert R. Shea, 1 and Alain Rochefort

More information

Exotic Kondo effects in nanostructures

Exotic Kondo effects in nanostructures Exotic Kondo effects in nanostructures S. Florens Ne el Institute - CNRS Grenoble e d 1.0 NRG S=1 A(E,B,T=0) A(E,B,T=0) 1.0 NRG S=1/2 0.8 0.6 0.8 0.6 0.4 0.4-1.0 0.0 E/kBTK 1.0-1.0 0.0 E/kBTK 1.0 Some

More information

Supplementary figures

Supplementary figures Supplementary figures Supplementary Figure 1. A, Schematic of a Au/SRO113/SRO214 junction. A 15-nm thick SRO113 layer was etched along with 30-nm thick SRO214 substrate layer. To isolate the top Au electrodes

More information

Charging and Kondo Effects in an Antidot in the Quantum Hall Regime

Charging and Kondo Effects in an Antidot in the Quantum Hall Regime Semiconductor Physics Group Cavendish Laboratory University of Cambridge Charging and Kondo Effects in an Antidot in the Quantum Hall Regime M. Kataoka C. J. B. Ford M. Y. Simmons D. A. Ritchie University

More information

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 Kondo Effect in Metals and Quantum Dots Jan von Delft

More information

InAs/GaSb A New 2D Topological Insulator

InAs/GaSb A New 2D Topological Insulator InAs/GaSb A New 2D Topological Insulator 1. Old Material for New Physics 2. Quantized Edge Modes 3. Adreev Reflection 4. Summary Rui-Rui Du Rice University Superconductor Hybrids Villard de Lans, France

More information

Spin-Polarized Current in Coulomb Blockade and Kondo Regime

Spin-Polarized Current in Coulomb Blockade and Kondo Regime Vol. 112 (2007) ACTA PHYSICA POLONICA A No. 2 Proceedings of the XXXVI International School of Semiconducting Compounds, Jaszowiec 2007 Spin-Polarized Current in Coulomb Blockade and Kondo Regime P. Ogrodnik

More information

Superconductivity at nanoscale

Superconductivity at nanoscale Superconductivity at nanoscale Superconductivity is the result of the formation of a quantum condensate of paired electrons (Cooper pairs). In small particles, the allowed energy levels are quantized and

More information

InAs/GaSb A New Quantum Spin Hall Insulator

InAs/GaSb A New Quantum Spin Hall Insulator InAs/GaSb A New Quantum Spin Hall Insulator Rui-Rui Du Rice University 1. Old Material for New Physics 2. Quantized Edge Modes 3. Andreev Reflection 4. Summary KITP Workshop on Topological Insulator/Superconductor

More information

Semiclassical formulation

Semiclassical formulation The story so far: Transport coefficients relate current densities and electric fields (currents and voltages). Can define differential transport coefficients + mobility. Drude picture: treat electrons

More information

A Tunable Kondo Effect in Quantum Dots

A Tunable Kondo Effect in Quantum Dots A Tunable Kondo Effect in Quantum Dots Sara M. Cronenwett *#, Tjerk H. Oosterkamp *, and Leo P. Kouwenhoven * * Department of Applied Physics and DIMES, Delft University of Technology, PO Box 546, 26 GA

More information

Recent developments in spintronic

Recent developments in spintronic Recent developments in spintronic Tomas Jungwirth nstitute of Physics ASCR, Prague University of Nottingham in collaboration with Hitachi Cambridge, University of Texas, Texas A&M University - Spintronics

More information

Coulomb blockade in metallic islands and quantum dots

Coulomb blockade in metallic islands and quantum dots Coulomb blockade in metallic islands and quantum dots Charging energy and chemical potential of a metallic island Coulomb blockade and single-electron transistors Quantum dots and the constant interaction

More information

Part III: Impurities in Luttinger liquids

Part III: Impurities in Luttinger liquids Functional RG for interacting fermions... Part III: Impurities in Luttinger liquids 1. Luttinger liquids 2. Impurity effects 3. Microscopic model 4. Flow equations 5. Results S. Andergassen, T. Enss (Stuttgart)

More information

Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor

Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor T (K) 1 5 Fe.8 Co.2 Si ρ xy (µω cm) J.F. DiTusa N. Manyala LSU Y. Sidis D.P. Young G. Aeppli UCL Z. Fisk FSU T C 1 Nature Materials 3, 255-262 (24)

More information

Presented by: Göteborg University, Sweden

Presented by: Göteborg University, Sweden SMR 1760-3 COLLEGE ON PHYSICS OF NANO-DEVICES 10-21 July 2006 Nanoelectromechanics of Magnetic and Superconducting Tunneling Devices Presented by: Robert Shekhter Göteborg University, Sweden * Mechanically

More information

High-Temperature Superconductors: Playgrounds for Broken Symmetries

High-Temperature Superconductors: Playgrounds for Broken Symmetries High-Temperature Superconductors: Playgrounds for Broken Symmetries Gauge / Phase Reflection Time Laura H. Greene Department of Physics Frederick Seitz Materials Research Laboratory Center for Nanoscale

More information

Single-Molecule Junctions: Vibrational and Magnetic Degrees of Freedom, and Novel Experimental Techniques

Single-Molecule Junctions: Vibrational and Magnetic Degrees of Freedom, and Novel Experimental Techniques Single-Molecule Junctions: Vibrational and Magnetic Degrees of Freedom, and Novel Experimental Techniques Heiko B. Weber Lehrstuhl für Angewandte Physik Friedrich-Alexander-Universität Erlangen-Nürnberg

More information

Tuning a short coherence length Josephson junction through a metal-insulator transition

Tuning a short coherence length Josephson junction through a metal-insulator transition Tuning a short coherence length Josephson junction through a metal-insulator transition J. K. Freericks, B. Nikolić, and P. Miller * Department of Physics, Georgetown University, Washington, DC 20057 *

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Carbon contains 6 electrons: (1s) 2,

More information

SIGNATURES OF SPIN-ORBIT DRIVEN ELECTRONIC TRANSPORT IN TRANSITION- METAL-OXIDE INTERFACES

SIGNATURES OF SPIN-ORBIT DRIVEN ELECTRONIC TRANSPORT IN TRANSITION- METAL-OXIDE INTERFACES SIGNATURES OF SPIN-ORBIT DRIVEN ELECTRONIC TRANSPORT IN TRANSITION- METAL-OXIDE INTERFACES Nicandro Bovenzi Bad Honnef, 19-22 September 2016 LAO/STO heterostructure: conducting interface between two insulators

More information

M.C. Escher. Angels and devils (detail), 1941

M.C. Escher. Angels and devils (detail), 1941 M.C. Escher Angels and devils (detail), 1941 1 Coherent Quantum Phase Slip: Exact quantum dual to Josephson Tunneling (Coulomb blockade is a partial dual) Degree of freedom in superconductor: Phase and

More information

Vortices in superconductors& low temperature STM

Vortices in superconductors& low temperature STM Vortices in superconductors& low temperature STM José Gabriel Rodrigo Low Temperature Laboratory Universidad Autónoma de Madrid, Spain (LBT-UAM) Cryocourse, 2011 Outline -Vortices in superconductors -Vortices

More information

Josephson effect in carbon nanotubes with spin-orbit coupling.

Josephson effect in carbon nanotubes with spin-orbit coupling. Josephson effect in carbon nanotubes with spin-orbit coupling. Rosa López Interdisciplinary Institute for Cross-Disciplinary Physics and Complex Systems University of Balearic Islands IFISC (CSIC-UIB),

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Josephson φ 0 -junction in nanowire quantum dots D. B. Szombati, S. Nadj-Perge, D. Car, S. R. Plissard, E. P. A. M. Bakkers, L. P. Kouwenhoven 1. Breaking of the chiral symmetry in quantum dots 2. Characterization

More information

Interference: from quantum mechanics to nanotechnology

Interference: from quantum mechanics to nanotechnology Interference: from quantum mechanics to nanotechnology Andrea Donarini L. de Broglie P. M. A. Dirac A photon interferes only with itself Double slit experiment: (London, 1801) T. Young Phil. Trans. R.

More information

We study spin correlation in a double quantum dot containing a few electrons in each dot ( 10). Clear

We study spin correlation in a double quantum dot containing a few electrons in each dot ( 10). Clear Pauli spin blockade in cotunneling transport through a double quantum dot H. W. Liu, 1,,3 T. Fujisawa, 1,4 T. Hayashi, 1 and Y. Hirayama 1, 1 NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya,

More information

arxiv: v1 [cond-mat.mes-hall] 2 Sep 2013

arxiv: v1 [cond-mat.mes-hall] 2 Sep 2013 Correlation effects and spin dependent transport in carbon nanostructures S. Lipiński, D. Krychowski arxiv:1309.0359v1 [cond-mat.mes-hall] 2 Sep 2013 Institute of Molecular Physics, Polish Academy of Sciences

More information

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems * Mesoscopic Nano-Electro-Mechanics of Shuttle Systems Robert Shekhter University of Gothenburg, Sweden Lecture1: Mechanically assisted single-electronics Lecture2: Quantum coherent nano-electro-mechanics

More information

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France Spin electronics at the nanoscale Michel Viret Service de Physique de l Etat Condensé CEA Saclay France Principles of spin electronics: ferromagnetic metals spin accumulation Resistivity of homogeneous

More information

Quantum transport in nanoscale solids

Quantum transport in nanoscale solids Quantum transport in nanoscale solids The Landauer approach Dietmar Weinmann Institut de Physique et Chimie des Matériaux de Strasbourg Strasbourg, ESC 2012 p. 1 Quantum effects in electron transport R.

More information

What's so unusual about high temperature superconductors? UBC 2005

What's so unusual about high temperature superconductors? UBC 2005 What's so unusual about high temperature superconductors? UBC 2005 Everything... 1. Normal State - doped Mott insulator 2. Pairing Symmetry - d-wave 2. Short Coherence Length - superconducting fluctuations

More information

Carbon Nanotubes in Interconnect Applications

Carbon Nanotubes in Interconnect Applications Carbon Nanotubes in Interconnect Applications Page 1 What are Carbon Nanotubes? What are they good for? Why are we interested in them? - Interconnects of the future? Comparison of electrical properties

More information

The Kondo Effect in the Unitary Limit

The Kondo Effect in the Unitary Limit The Kondo Effect in the Unitary Limit W.G. van der Wiel 1,*, S. De Franceschi 1, T. Fujisawa 2, J.M. Elzerman 1, S. Tarucha 2,3 and L.P. Kouwenhoven 1 1 Department of Applied Physics, DIMES, and ERATO

More information

Electron counting with quantum dots

Electron counting with quantum dots Electron counting with quantum dots Klaus Ensslin Solid State Physics Zürich with S. Gustavsson I. Shorubalko R. Leturcq T. Ihn A. C. Gossard Time-resolved charge detection Single photon detection Time-resolved

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electrical control of single hole spins in nanowire quantum dots V. S. Pribiag, S. Nadj-Perge, S. M. Frolov, J. W. G. van den Berg, I. van Weperen., S. R. Plissard, E. P. A. M. Bakkers and L. P. Kouwenhoven

More information

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University g Q 2 m T + S Mirror U 3 U 1 U 2 U 3 Mirror Detector See Hanson et al., Rev. Mod. Phys.

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

Supplementary Information for Pseudospin Resolved Transport Spectroscopy of the Kondo Effect in a Double Quantum Dot. D2 V exc I

Supplementary Information for Pseudospin Resolved Transport Spectroscopy of the Kondo Effect in a Double Quantum Dot. D2 V exc I Supplementary Information for Pseudospin Resolved Transport Spectroscopy of the Kondo Effect in a Double Quantum Dot S. Amasha, 1 A. J. Keller, 1 I. G. Rau, 2, A. Carmi, 3 J. A. Katine, 4 H. Shtrikman,

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 5 Beforehand Yesterday Today Anderson Localization, Mesoscopic

More information

Electrical Contacts to Carbon Nanotubes Down to 1nm in Diameter

Electrical Contacts to Carbon Nanotubes Down to 1nm in Diameter 1 Electrical Contacts to Carbon Nanotubes Down to 1nm in Diameter Woong Kim, Ali Javey, Ryan Tu, Jien Cao, Qian Wang, and Hongjie Dai* Department of Chemistry and Laboratory for Advanced Materials, Stanford

More information

Carbon nanotubes in a nutshell. Graphite band structure. What is a carbon nanotube? Start by considering graphite.

Carbon nanotubes in a nutshell. Graphite band structure. What is a carbon nanotube? Start by considering graphite. Carbon nanotubes in a nutshell What is a carbon nanotube? Start by considering graphite. sp 2 bonded carbon. Each atom connected to 3 neighbors w/ 120 degree bond angles. Hybridized π bonding across whole

More information

Quantized Electrical Conductance of Carbon nanotubes(cnts)

Quantized Electrical Conductance of Carbon nanotubes(cnts) Quantized Electrical Conductance of Carbon nanotubes(cnts) By Boxiao Chen PH 464: Applied Optics Instructor: Andres L arosa Abstract One of the main factors that impacts the efficiency of solar cells is

More information

Determination of the tunnel rates through a few-electron quantum dot

Determination of the tunnel rates through a few-electron quantum dot Determination of the tunnel rates through a few-electron quantum dot R. Hanson 1,I.T.Vink 1, D.P. DiVincenzo 2, L.M.K. Vandersypen 1, J.M. Elzerman 1, L.H. Willems van Beveren 1 and L.P. Kouwenhoven 1

More information

Graphene and Carbon Nanotubes

Graphene and Carbon Nanotubes Graphene and Carbon Nanotubes 1 atom thick films of graphite atomic chicken wire Novoselov et al - Science 306, 666 (004) 100μm Geim s group at Manchester Novoselov et al - Nature 438, 197 (005) Kim-Stormer

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1 Point-contact spectra of a Pt-Ir tip/lto film junction. The main panel shows differential conductance at 2, 12, 13, 16 K (0 T), and 10 K (2 T) to demonstrate

More information

STM spectroscopy (STS)

STM spectroscopy (STS) STM spectroscopy (STS) di dv 4 e ( E ev, r) ( E ) M S F T F Basic concepts of STS. With the feedback circuit open the variation of the tunneling current due to the application of a small oscillating voltage

More information