Transport through interacting Majorana devices. Reinhold Egger Institut für Theoretische Physik

Size: px
Start display at page:

Download "Transport through interacting Majorana devices. Reinhold Egger Institut für Theoretische Physik"

Transcription

1 Transport through interacting Maorana devices Reinhold Egger Institut für Theoretische Physik

2 Overview Coulomb charging effects on quantum transport through Maorana nanowires: Two-terminal device: Maorana single-charge transistor Zazunov, Levy Yeyati & Egger, PRB 84, (2011) Hützen, Zazunov, Braunecker, Levy Yeyati & Egger, PRL 109, (2012) Multi-terminal device: Topological Kondo effect with stable non-fermi liquid behavior With interactions in the leads: novel unstable fixed point Altland & Egger, PRL 110, (2013) Zazunov, Altland & Egger, NJP 16, (2014) Maorana spin dynamics near strong coupling Altland, Beri, Egger & Tsvelik, arxiv: Non-Fermi liquid manifold: coupling to bulk superconductor, (not discussed here) Eriksson, Mora, Zazunov & Egger, arxiv:

3 Maorana bound states Maorana fermions Non-Abelian exchange statistics Two Maoranas = nonlocal fermion Occupation of single Maorana ill-defined: Count state of Maorana pair Beenakker, Ann. Rev. Con. Mat. Phys Alicea, Rep. Prog. Phys Leinse & Flensberg, Semicond. Sci. Tech γ = γ { γ } i, γ = 2δ i d + d d = γ 1 + iγ 2 + γ γ = γ 2 = 1 = 0,1 Realizable (for example) as end states of spinless 1D p-wave superconductor (Kitaev chain) Recipe: Proximity coupling of 1D helical wire to s-wave superconductor For long wires: Maorana bound states are zero energy modes

4 Experimental Maorana signatures InSb nanowires expected to host Maoranas due to interplay of strong Rashba spin orbit field magnetic Zeeman field proximity-induced pairing Oreg, Refael & von Oppen, PRL 2010 Lutchyn, Sau & Das Sarma, PRL 2010 Mourik et al., Science 2012 Transport signature of Maoranas: Zero-bias conductance peak due to resonant Andreev reflection Bolech & Demler, PRL 2007 Law, Lee & Ng, PRL 2009 Flensberg, PRB 2010 See also: Rokhinson et al., Nat. Phys. 2012; Deng et al., Nano Lett. 2012; Das et al., Nat. Phys. 2012; Churchill et al., PRB 2013

5 Zero-bias conductance peak Mourik et al., Science 2012 Possible explanations: Maorana state (most likely!) Disorder-induced peak Bagrets & Altland, PRL 2012 Smooth confinement Kells, Meidan & Brouwer, PRB 2012 Kondo effect Lee et al., PRL 2012

6 Suppose that Maorana mode is realized Quantum transport features beyond zero-bias anomaly peak? Coulomb interaction effects? Simplest case: Maorana single charge transistor Overhanging helical wire parts serve as normal-conducting leads Nanowire part coupled to superconductor hosts pair of Maorana bound states Include charging energy of this dot γ L γ R

7 Maorana single charge transistor Floating superconducting dot contains two Maorana bound states tunnel-coupled to normal-conducting leads Charging energy finite Consider universal regime: Long superconducting wire: Direct tunnel coupling between left and right Maorana modes is assumed negligible No quasi-particle excitations: Proximity-induced gap is largest energy scale of interest Hützen et al., PRL 2012

8 Hamiltonian: charging term Maorana pair: nonlocal fermion = γ + iγ Condensate gives another zero mode Cooper pair number N c, conugate phase ϕ Dot Hamiltonian (gate parameter n g ) d L R H c = E c ( + N + d d n ) 2 2 c g Maorana fermions couple to Cooper pairs through the charging energy

9 Tunneling Normal-conducting leads: noninteracting fermions (effectively spinless helical wire) Applied bias voltage V = chemical potential difference Tunneling of electrons from lead to dot: Proect electron operator in superconducting wire part to Maorana sector Spin structure of Maorana state encoded in tunneling matrix elements Flensberg, PRB 2010

10 Tunneling Hamiltonian Source (drain) couples to left (right) Maorana only: H respects current conservation Hybridizations: Normal tunneling t c + t η + = L, R = Γ ~ h. c. ρ t L / R ~ 0 L / R c + d, d Either destroy or create nonlocal d fermion Condensate not involved + iφ + iφ Anomalous tunneling ~ c e d, de c Create (destroy) both lead and d fermion & split (add) a Cooper pair + c 2 η ( iφ + d ± e ) 2 = d

11 Absence of even-odd effect Without Maorana states: Even-odd effect With Maoranas: no even-odd effect! Tuning wire parameters into the topological phase removes even-odd effect (a) Δ! 2N-3 2N-1 2N+1 2N-4 2N-2 2N 2N+2 E N! Δ (b) 2N-4 2N-3 2N-1 2N+1 2N-2 2N 2N+2 picture from: Fu, PRL 2010

12 Maorana Meir-Wingreen formula Exact expression for interacting Maorana dot eγ ε ( ε µ ) ret I L, R = = d F ImGη ( ε ) h Lead Fermi distribution encoded in + Proof uses η η = 1 Differential conductance: Here: symmetric case Γ L = Γ R F G = di dv I = I L I R = Γ 2 ( ) ( ) ε = tanh ε ( ) 2 2T

13 Noninteracting case: Resonant Andreev reflection E c =0 Maorana spectral function ImG T=0 differential conductance: G( V ) Bolech & Demler, PRL 2007 Law, Lee & Ng, PRL 2009 ( ε ) = 2 2 Currents I L and I R fluctuate independently, superconductor is effectively grounded Perfect Andreev reflection via Maorana state Zero-energy Maorana bound state leaks into lead ret γ = 2e h 2 ε 1+ Γ + Γ 1 ( ev Γ) 2

14 Strong blockade: Electron teleportation Fu, PRL 2010 Peak conductance for half-integer n g Strong charging energy then allows only two degenerate charge configurations Model maps to spinless resonant tunneling model 2 Linear conductance (T=0): G = e / h Interpretation: Electron teleportation due to nonlocality of d fermion

15 Crossover from resonant Andreev reflection to electron teleportation Keldysh approach yields full action in phase representation Zazunov, Levy Yeyati & Egger, PRB 2011 Practically useful in weak Coulomb blockade regime: interaction corrections to conductance Full crossover from three other methods: Hützen et al., PRL 2012 Master equation for T>Γ: include sequential and all cotunneling processes (incl. local and crossed Andreev reflection) Equation of motion approach for peak conductance Zero bandwidth model for leads: exact solution

16 Coulomb oscillations Master equation T = 2Γ Valley conductance dominated by elastic cotunneling

17 Peak conductance: from resonant Andreev reflection to teleportation T=0

18 Finite bias sidepeaks n g = 1/ 2 n g = 1 Master equation T = 2Γ

19 Finite bias sidepeaks ev = 4nE c µ L,R resonant with two (almost) degenerate higher order charge states: additional sequential tunneling contributions On resonance: sidepeaks at Requires change of Cooper pair number - only possible through anomalous tunneling: without Maoranas no side-peaks Similar sidepeaks away from resonance

20 Multi-terminal case Zazunov, Altland & Egger, NJP 2014 Altland & Egger, PRL 2013 Beri & Cooper, PRL 2012; Beri, PRL 2013 Altland, Beri, Egger & Tsvelik, arxiv: & arxiv: Now N>1 helical wires: M Maoranas modes, tunnel-coupled to helical Luttinger liquid wires, g 1 Bosonization of leads: Klein-Maorana fusion Klein factors additional Maorana fermion for each lead Combine Klein-Maorana and true Maorana at each contact to build auxiliary fermion f All occupation numbers f + f are conserved and can be gauged away: purely bosonic problem remains!

21 Charging effects: dipole confinement High energy scales : charging effects irrelevant Electron tunneling amplitudes from lead to dot renormalize independently upwards 1+ RG flow towards resonant Andreev reflection fixed point For E < E c g ( E) ~ E : charging induces confinement In- and out-tunneling events are bound to dipoles with coupling : entanglement of different leads λ k > E c t Dipole coupling describes amplitude for teleportation from lead to lead k Bare value t ( Ec ) tk ( Ec ) 1 (1) 3+ g λ k = ~ Ec E large for small E c c 1 2

22 RG equations in dipole phase Energy scales below E c : effective phase action S = [ Φ] λ ( Φ Φ ) k τ cos k S Lutt d k One-loop RG equations dλ k = g dl ( 1 1) λ k + ν λ mλmk suppression by Luttinger tunneling DoS enhancement by dipole fusion processes RG-unstable intermediate fixed point with isotropic couplings (for M>2 leads) 1 * g 1 λ k = λ = ν M 2 M m ( Lead DoS, k )

23 RG flow (1) * RG flow towards strong coupling for λ > λ Always happens for moderate charging energy Flow towards isotropic couplings: anisotropies are RG irrelevant Perturbative RG fails below Kondo temperature T K E c e λ * λ ( 1)

24 Topological Kondo effect Refermionize for g=1: H = i dx Maorana bilinears M + Ψ xψ + iλ = 1 k Ψ Reality condition: SO(M) symmetry [instead of SU(2)] nonlocal realization of quantum impurity spin Nonlocality ensures stability of Kondo fixed point Real Maorana basis Ψ x = µ + i SO 2 (M) Kondo model H S k = iγ γ k + ( ) ξ ( 0) S Ψ ( 0) k k for leads: = T T i dxµ µ + iλµ ˆ 0 x Beri & Cooper, PRL 2012 ( 0) Sµ ( ) + [ µ ξ ]

25 Transport properties near unitary limit Temperature & voltages < T K : Dual instanton version of action applies near strong coupling limit Nonequilibrium Keldysh formulation Linear conductance tensor 2 2 y 2 I 2e = = T 1 G k e 1 δ T k µ k h K M 1 Non-integer scaling dimension y = 2 g 1 > M implies non-fermi liquid behavior even for g=1 completely isotropic multi-terminal unction 1

26 Fano factor Zazunov et al., NJP 2014 Backscattering correction to current near unitary limit for µ = 0 2 y 2 e µ k 1 δ = δ I k µ k k T M K Shot noise: ~ ω k S i t ( ω 0) = dt e I ( t) I ( 0) ( I I ) k k 2 2 y 2 ~ 2ge 1 1 µ l S k = δ l δkl µ l l M M TK universal Fano factor, but different value than for SU(N) Kondo effect Sela et al. PRL 2006; Mora et al., PRB 2009

27 Maorana spin dynamics Altland, Beri, Egger & Tsvelik, arxiv: Overscreened multi-channel Kondo fixed point: massively entangled effective impurity degree remains at strong coupling: Maorana spin Probe and manipulate by coupling of Maoranas H = h Zeeman fields h : overlap of Maorana k = h k wavefunctions within same nanowire Couple to S = iγ γ k k Z k k S k

28 Maorana spin near strong coupling Bosonized form of Maorana spin at Kondo fixed point: = γ γ S cos Dual boson fields Θ x describe charge (not phase ) in respective lead Scaling dimension = 1 RG relevant Zeeman field ultimately destroys Kondo fixed point & breaks emergent time reversal symmetry Perturbative treatment possible for k i ( ) k 2 y Z M [ Θ ( 0) Θ ( 0) ] k T < T < dominant 1-2 Zeeman coupling: h T K T h h 12 = T K M / 2 T K

29 Crossover SO(M) SO(M-2) Lowering T below T h crossover to another Kondo model with SO(M-2) (Fermi liquid for M<5) Zeeman coupling h 12 flows to strong coupling γ,γ 1 2 disappear from low-energy sector Same scenario follows from Bethe ansatz solution Altland, Beri, Egger & Tsvelik, arxiv: Observable in conductance & in thermodynamic properties

30 SO(M) SO(M-2): conductance scaling for single Zeeman component h 12 0 consider G ( 1,2 ) (diagonal element of conductance tensor)

31 Multi-point correlations Maorana spin has nontrivial multi-point correlations at Kondo fixed point, e.g. for M=3 (absent for SU(N) case!) T τ s ( τ ) s ( τ ) s ( τ ) 1 k 2 l 3 ~ Observable consequences for time-dependent Zeeman field B ε h with B t = B ω t, B cos ω,0 kl kl 1 cos 1 2 2t Time-dependent gate voltage modulation of tunnel couplings Measurement of magnetization by known read-out methods Nonlinear frequency mixing T K ( τ τ τ ) 1/ 3 Oscillatory transverse spin correlations (for B 2 =0) 12 ε kl s kl ( t) ~ B B [( ω ± ω ) t] s3 1 2 cos 1 2 = ε = ( ) ( ( ) ( ) ) s 2 ( t) s ( 0) 3 ~ B 1 ( ω1t ) ( ω t) 2 / 3 cos 1 S kl

32 Conclusions Coulomb charging effects on quantum transport through Maorana nanowires: Two-terminal device: Maorana single-charge transistor Zazunov, Levy Yeyati & Egger, PRB 84, (2011) Hützen, Zazunov, Braunecker, Levy Yeyati & Egger, PRL 109, (2012) Multi-terminal device: Topological Kondo effect with stable non-fermi liquid behavior With electron-electron interactions in the leads: novel unstable fixed point Altland & Egger, PRL 110, (2013) Zazunov, Altland & Egger, NJP 16, (2014) Dynamics of impurity spin in strong coupling regime Altland, Beri, Egger & Tsvelik, arxiv: Non-Fermi liquid manifold: coupling to bulk superconductor (not discussed here) Eriksson, Mora, Zazunov & Egger, arxiv: , THANK YOU FOR THE ATTENTION!

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik Majorana single-charge transistor Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Majorana nanowires: Two-terminal device: Majorana singlecharge

More information

Topological Kondo effect in Majorana devices. Reinhold Egger Institut für Theoretische Physik

Topological Kondo effect in Majorana devices. Reinhold Egger Institut für Theoretische Physik Topological Kondo effect in Maorana devices Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport in a Maorana device: Topological Kondo effect with stable

More information

Multichannel Kondo dynamics and Surface Code from Majorana bound states

Multichannel Kondo dynamics and Surface Code from Majorana bound states Multichannel Kondo dynamics and Surface Code from Maorana bound states Reinhold Egger Institut für Theoretische Physik Dresden workshop 14-18 Sept. 2015 Overview Brief introduction to Maorana bound states

More information

Electronic transport in topological insulators

Electronic transport in topological insulators Electronic transport in topological insulators Reinhold Egger Institut für Theoretische Physik, Düsseldorf Alex Zazunov, Alfredo Levy Yeyati Trieste, November 011 To the memory of my dear friend Please

More information

Manipulation of Majorana fermions via single charge control

Manipulation of Majorana fermions via single charge control Manipulation of Majorana fermions via single charge control Karsten Flensberg Niels Bohr Institute University of Copenhagen Superconducting hybrids: from conventional to exotic, Villard de Lans, France,

More information

Quantum dots and Majorana Fermions Karsten Flensberg

Quantum dots and Majorana Fermions Karsten Flensberg Quantum dots and Majorana Fermions Karsten Flensberg Center for Quantum Devices University of Copenhagen Collaborator: Martin Leijnse and R. Egger M. Kjærgaard K. Wölms Outline: - Introduction to Majorana

More information

Part III: Impurities in Luttinger liquids

Part III: Impurities in Luttinger liquids Functional RG for interacting fermions... Part III: Impurities in Luttinger liquids 1. Luttinger liquids 2. Impurity effects 3. Microscopic model 4. Flow equations 5. Results S. Andergassen, T. Enss (Stuttgart)

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Topological Quantum Computation with Majorana Zero Modes. Roman Lutchyn. Microsoft Station

Topological Quantum Computation with Majorana Zero Modes. Roman Lutchyn. Microsoft Station Topological Quantum Computation with Majorana Zero Modes Roman Lutchyn Microsoft Station IPAM, 08/28/2018 Outline Majorana zero modes in proximitized nanowires Experimental and material science progress

More information

Multichannel Majorana Wires

Multichannel Majorana Wires Multichannel Majorana Wires Piet Brouwer Frascati, 2014 Dahlem Center for Complex Quantum Systems Physics Department Inanc Adagideli Freie Universität Berlin Mathias Duckheim Dganit Meidan Graham Kells

More information

Superconducting properties of carbon nanotubes

Superconducting properties of carbon nanotubes Superconducting properties of carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf A. De Martino, F. Siano Overview Superconductivity in ropes of nanotubes

More information

arxiv: v2 [cond-mat.mes-hall] 5 Mar 2013

arxiv: v2 [cond-mat.mes-hall] 5 Mar 2013 arxiv:30.6882v2 [cond-mat.mes-hall] 5 Mar 203 Even-odd parity effects in Majorana junctions Submitted to: New J. Phys.. Introduction Alex Zazunov, Pasquale Sodano 2,3 and Reinhold Egger Institut für Theoretische

More information

Detecting and using Majorana fermions in superconductors

Detecting and using Majorana fermions in superconductors Detecting and using Majorana fermions in superconductors Anton Akhmerov with Carlo Beenakker, Jan Dahlhaus, Fabian Hassler, and Michael Wimmer New J. Phys. 13, 053016 (2011) and arxiv:1105.0315 Superconductor

More information

Majorana Fermions in Superconducting Chains

Majorana Fermions in Superconducting Chains 16 th December 2015 Majorana Fermions in Superconducting Chains Matilda Peruzzo Fermions (I) Quantum many-body theory: Fermions Bosons Fermions (II) Properties Pauli exclusion principle Fermions (II)

More information

arxiv: v2 [cond-mat.mes-hall] 30 May 2015

arxiv: v2 [cond-mat.mes-hall] 30 May 2015 Majorana Entanglement Bridge arxiv:53.6399v [cond-mat.mes-hall] 3 May 5 Stephan Plugge, Alex Zazunov, Pasquale Sodano,, 3, 4 and Reinhold Egger, Institut für Theoretische Physik, Heinrich-Heine-Universität,

More information

Interactions and transport in Majorana wires. Alfredo Levy Yeyati

Interactions and transport in Majorana wires. Alfredo Levy Yeyati Interactions and transport in Majorana wires Alfredo Levy Yeyati SPICE Workshop: Spin dynamics in the Dirac systems, Mainz 6-9 June 2017 Content Low energy transport theory in Majorana wire junctions,

More information

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators Nagoya University Masatoshi Sato In collaboration with Yukio Tanaka (Nagoya University) Keiji Yada (Nagoya University) Ai Yamakage

More information

Majoranas in semiconductor nanowires Leo Kouwenhoven

Majoranas in semiconductor nanowires Leo Kouwenhoven Majoranas in semiconductor nanowires Leo Kouwenhoven Önder Gül, Hao Zhang, Michiel de Moor, Fokko de Vries, Jasper van Veen David van Woerkom, Kun Zuo, Vincent Mourik, Srijit Goswami, Maja Cassidy, AHla

More information

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf Scattering theory of current-induced forces Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf Overview Current-induced forces in mesoscopic systems: In molecule/dot with slow mechanical

More information

Time Reversal Invariant Ζ 2 Topological Insulator

Time Reversal Invariant Ζ 2 Topological Insulator Time Reversal Invariant Ζ Topological Insulator D Bloch Hamiltonians subject to the T constraint 1 ( ) ΘH Θ = H( ) with Θ = 1 are classified by a Ζ topological invariant (ν =,1) Understand via Bul-Boundary

More information

Three-terminal quantum-dot thermoelectrics

Three-terminal quantum-dot thermoelectrics Three-terminal quantum-dot thermoelectrics Björn Sothmann Université de Genève Collaborators: R. Sánchez, A. N. Jordan, M. Büttiker 5.11.2013 Outline Introduction Quantum dots and Coulomb blockade Quantum

More information

Quantum Transport through a Triple Quantum Dot System in the Presence of Majorana Bound States

Quantum Transport through a Triple Quantum Dot System in the Presence of Majorana Bound States Commun. Theor. Phys. 65 (016) 6 68 Vol. 65, No. 5, May 1, 016 Quantum Transport through a Triple Quantum Dot System in the Presence of Majorana Bound States Zhao-Tan Jiang ( ), Zhi-Yuan Cao ( ì ), and

More information

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures Kondo Effects in Metals: magnetic impurities

More information

Quantum Impurities In and Out of Equilibrium. Natan Andrei

Quantum Impurities In and Out of Equilibrium. Natan Andrei Quantum Impurities In and Out of Equilibrium Natan Andrei HRI 1- Feb 2008 Quantum Impurity Quantum Impurity - a system with a few degrees of freedom interacting with a large (macroscopic) system. Often

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information

Effet Kondo dans les nanostructures: Morceaux choisis

Effet Kondo dans les nanostructures: Morceaux choisis Effet Kondo dans les nanostructures: Morceaux choisis Pascal SIMON Rencontre du GDR Méso: Aussois du 05 au 08 Octobre 2009 OUTLINE I. The traditional (old-fashioned?) Kondo effect II. Direct access to

More information

Writing Spin in a Quantum Dot with Ferromagnetic and. Superconducting Electrodes arxiv:cond-mat/ v1 [cond-mat.mes-hall] 14 Jan 2003

Writing Spin in a Quantum Dot with Ferromagnetic and. Superconducting Electrodes arxiv:cond-mat/ v1 [cond-mat.mes-hall] 14 Jan 2003 Writing Spin in a Quantum Dot with Ferromagnetic and Superconducting Electrodes arxiv:cond-mat/0303v [cond-mat.mes-hall] 4 Jan 003 Yu Zhu, Qing-feng Sun, and Tsung-han Lin, State Key Laboratory for Mesoscopic

More information

Exotic Phenomena in Topological Insulators and Superconductors

Exotic Phenomena in Topological Insulators and Superconductors SPICE Workshop on Spin Dynamics in the Dirac System Schloss Waldthausen, Mainz, 6 June 2017 Exotic Phenomena in Topological Insulators and Superconductors Yoichi Ando Physics Institute II, University of

More information

Splitting of a Cooper pair by a pair of Majorana bound states

Splitting of a Cooper pair by a pair of Majorana bound states Chapter 7 Splitting of a Cooper pair by a pair of Majorana bound states 7.1 Introduction Majorana bound states are coherent superpositions of electron and hole excitations of zero energy, trapped in the

More information

Tunneling Into a Luttinger Liquid Revisited

Tunneling Into a Luttinger Liquid Revisited Petersburg Nuclear Physics Institute Tunneling Into a Luttinger Liquid Revisited V.Yu. Kachorovskii Ioffe Physico-Technical Institute, St.Petersburg, Russia Co-authors: Alexander Dmitriev (Ioffe) Igor

More information

Coulomb blockade and single electron tunnelling

Coulomb blockade and single electron tunnelling Coulomb blockade and single electron tunnelling Andrea Donarini Institute of theoretical physics, University of Regensburg Three terminal device Source System Drain Gate Variation of the electrostatic

More information

Matrix product states for the fractional quantum Hall effect

Matrix product states for the fractional quantum Hall effect Matrix product states for the fractional quantum Hall effect Roger Mong (California Institute of Technology) University of Virginia Feb 24, 2014 Collaborators Michael Zaletel UC Berkeley (Stanford/Station

More information

Majorana Fermions and Topological Quantum Information Processing. Liang Jiang Yale University & IIIS. QIP 2013, Beijing

Majorana Fermions and Topological Quantum Information Processing. Liang Jiang Yale University & IIIS. QIP 2013, Beijing Majorana Fermions and Topological Quantum Information Processing Liang Jiang Yale University & IIIS QIP 2013, Beijing 2013.1.21 Conventional Quantum Systems Local degrees of freedom E.g., spins, photons,

More information

Enhanced current noise correlations in a Coulomb-Majorana device. Citation Physical Review B, 2016, v. 93 n. 24, p

Enhanced current noise correlations in a Coulomb-Majorana device. Citation Physical Review B, 2016, v. 93 n. 24, p Title Enhanced current noise correlations in a Coulomb-Majorana device Author(s) Lü, HF; Lu, HZ; Shen, S Citation Physical Review B, 6, v. 93 n. 4, p. 4548 Issued Date 6 URL http://hdl.handle.net/7/74

More information

Majorana modes in topological superconductors

Majorana modes in topological superconductors Majorana modes in topological superconductors Roman Lutchyn Microsoft Station Q Introduction to topological quantum computing Physical realizations of Majorana modes in topological superconductors Experimental

More information

Josephson effect in carbon nanotubes with spin-orbit coupling.

Josephson effect in carbon nanotubes with spin-orbit coupling. Josephson effect in carbon nanotubes with spin-orbit coupling. Rosa López Interdisciplinary Institute for Cross-Disciplinary Physics and Complex Systems University of Balearic Islands IFISC (CSIC-UIB),

More information

Quantum Transport through Coulomb-Blockade Systems

Quantum Transport through Coulomb-Blockade Systems Quantum Transport through Coulomb-Blockade Systems Björn Kubala Institut für Theoretische Physik III Ruhr-Universität Bochum COQUSY6 p.1 Overview Motivation Single-electron box/transistor Coupled single-electron

More information

Vortex States in a Non-Abelian Magnetic Field

Vortex States in a Non-Abelian Magnetic Field Vortex States in a Non-Abelian Magnetic Field Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University SESAPS November 10, 2016 Acknowledgments Collin Broholm IQM

More information

SIGNATURES OF SPIN-ORBIT DRIVEN ELECTRONIC TRANSPORT IN TRANSITION- METAL-OXIDE INTERFACES

SIGNATURES OF SPIN-ORBIT DRIVEN ELECTRONIC TRANSPORT IN TRANSITION- METAL-OXIDE INTERFACES SIGNATURES OF SPIN-ORBIT DRIVEN ELECTRONIC TRANSPORT IN TRANSITION- METAL-OXIDE INTERFACES Nicandro Bovenzi Bad Honnef, 19-22 September 2016 LAO/STO heterostructure: conducting interface between two insulators

More information

Coulomb Blockade and Kondo Effect in Nanostructures

Coulomb Blockade and Kondo Effect in Nanostructures Coulomb Blockade and Kondo Effect in Nanostructures Marcin M. Wysokioski 1,2 1 Institute of Physics Albert-Ludwigs-Universität Freiburg 2 Institute of Physics Jagiellonian University, Cracow, Poland 2.VI.2010

More information

Topological minigap in quasi-one-dimensional spin-orbit-coupled semiconductor Majorana wires

Topological minigap in quasi-one-dimensional spin-orbit-coupled semiconductor Majorana wires Topological minigap in quasi-one-dimensional spin-orbit-coupled semiconductor Majorana wires Sumanta Tewari 1, T. D. Stanescu 2, Jay D. Sau 3, and S. Das Sarma 4 1 Department of Physics and Astronomy,

More information

Topological protection, disorder, and interactions: Life and death at the surface of a topological superconductor

Topological protection, disorder, and interactions: Life and death at the surface of a topological superconductor Topological protection, disorder, and interactions: Life and death at the surface of a topological superconductor Matthew S. Foster Rice University March 14 th, 2014 Collaborators: Emil Yuzbashyan (Rutgers),

More information

SPIN-POLARIZED CURRENT IN A MAGNETIC TUNNEL JUNCTION: MESOSCOPIC DIODE BASED ON A QUANTUM DOT

SPIN-POLARIZED CURRENT IN A MAGNETIC TUNNEL JUNCTION: MESOSCOPIC DIODE BASED ON A QUANTUM DOT 66 Rev.Adv.Mater.Sci. 14(2007) 66-70 W. Rudziński SPIN-POLARIZED CURRENT IN A MAGNETIC TUNNEL JUNCTION: MESOSCOPIC DIODE BASED ON A QUANTUM DOT W. Rudziński Department of Physics, Adam Mickiewicz University,

More information

Iterative real-time path integral approach to nonequilibrium quantum transport

Iterative real-time path integral approach to nonequilibrium quantum transport Iterative real-time path integral approach to nonequilibrium quantum transport Michael Thorwart Institut für Theoretische Physik Heinrich-Heine-Universität Düsseldorf funded by the SPP 1243 Quantum Transport

More information

The Physics of Nanoelectronics

The Physics of Nanoelectronics The Physics of Nanoelectronics Transport and Fluctuation Phenomena at Low Temperatures Tero T. Heikkilä Low Temperature Laboratory, Aalto University, Finland OXFORD UNIVERSITY PRESS Contents List of symbols

More information

Fate of the Kondo impurity in a superconducting medium

Fate of the Kondo impurity in a superconducting medium Karpacz, 2 8 March 214 Fate of the Kondo impurity in a superconducting medium T. Domański M. Curie Skłodowska University Lublin, Poland http://kft.umcs.lublin.pl/doman/lectures Motivation Physical dilemma

More information

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spinon magnetic resonance. Oleg Starykh, University of Utah Spinon magnetic resonance Oleg Starykh, University of Utah May 17-19, 2018 Examples of current literature 200 cm -1 = 6 THz Spinons? 4 mev = 1 THz The big question(s) What is quantum spin liquid? No broken

More information

Luttinger Liquid at the Edge of a Graphene Vacuum

Luttinger Liquid at the Edge of a Graphene Vacuum Luttinger Liquid at the Edge of a Graphene Vacuum H.A. Fertig, Indiana University Luis Brey, CSIC, Madrid I. Introduction: Graphene Edge States (Non-Interacting) II. III. Quantum Hall Ferromagnetism and

More information

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Nadya Mason Travis Dirk, Yung-Fu Chen, Cesar Chialvo Taylor Hughes, Siddhartha Lal, Bruno Uchoa Paul Goldbart University

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

Let There Be Topological Superconductors

Let There Be Topological Superconductors Let There Be Topological Superconductors K K d Γ ~q c µ arxiv:1606.00857 arxiv:1603.02692 Eun-Ah Kim (Cornell) Boulder 7.21-22.2016 Q. Topological Superconductor material? Bulk 1D proximity 2D proximity?

More information

Topological Defects inside a Topological Band Insulator

Topological Defects inside a Topological Band Insulator Topological Defects inside a Topological Band Insulator Ashvin Vishwanath UC Berkeley Refs: Ran, Zhang A.V., Nature Physics 5, 289 (2009). Hosur, Ryu, AV arxiv: 0908.2691 Part 1: Outline A toy model of

More information

Charging and Kondo Effects in an Antidot in the Quantum Hall Regime

Charging and Kondo Effects in an Antidot in the Quantum Hall Regime Semiconductor Physics Group Cavendish Laboratory University of Cambridge Charging and Kondo Effects in an Antidot in the Quantum Hall Regime M. Kataoka C. J. B. Ford M. Y. Simmons D. A. Ritchie University

More information

Universal phase transitions in Topological lattice models

Universal phase transitions in Topological lattice models Universal phase transitions in Topological lattice models F. J. Burnell Collaborators: J. Slingerland S. H. Simon September 2, 2010 Overview Matter: classified by orders Symmetry Breaking (Ferromagnet)

More information

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots A. Kundu 1 1 Heinrich-Heine Universität Düsseldorf, Germany The Capri Spring School on Transport in Nanostructures

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 2 Feb 1998

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 2 Feb 1998 Transport through an Interacting Quantum Dot Coupled to Two Superconducting Leads arxiv:cond-mat/9828v [cond-mat.mes-hall] 2 Feb 998 Kicheon Kang Department of Physics, Korea University, Seoul 36-7, Korea

More information

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Michael Ruby, Nino Hatter, Benjamin Heinrich Falko Pientka, Yang Peng, Felix von Oppen, Nacho Pascual, Katharina

More information

STM spectra of graphene

STM spectra of graphene STM spectra of graphene K. Sengupta Theoretical Physics Division, IACS, Kolkata. Collaborators G. Baskaran, I.M.Sc Chennai, K. Saha, IACS Kolkata I. Paul, Grenoble France H. Manoharan, Stanford USA Refs:

More information

Charges and Spins in Quantum Dots

Charges and Spins in Quantum Dots Charges and Spins in Quantum Dots L.I. Glazman Yale University Chernogolovka 2007 Outline Confined (0D) Fermi liquid: Electron-electron interaction and ground state properties of a quantum dot Confined

More information

Spin orbit interaction in graphene monolayers & carbon nanotubes

Spin orbit interaction in graphene monolayers & carbon nanotubes Spin orbit interaction in graphene monolayers & carbon nanotubes Reinhold Egger Institut für Theoretische Physik, Düsseldorf Alessandro De Martino Andreas Schulz, Artur Hütten MPI Dresden, 25.10.2011 Overview

More information

Current noise in topological Josephson junctions

Current noise in topological Josephson junctions Current noise in topological Josephson junctions Julia S. Meyer with Driss Badiane, Leonid Glazman, and Manuel Houzet INT Seattle Workshop on Quantum Noise May 29, 2013 Motivation active search for Majorana

More information

Superconductivity at nanoscale

Superconductivity at nanoscale Superconductivity at nanoscale Superconductivity is the result of the formation of a quantum condensate of paired electrons (Cooper pairs). In small particles, the allowed energy levels are quantized and

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

Many-body correlations in a Cu-phthalocyanine STM single molecule junction

Many-body correlations in a Cu-phthalocyanine STM single molecule junction Many-body correlations in a Cu-phthalocyanine STM single molecule junction Andrea Donarini Institute of Theoretical Physics, University of Regensburg (Germany) Organic ligand Metal center Non-equilibrium

More information

Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh. Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu

Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh. Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu Introduction: The Kondo effect in metals de Haas, de Boer

More information

From single magnetic adatoms to coupled chains on a superconductor

From single magnetic adatoms to coupled chains on a superconductor From single magnetic adatoms to coupled chains on a superconductor Michael Ruby, Benjamin Heinrich, Yang Peng, Falko Pientka, Felix von Oppen, Katharina Franke Magnetic adatoms on a superconductor Sample

More information

Cotunneling and Kondo effect in quantum dots. Part I/II

Cotunneling and Kondo effect in quantum dots. Part I/II & NSC Cotunneling and Kondo effect in quantum dots Part I/II Jens Paaske The Niels Bohr Institute & Nano-Science Center Bad Honnef, September, 2010 Dias 1 Lecture plan Part I 1. Basics of Coulomb blockade

More information

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Anatoli Polkovnikov Boston University Ehud Altman Weizmann Vladimir Gritsev Harvard Mikhail

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Josephson φ 0 -junction in nanowire quantum dots D. B. Szombati, S. Nadj-Perge, D. Car, S. R. Plissard, E. P. A. M. Bakkers, L. P. Kouwenhoven 1. Breaking of the chiral symmetry in quantum dots 2. Characterization

More information

arxiv: v2 [cond-mat.mes-hall] 12 Feb 2013

arxiv: v2 [cond-mat.mes-hall] 12 Feb 2013 Reentrant topological phase transitions in a disordered spinless superconducting wire Maria-Theresa Rieder, Piet W. Brouwer Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie niversität

More information

Integer quantum Hall effect for bosons: A physical realization

Integer quantum Hall effect for bosons: A physical realization Integer quantum Hall effect for bosons: A physical realization T. Senthil (MIT) and Michael Levin (UMCP). (arxiv:1206.1604) Thanks: Xie Chen, Zhengchen Liu, Zhengcheng Gu, Xiao-gang Wen, and Ashvin Vishwanath.

More information

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 Kondo Effect in Metals and Quantum Dots Jan von Delft

More information

Bell-like non-locality from Majorana end-states

Bell-like non-locality from Majorana end-states Bell-like non-locality from Majorana end-states Alessandro Romito with Yuval Gefen (WIS) 07.09.2016, Daejeon, Workshop on Anderson Localiation in Topological Insulators Outline Topological superconductors

More information

From Majorana Fermions to Topological Order

From Majorana Fermions to Topological Order From Majorana Fermions to Topological Order Arxiv: 1201.3757, to appear in PRL. B.M. Terhal, F. Hassler, D.P. DiVincenzo IQI, RWTH Aachen We are looking for PhD students or postdocs for theoretical research

More information

arxiv: v2 [cond-mat.mes-hall] 12 Jul 2016

arxiv: v2 [cond-mat.mes-hall] 12 Jul 2016 Tomography of Majorana Fermions with STM Tips Denis Chevallier and Jelena Klinovaja Department of Physics, University of Basel, Klingelbergstrasse, CH-5 Basel, Switzerland (Dated: October 11, 1) arxiv:1.57v

More information

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot A. Kumar, M. Gaim, D. Steininger, A. Levy Yeyati, A. Martín-Rodero, A. K. Hüttel, and C. Strunk Phys. Rev. B 89,

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Valence Bonds in Random Quantum Magnets

Valence Bonds in Random Quantum Magnets Valence Bonds in Random Quantum Magnets theory and application to YbMgGaO 4 Yukawa Institute, Kyoto, November 2017 Itamar Kimchi I.K., Adam Nahum, T. Senthil, arxiv:1710.06860 Valence Bonds in Random Quantum

More information

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA LCI -birthplace of liquid crystal display May, 4 1970 protests Fashion school is in top-3 in USA Clinical Psychology program is Top-5 in USA Topological insulators driven by electron spin Maxim Dzero Kent

More information

Quantum Transport and Dissipation

Quantum Transport and Dissipation Thomas Dittrich, Peter Hänggi, Gert-Ludwig Ingold, Bernhard Kramer, Gerd Schön and Wilhelm Zwerger Quantum Transport and Dissipation WILEY-VCH Weinheim Berlin New York Chichester Brisbane Singapore Toronto

More information

Simulation of Quantum Many-Body Systems

Simulation of Quantum Many-Body Systems Numerical Quantum Simulation of Matteo Rizzi - KOMET 337 - JGU Mainz Vorstellung der Arbeitsgruppen WS 14-15 QMBS: An interdisciplinary topic entanglement structure of relevant states anyons for q-memory

More information

Nonlocal transport properties due to Andreev scattering

Nonlocal transport properties due to Andreev scattering Charles Univ. in Prague, 5 X 2015 Nonlocal transport properties due to Andreev scattering Tadeusz Domański Marie Curie-Skłodowska University, Lublin, Poland http://kft.umcs.lublin.pl/doman/lectures Outline

More information

Interference: from quantum mechanics to nanotechnology

Interference: from quantum mechanics to nanotechnology Interference: from quantum mechanics to nanotechnology Andrea Donarini L. de Broglie P. M. A. Dirac A photon interferes only with itself Double slit experiment: (London, 1801) T. Young Phil. Trans. R.

More information

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato Surface Majorana Fermions in Topological Superconductors ISSP, Univ. of Tokyo Nagoya University Masatoshi Sato Kyoto Tokyo Nagoya In collaboration with Satoshi Fujimoto (Kyoto University) Yoshiro Takahashi

More information

Coherence and Correlations in Transport through Quantum Dots

Coherence and Correlations in Transport through Quantum Dots Coherence and Correlations in Transport through Quantum Dots Rolf J. Haug Abteilung Nanostrukturen Institut für Festkörperphysik and Laboratory for Nano and Quantum Engineering Gottfried Wilhelm Leibniz

More information

Universal transport at the edge: Disorder, interactions, and topological protection

Universal transport at the edge: Disorder, interactions, and topological protection Universal transport at the edge: Disorder, interactions, and topological protection Matthew S. Foster, Rice University March 31 st, 2016 Universal transport coefficients at the edges of 2D topological

More information

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields Gloria Platero Instituto de Ciencia de Materiales (ICMM), CSIC, Madrid, Spain María Busl (ICMM), Rafael Sánchez,Université de Genève Toulouse,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Spin-resolved Andreev levels and parity crossings in hybrid superconductor-semiconductor nanostructures Eduardo J. H. Lee, Xiaocheng Jiang, Manuel Houzet, Ramón Aguado, Charles M. Lieber, and Silvano De

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

One-Dimensional Coulomb Drag: Probing the Luttinger Liquid State - I

One-Dimensional Coulomb Drag: Probing the Luttinger Liquid State - I One-Dimensional Coulomb Drag: Probing the Luttinger Liquid State - Although the LL description of 1D interacting electron systems is now well established theoretically, experimental effort to study the

More information

Topological invariants for 1-dimensional superconductors

Topological invariants for 1-dimensional superconductors Topological invariants for 1-dimensional superconductors Eddy Ardonne Jan Budich 1306.4459 1308.soon SPORE 13 2013-07-31 Intro: Transverse field Ising model H TFI = L 1 i=0 hσ z i + σ x i σ x i+1 σ s:

More information

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Prof. Luis Gregório Dias DFMT PG5295 Muitos Corpos 1 Electronic Transport in Quantum

More information

single-electron electron tunneling (SET)

single-electron electron tunneling (SET) single-electron electron tunneling (SET) classical dots (SET islands): level spacing is NOT important; only the charging energy (=classical effect, many electrons on the island) quantum dots: : level spacing

More information

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in D Fermi Gases Carlos A. R. Sa de Melo Georgia Institute of Technology QMath13 Mathematical Results in Quantum

More information

Quantum Hall Effect in Graphene p-n Junctions

Quantum Hall Effect in Graphene p-n Junctions Quantum Hall Effect in Graphene p-n Junctions Dima Abanin (MIT) Collaboration: Leonid Levitov, Patrick Lee, Harvard and Columbia groups UIUC January 14, 2008 Electron transport in graphene monolayer New

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University September 18, 2014 2 Chapter 5 Atoms in optical lattices Optical lattices

More information

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality Hans-Henning Klauss Institut für Festkörperphysik TU Dresden 1 References [1] Stephen Blundell, Magnetism in Condensed

More information

Single Electron Tunneling Examples

Single Electron Tunneling Examples Single Electron Tunneling Examples Danny Porath 2002 (Schönenberger et. al.) It has long been an axiom of mine that the little things are infinitely the most important Sir Arthur Conan Doyle Books and

More information

arxiv: v2 [cond-mat.mes-hall] 21 Jun 2017

arxiv: v2 [cond-mat.mes-hall] 21 Jun 2017 Nonequilibrium Majorana fluctuations arxiv:1606.01645v2 [cond-mat.mes-hall] 21 Jun 2017 Sergey Smirnov Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany P. N. Lebedev

More information