QUANTUM TRANSPORT IN BOTTOM-UP SEMICONDUCTOR NANOSTRUCTURES

Size: px
Start display at page:

Download "QUANTUM TRANSPORT IN BOTTOM-UP SEMICONDUCTOR NANOSTRUCTURES"

Transcription

1 QUANTUM TRANSPORT IN BOTTOM-UP SEMICONDUCTOR NANOSTRUCTURES Silvano De Franceschi INAC/SPSMS/LaTEQS: Laboratory of quantum electron transport and superconductivity Silvano De Franceschi GDR Physique Quantique Mésoscopique, Aussois 8-11 décembre 2008

2 Top-down Quantum Dot Devices 2 1 Spathis et al. (poster session) V SD (mv) 0-1 N= V g (mv) Hofheinz, Jehl, Sanquer et al. V g Silvano De Franceschi Laboratoire de Transport Electronique Quantique et Supraconductivité 17/12/2008 2

3 Semiconductor nanowires: growth and device fabrication Catalytic VLS growth gold particle vapor liquid eutect time nanowire I - V - I + V + SiO 2 Si (p+) 1 μm source L sd W φ V gate drain Silvano De Franceschi Laboratoire de Transport Electronique Quantique et Supraconductivité 17/12/2008 3

4 Bottom-up semiconductor nanowire LaTEQS 1µm Si nanowires (Mongillo et al.) Aluminum bottom gates InAs/InP core/shell nanowires (Katsaros et al) 1 μm Ni silicide GaN/AlGaN nanowires (Songmuang et al) 1µm Mn-GaAs nanowires (Storace et al) 200 nm Silvano De Franceschi Laboratoire de Transport Electronique Quantique et Supraconductivité 17/12/2008 4

5 Self-assembled semiconductor quantum dot LaTEQS Ge islands on Si (Katsaros et al) gate source drain Source-drain bias gate gate voltage Silvano De Franceschi Laboratoire de Transport Electronique Quantique et Supraconductivité 17/12/2008 5

6 Hybrid normal-superconductor devices Josephson effect and Andreev reflection Thin insulating (oxide) interlayer φ S φ D I S = I C sin(φ S - φ D ) S _ I _ S Short (L< L Φ )normal-conductor interlayer L φ S φ D Andreev reflection I S = I C sin(φ S - φ D ) S _ N _ S Silvano De Franceschi Laboratoire de Transport Electronique Quantique et Supraconductivité 17/12/2008 6

7 Hybrid normal-superconductor devices?? Nano-link S _ DOT _ S How does superconductivity affects transport? Can a supercurrent flow? What is the current-phase relationship? Can superconductivity provide insight on the electronic properties? Many energy scales involved Superconducting gap Δ Charging energy U Level spacing ΔE Lifetime broadening Γ Thouless energy E Th = h/τ D Temperature k B T Silvano De Franceschi Laboratoire de Transport Electronique Quantique et Supraconductivité 17/12/2008 7

8 Hybrid normal-superconductor devices Metal Nanoparticles in an oxide thin layer: Ralph et al, PRL 95 Atomic-size contacts: Scheer et al., PRL 97; PRL 01. Kasumov et al, Science ) Morpurgo et al., Science Buitelaar et al., PRL 02 Jarillo-Herrero et al., Nature 06 Cleuziou et al., Nature Nanotech. 06 Doh et al. Science 05 van Dam et al. Nature 06 Xiang et al., Nature Nanotech. 06 Sand-Jespersen, PRL 07 Heersche et al. Nature 06 Buizert et al. PRL 07 Silvano De Franceschi Laboratoire de Transport Electronique Quantique et Supraconductivité 17/12/2008 8

9 Andreev reflection vs Coulomb blockade S-N-S devices based on InAs or InP nanowire DIfferent regimes depending on relative value of the relevant energy scales: Superconducting gap Δ Charging energy U Level spacing ΔE Lifetime broadening Γ Thouless energy E Th = h/τ D Temperature k B T R N /R Q as characteristic parameter (with R N the normal-state resistance and R Q (2e 2 /h) -1 ~26 kω the quantum resistance) Y.-J. Doh, SD, et al. Nano Letters, 8 Dec Silvano De Franceschi Laboratoire de Transport Electronique Quantique et Supraconductivité 17/12/2008 9

10 n-type InP nanowire (n~10 19 cm -3 ): weak coupling case R N >> R Q (2e 2 /h) -1 ~26 kω => Coulomb blockade di/dv sd vs (V sd,v g ) B= 20 mt sd Charging energy: U ~ 1 mev B= 20 mt U Silvano De Franceschi Laboratoire de Transport Electronique Quantique et Supraconductivité 17/12/

11 n-type InP nanowire (n~10 19 cm -3 ): weak coupling case R N >> R Q (2e 2 /h) -1 ~26 kω di/dv sd vs (V sd,v g ) +2Δ +Δ -Δ -2Δ sd B = 0 B= Δ << 0 U B= 20 mt Silvano De Franceschi Laboratoire de Transport Electronique Quantique et Supraconductivité 17/12/

12 Negative differential conductance due to BCS singularities B = 20 mt B = 0 Δ Δ Silvano De Franceschi Laboratoire de Transport Electronique Quantique et Supraconductivité 17/12/

13 n-doped InAs nanowires (n~10 19 cm -3 ): strong coupling case R N as low as ~1 KΩ => No Coulomb blockade upercond. Source SiO 2 Normal Supercond. Drain I C = 136 na R N = 417 Ω I C R N = 60 μv ~ Δ 0 /e Δ, ϕ S Δ < Δ (induced gap) (DC Josephson effect) Ψ = Ψ exp( iϕ ), j = S,D R, L j j j Δ, ϕ S V (μv) I R T = 40 mk I C I (na) ~ I = I sin( φ ) where φ ϕ ϕ S C SD LR SD LR SL DR Silvano De Franceschi Laboratoire de Transport Electronique Quantique et Supraconductivité 17/12/

14 S Source Field-effect control of the supercurrent N S Science (2005) Drain V (μv) V g < 0-71 V -61 V -50 V -40 V -30 V -20 V -10 V 0 V I (na) V gate Ic decreases with R N Ic for different devices 10 2 I C (na) R N (kω) 0 4 Silvano De Franceschi Laboratoire de Transport Electronique Quantique et Supraconductivité 17/12/

15 S Source Field-effect control of the supercurrent N S Drain Supercurrent fluctuations correlate with normal-state universal conductance fluctations V g < 0 Electron transport through the nanowire is diffusive and phase coherent => mesoscopic Josephson junctions V (μv) I (na) V gate -71 V -61 V -50 V -40 V -30 V -20 V -10 V 0 V 2 I (na) 0-2 dv/di (kohm) -70 V kω g (V) Theory: Altshuler & Spivak ( 87) 4 2 GN (2e2 /h) Silvano De Franceschi Laboratoire de Transport Electronique Quantique et Supraconductivité 17/12/

16 Phase-coherent diffusive transport in InAs nanowires (normal state) B Device 1 I - V - I + V + rms(g B )= (G(B) - G(B) ) 2 Device 2 L= 440 nm L= 110 nm rms(g B )= 0.3 e 2 /h rms(g B )= 0.29 e 2 /h B I - V - I + V + Note: G is not proportional to L! rms(g) is almost the same [in theory: rms(g B ) ~ (L φ /L) 3/2 e 2 /h] Metal contacts are 500 nm wide => L does not correspond to the distance between them Silvano De Franceschi Laboratoire de Transport Electronique Quantique et Supraconductivité 17/12/

17 Phase-coherent diffusive transport in InAs nanowires (normal state) Autocorrelation function: F(ΔB)= G(B)G(B+ΔB) - G(B) 2 F(ΔB) decays on a field scale B c (i.e.: F(ΔB)=1/2 F(0) for ΔB = B c ) Device 1 Device 2 L= 440 nm L= 110 nm B c = T B c = T => B c is independent of channel length and field direction! L φ ~ wire diameter ~ 100 nm For the long wire rms(g B ) = 2.45 (L φ /L) 3/2 e 2 /h = 2.45 (100/440) 3/2 e 2 /h = 0.3 e 2 /h [van Houten and Beenakker Solid State Physics 91] Silvano De Franceschi Laboratoire de Transport Electronique Quantique et Supraconductivité 17/12/

18 UCF and Andreev reflection Enhancement of rms(g) due to combined UCF and Andreev reflection b 0.8 rms(g g ) (e 2 B=0 30 di/dv (e 2 /h) V g (V) V=0; B=0.1T V (mv) Silvano De Franceschi Laboratoire de Transport Electronique Quantique et Supraconductivité 17/12/

19 n-type InP nanowire (n~10 19 cm -3 ): intermediate coupling case R N ~ R Q => expected competition Andreev reflection Coulomb blockade (+ high-order cotunneling) Andreev regime R N /R Q = 0.77 Δ Δ 500 nm Silvano De Franceschi Laboratoire de Transport Electronique Quantique et Supraconductivité 17/12/

20 n-type InP nanowire (n~10 19 cm -3 ): intermediate coupling case Gate dependence T dependence G/G max ~ cosh -2 [(e(c g /C Σ ) V g,peak - V g )/2.5k B T] From fit: U = e 2 /C Σ ~ 13.2 k B T ~ 30 μev Coulomb blockade affects only the low-bias regime Silvano De Franceschi Laboratoire de Transport Electronique Quantique et Supraconductivité 17/12/

21 n-type InP nanowire (n~10 19 cm -3 ): intermediate coupling case R N ~ R Q but U>>Δ : => Andreev Reflection vs Kondo effect/high-order cotunneling Buitelaar et al. PRL 02 (carbon nanotubes) Buizert et al, PRL 07 (with InAs self-assembled quantum dots) Sand-Jespersen et al. PRL 07 (InAs nanowires) => Single-electron supercurrent transistor and π Josephson junction I S = I C sin(φ SD +π) V L <0 V R <0 S S Source Drain Nature 442, 667 (2006) induced gap Δ* ~ Δ quantum dot induced gap Δ* ~ Δ Silvano De Franceschi Laboratoire de Transport Electronique Quantique et Supraconductivité 17/12/

22 Negative and positive supercurrent Simplest case: single-level quantum dot 4-th order co-tunneling initial intermediate final N=1 S=1/ I s = = I I c c sin( φ sin( φ LR LR ) (π-junction) + π ) initial intermediate final N=2 S= I = s I c sin( φ LR ) (ordinary junction) [Bulaevski, Knzii, Sobbianin, JETP Lett. 25, 290 ( 77);Spivak and Kivelson PRB 43, 3740 ( 91)] Silvano De Franceschi Laboratoire de Transport Electronique Quantique et Supraconductivité 17/12/

23 Summary?? Hybrid nanodevices Relevant energy scales: Δ, U, ΔE, Γ, E Th, k B T R N >> R Q R N << R Q R N ~ R Q Single-electron tunneling, NDC due to BCS density of states (Doh et al. Nano Letters 08) Case of a diffusive normale conductor (ΔE=0) Tunable proximity supercurrent (Doh et al. Science 05) Correlation between Ic fluctuations and UCF Enhance UCF amplitude due to Andreev reflection (at finite bias) Case of a ballistic conductor (quantum dot with finite ΔE) Resonant supercurrent transistor (Jarillo-Herrero et al. Nature 06) Case of a large quantum dot (ΔE~0, U<<Δ) Clear energy scale separation between Coulomb blockade and Andreev reflection (Doh et al. Nano Letters 08) Case of a small quantum dot ( Γ < ~ ΔE, U,Δ ) pi-junction behavior: I S = I C sin(φ SD +π) (van Dam et al., Nature 06) Silvano De Franceschi Laboratoire de Transport Electronique Quantique et Supraconductivité 17/12/

24 Acknowledgements INAC/SPSMS/LaTEQS: M. Mongillo (PhD), G. Katsaros (PD), P. Spathis (PD) open positions available at master, PhD and PD level F. Lefloch, J.L. Thomassin, X. Jehl, M. Sanquer Collaborators on semiconductor nanowires (NWs): J. Van Dam, Y.J. Doh, S. Sapmaz, L. Kouwenhoven (InAs/InP NWs, TU Delft) E. Bakkers, A. Roest (InAs/InP NWs, Philips Eindhoven) S. Rubini, F. Martelli, F. Jabeen (Mn-doped GaAs/InAs NWs, CNR-INFM TASC,Trieste) E. Storace, J. Weis, K. von Klitzing (Mn-doped GaAs/InAs NWs, MPI Stuttgart) X. Jiang, C. Lieber (InAs-InP core-shell NWs, Harvard) R. Songmuang, B. Daudin, B. Gayral (GaN-based NWs, INAC/CNRS) C. Mouchet, E. Rouviere, J.P. Simonato (doped Si NWs, LITEN) P. Gentile, N. Pauc, T. Baron (undoped Si NWs, INAC/LTM) Collaborators on self-assembled semiconductor quantum dots: M. Stoffel, A. Rastelli, O. Schmidt (IFW Dresden) Funding: ANR (chair d excellence & ERC starting grant), EU FP6 (HYSWITCH) Silvano De Franceschi Laboratoire de Transport Electronique Quantique et Supraconductivité 17/12/

25 Fully tunable quantum dot: intermediate tunnel coupling V L V R V = δ μm e B=100 mt 200 nm V R = mv δ V (mv) δ Inelastic cotunneling V L (mv) -390 Can be used for spectroscopy in strong coupling regime [PRL 86, 878 (2001)] Silvano De Franceschi Laboratoire de Transport Electronique Quantique et Supraconductivité 17/12/

26 Fully tunable quantum dot: intermediate tunnel coupling V L V R 1 μm 200 nm Quantum dot parameters: Charging energy: ~ 1 mev 1.5 e B=100 mt V R = mv Level spacing: mev Supercond. gap: 0.14 mev V (mv) δ V L (mv) -390 Silvano De Franceschi Laboratoire de Transport Electronique Quantique et Supraconductivité 17/12/

27 S Source L R Δ* QD Δ* D Study of Josephson Supercurrent through an interacting QD Nature 442, 667 (2006) V L V R We exploit the independent tunability of nanowire JJs I c,ref = 320 pa (V REF = fixed constant) V REF 2µm Drain I c,qd (na) I c =I c,qd +I c,ref b V (mv) -1 1 negative supercurrent! N N+1 N+2 N+3 N+4 Silvano De Franceschi Laboratoire de Transport Electronique Quantique et Supraconductivité 17/12/ V L (mv)

28 S L R Δ* QD Δ* D 0.4 π-junction behaviour 5 Source V L I c (na) Φ (Φ 0 ) V REF 2µm Φ Drain V R I c,qd (na) Φ (Φ 0 ) b V (mv) V L (mv) Similar π-behavior seen also in CNT-SQUIDs [Cleuziou et al. (2006)] N N+1 N+2 N+3 N+4 Silvano De Franceschi Laboratoire de Transport Electronique Quantique et Supraconductivité 17/12/ V L (mv)

29 Phase-coherent diffusive transport in InAs nanowires B=0.1T: UCF drops for kt>e Th B=0: UCF drops for V>E Th This is consistent with a Thouless energy E TH ~ 0.14 mev Silvano De Franceschi Laboratoire de Transport Electronique Quantique et Supraconductivité 17/12/

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble The Nanotube SQUID J.-P. Cleuziou,, Th. Ondarçuhu uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble Outline Sample fabrication Proximity effect in CNT The CNT superconducting

More information

Self-assembled SiGe single hole transistors

Self-assembled SiGe single hole transistors Self-assembled SiGe single hole transistors G. Katsaros 1, P. Spathis 1, M. Stoffel 2, F. Fournel 3, M. Mongillo 1, V. Bouchiat 4, F. Lefloch 1, A. Rastelli 2, O. G. Schmidt 2 and S. De Franceschi 1 1

More information

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Nadya Mason Travis Dirk, Yung-Fu Chen, Cesar Chialvo Taylor Hughes, Siddhartha Lal, Bruno Uchoa Paul Goldbart University

More information

Carbon Nanotubes part 2 CNT s s as a toy model for basic science. Niels Bohr Institute School 2005

Carbon Nanotubes part 2 CNT s s as a toy model for basic science. Niels Bohr Institute School 2005 Carbon Nanotubes part 2 CNT s s as a toy model for basic science Niels Bohr Institute School 2005 1 Carbon Nanotubes as a model system 2 Christian Schönenberger University of Basel B. Babic W. Belzig M.

More information

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot A. Kumar, M. Gaim, D. Steininger, A. Levy Yeyati, A. Martín-Rodero, A. K. Hüttel, and C. Strunk Phys. Rev. B 89,

More information

single-electron electron tunneling (SET)

single-electron electron tunneling (SET) single-electron electron tunneling (SET) classical dots (SET islands): level spacing is NOT important; only the charging energy (=classical effect, many electrons on the island) quantum dots: : level spacing

More information

Supplementary Information

Supplementary Information Supplementary Information Quantum supercurrent transistors in carbon nanotubes Pablo Jarillo-Herrero, Jorden A. van Dam, Leo P. Kouwenhoven Device Fabrication The nanotubes were grown by chemical vapour

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Josephson φ 0 -junction in nanowire quantum dots D. B. Szombati, S. Nadj-Perge, D. Car, S. R. Plissard, E. P. A. M. Bakkers, L. P. Kouwenhoven 1. Breaking of the chiral symmetry in quantum dots 2. Characterization

More information

Nano devices for single photon source and qubit

Nano devices for single photon source and qubit Nano devices for single photon source and qubit, Acknowledgement K. Gloos, P. Utko, P. Lindelof Niels Bohr Institute, Denmark J. Toppari, K. Hansen, S. Paraoanu, J. Pekola University of Jyvaskyla, Finland

More information

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat, and R. Deblock Laboratoire de Physique des Solides Orsay (France) Theory : P. Simon (LPS),

More information

M.C. Escher. Angels and devils (detail), 1941

M.C. Escher. Angels and devils (detail), 1941 M.C. Escher Angels and devils (detail), 1941 1 Coherent Quantum Phase Slip: Exact quantum dual to Josephson Tunneling (Coulomb blockade is a partial dual) Degree of freedom in superconductor: Phase and

More information

Electron counting with quantum dots

Electron counting with quantum dots Electron counting with quantum dots Klaus Ensslin Solid State Physics Zürich with S. Gustavsson I. Shorubalko R. Leturcq T. Ihn A. C. Gossard Time-resolved charge detection Single photon detection Time-resolved

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate transport through the single molecule magnet Mn12 Herre van der Zant H.B. Heersche, Z. de Groot (Delft) C. Romeike, M. Wegewijs (RWTH Aachen) D. Barreca, E. Tondello (Padova) L. Zobbi, A. Cornia (Modena)

More information

Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique

Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique GDR Physique Quantique Mésoscopique, Aussois, 19-22 mars 2007 Simon Gustavsson Matthias Studer Renaud Leturcq Barbara Simovic

More information

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures Kondo Effects in Metals: magnetic impurities

More information

Josephson effect in carbon nanotubes with spin-orbit coupling.

Josephson effect in carbon nanotubes with spin-orbit coupling. Josephson effect in carbon nanotubes with spin-orbit coupling. Rosa López Interdisciplinary Institute for Cross-Disciplinary Physics and Complex Systems University of Balearic Islands IFISC (CSIC-UIB),

More information

Coulomb blockade in metallic islands and quantum dots

Coulomb blockade in metallic islands and quantum dots Coulomb blockade in metallic islands and quantum dots Charging energy and chemical potential of a metallic island Coulomb blockade and single-electron transistors Quantum dots and the constant interaction

More information

HYSWITCH Informal meeting Chersonissos - Crete September 15th 19th 2007,

HYSWITCH Informal meeting Chersonissos - Crete September 15th 19th 2007, HYSWITCH Informal meeting Chersonissos - Crete September 15th 19th 27, Scuola Normale Superiore & NEST CNR-INFM I-56126 Pisa, Italy F. Carillo I. Batov G. Biasiol F. Deon F. Dolcini F. Giazotto V. Pellegrini

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Nov 2001

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Nov 2001 Published in: Single-Electron Tunneling and Mesoscopic Devices, edited by H. Koch and H. Lübbig (Springer, Berlin, 1992): pp. 175 179. arxiv:cond-mat/0111505v1 [cond-mat.mes-hall] 27 Nov 2001 Resonant

More information

Charges and Spins in Quantum Dots

Charges and Spins in Quantum Dots Charges and Spins in Quantum Dots L.I. Glazman Yale University Chernogolovka 2007 Outline Confined (0D) Fermi liquid: Electron-electron interaction and ground state properties of a quantum dot Confined

More information

Single Electron Tunneling Examples

Single Electron Tunneling Examples Single Electron Tunneling Examples Danny Porath 2002 (Schönenberger et. al.) It has long been an axiom of mine that the little things are infinitely the most important Sir Arthur Conan Doyle Books and

More information

Cotunneling and Kondo effect in quantum dots. Part I/II

Cotunneling and Kondo effect in quantum dots. Part I/II & NSC Cotunneling and Kondo effect in quantum dots Part I/II Jens Paaske The Niels Bohr Institute & Nano-Science Center Bad Honnef, September, 2010 Dias 1 Lecture plan Part I 1. Basics of Coulomb blockade

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Collapse of superconductivity in a hybrid tin graphene Josephson junction array by Zheng Han et al. SUPPLEMENTARY INFORMATION 1. Determination of the electronic mobility of graphene. 1.a extraction from

More information

Quantum Noise Measurement of a Carbon Nanotube Quantum dot in the Kondo Regime

Quantum Noise Measurement of a Carbon Nanotube Quantum dot in the Kondo Regime Quantum Noise Measurement of a Carbon Nanotube Quantum dot in the Kondo Regime J. Basset, 1 A.Yu. Kasumov, 1 C.P. Moca, G. Zarand,, 3 P. Simon, 1 H. Bouchiat, 1 and R. Deblock 1 1 Laboratoire de Physique

More information

Search for time reversal symmetry effects in disordered conductors and insulators beyond weak localization. Marc Sanquer CEA/DRF/INAC & UGA

Search for time reversal symmetry effects in disordered conductors and insulators beyond weak localization. Marc Sanquer CEA/DRF/INAC & UGA Search for time reversal symmetry effects in disordered conductors and insulators beyond weak localization. Marc Sanquer CEA/DRF/INAC & UGA 40 years of Mesoscopics Physics: Colloquium in memory of Jean-Louis

More information

Electronic transport in low dimensional systems

Electronic transport in low dimensional systems Electronic transport in low dimensional systems For example: 2D system l

More information

The Physics of Nanoelectronics

The Physics of Nanoelectronics The Physics of Nanoelectronics Transport and Fluctuation Phenomena at Low Temperatures Tero T. Heikkilä Low Temperature Laboratory, Aalto University, Finland OXFORD UNIVERSITY PRESS Contents List of symbols

More information

Graphene Field effect transistors

Graphene Field effect transistors GDR Meso 2008 Aussois 8-11 December 2008 Graphene Field effect transistors Jérôme Cayssol CPMOH, UMR Université de Bordeaux-CNRS 1) Role of the contacts in graphene field effect transistors motivated by

More information

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Luis Dias UT/ORNL Lectures: Condensed Matter II 1 Electronic Transport

More information

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik Majorana single-charge transistor Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Majorana nanowires: Two-terminal device: Majorana singlecharge

More information

How a single defect can affect silicon nano-devices. Ted Thorbeck

How a single defect can affect silicon nano-devices. Ted Thorbeck How a single defect can affect silicon nano-devices Ted Thorbeck tedt@nist.gov The Big Idea As MOS-FETs continue to shrink, single atomic scale defects are beginning to affect device performance Gate Source

More information

Superconducting properties of carbon nanotubes

Superconducting properties of carbon nanotubes Superconducting properties of carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf A. De Martino, F. Siano Overview Superconductivity in ropes of nanotubes

More information

Carbon Nanotube Quantum Dot with Superconducting Leads. Kondo Effect and Andreev Reflection in CNT s

Carbon Nanotube Quantum Dot with Superconducting Leads. Kondo Effect and Andreev Reflection in CNT s Carbon Nanotube Quantum Dot with Superconducting Leads Kondo Effect and Andreev Reflection in CNT s Motivation Motivation S NT S Orsay group: reported enhanced I C R N product S A. Yu. Kasumov et al. N

More information

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg Laurens W. Molenkamp Physikalisches Institut, EP3 Universität Würzburg Onsager Coefficients I electric current density J particle current density J Q heat flux, heat current density µ chemical potential

More information

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube Objective: learn about nano-manipulation techniques with a STM or an AFM. 5.1: With a nanotube Moving a nanotube Cutting a nanotube Images at large distance At small distance : push the NT Voltage pulse

More information

Quantum Information Processing with Semiconductor Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electrical control of single hole spins in nanowire quantum dots V. S. Pribiag, S. Nadj-Perge, S. M. Frolov, J. W. G. van den Berg, I. van Weperen., S. R. Plissard, E. P. A. M. Bakkers and L. P. Kouwenhoven

More information

Cooper-pair splitter: towards an efficient source of spin-entangled EPR pairs

Cooper-pair splitter: towards an efficient source of spin-entangled EPR pairs Cooper-pair splitter: towards an efficient source of spin-entangled EPR pairs L. Hofstetter 1, A. Kleine 1, S. Csonka 1,2, A. Geresdi 2, M. Aagesen 3, J. Nygard 3, A. Baumgartner 1, J. Trbovic 1, and C.

More information

Coulomb Blockade and Kondo Effect in Nanostructures

Coulomb Blockade and Kondo Effect in Nanostructures Coulomb Blockade and Kondo Effect in Nanostructures Marcin M. Wysokioski 1,2 1 Institute of Physics Albert-Ludwigs-Universität Freiburg 2 Institute of Physics Jagiellonian University, Cracow, Poland 2.VI.2010

More information

Three-terminal quantum-dot thermoelectrics

Three-terminal quantum-dot thermoelectrics Three-terminal quantum-dot thermoelectrics Björn Sothmann Université de Genève Collaborators: R. Sánchez, A. N. Jordan, M. Büttiker 5.11.2013 Outline Introduction Quantum dots and Coulomb blockade Quantum

More information

Single Electron Transistor (SET)

Single Electron Transistor (SET) Single Electron Transistor (SET) e - e - dot C g V g A single electron transistor is similar to a normal transistor (below), except 1) the channel is replaced by a small dot. 2) the dot is separated from

More information

Physics and Material Science of Semiconductor Nanostructures

Physics and Material Science of Semiconductor Nanostructures Physics and Material Science of Semiconductor Nanostructures PHYS 570P Prof. Oana Malis Email: omalis@purdue.edu Course website: http://www.physics.purdue.edu/academic_programs/courses/phys570p/ 1 Introduction

More information

Quantum dots and Majorana Fermions Karsten Flensberg

Quantum dots and Majorana Fermions Karsten Flensberg Quantum dots and Majorana Fermions Karsten Flensberg Center for Quantum Devices University of Copenhagen Collaborator: Martin Leijnse and R. Egger M. Kjærgaard K. Wölms Outline: - Introduction to Majorana

More information

Chapter 8: Coulomb blockade and Kondo physics

Chapter 8: Coulomb blockade and Kondo physics Chater 8: Coulomb blockade and Kondo hysics 1) Chater 15 of Cuevas& Scheer. REFERENCES 2) Charge transort and single-electron effects in nanoscale systems, J.M. Thijssen and H.S.J. Van der Zant, Phys.

More information

Strong tunable coupling between a charge and a phase qubit

Strong tunable coupling between a charge and a phase qubit Strong tunable coupling between a charge and a phase qubit Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Bernard Pannetier Aurélien Fay Ioan Pop Florent Lecocq Rapaël Léone Nicolas Didier

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

LECTURE 2: Thermometry

LECTURE 2: Thermometry LECTURE 2: Thermometry Tunnel barrier Examples of aluminium-oxide tunnel barriers Basics of tunnel junctions E 1 2 Tunneling from occupied states to empty states V Metal Insulator Metal (NIN) tunnel junction

More information

Coulomb blockade and single electron tunnelling

Coulomb blockade and single electron tunnelling Coulomb blockade and single electron tunnelling Andrea Donarini Institute of theoretical physics, University of Regensburg Three terminal device Source System Drain Gate Variation of the electrostatic

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 2 Mar 2007

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 2 Mar 2007 Even-odd effect in Andreev Transport through a Carbon Nanotube Quantum Dot arxiv:cond-mat/0703082v1 [cond-mat.mes-hall] 2 Mar 2007 A. Eichler, M. Weiss, S. Oberholzer, and C. Schönenberger Institut für

More information

Testing axion physics in a Josephson junction environment

Testing axion physics in a Josephson junction environment Testing axion physics in a Josephson junction environment Christian Beck Queen Mary, University of London 1 Testing axion physics in a Josephson junction environment Christian Beck Queen Mary, University

More information

Effet Kondo dans les nanostructures: Morceaux choisis

Effet Kondo dans les nanostructures: Morceaux choisis Effet Kondo dans les nanostructures: Morceaux choisis Pascal SIMON Rencontre du GDR Méso: Aussois du 05 au 08 Octobre 2009 OUTLINE I. The traditional (old-fashioned?) Kondo effect II. Direct access to

More information

Publication II. c (2007) The American Physical Society. Reprinted with permission.

Publication II. c (2007) The American Physical Society. Reprinted with permission. Publication II Nikolai B. Kopnin and Juha Voutilainen, Nonequilibrium charge transport in quantum SINIS structures, Physical Review B, 75, 174509 (2007). c (2007) The American Physical Society. Reprinted

More information

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems * Mesoscopic Nano-Electro-Mechanics of Shuttle Systems Robert Shekhter University of Gothenburg, Sweden Lecture1: Mechanically assisted single-electronics Lecture2: Quantum coherent nano-electro-mechanics

More information

Publication VII. c 2011 The American Physical Society. Reprinted with permission.

Publication VII. c 2011 The American Physical Society. Reprinted with permission. Publication VII M. Meschke, J. T. Peltonen, J. P. Pekola, and F. Giazotto. Tunnel Spectroscopy of a Proximity Josephson Junction. arxiv:115.3875, 5 pages, submitted for publication, May 11. c 11 The American

More information

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University g Q 2 m T + S Mirror U 3 U 1 U 2 U 3 Mirror Detector See Hanson et al., Rev. Mod. Phys.

More information

state spectroscopy Xing Lan Liu, Dorothee Hug, Lieven M. K. Vandersypen Netherlands

state spectroscopy Xing Lan Liu, Dorothee Hug, Lieven M. K. Vandersypen Netherlands Gate-defined graphene double quantum dot and excited state spectroscopy Xing Lan Liu, Dorothee Hug, Lieven M. K. Vandersypen Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046,

More information

Scanning Gate Microscopy (SGM) of semiconductor nanostructures

Scanning Gate Microscopy (SGM) of semiconductor nanostructures Scanning Gate Microscopy (SGM) of semiconductor nanostructures H. Sellier, P. Liu, B. Sacépé, S. Huant Dépt NANO, Institut NEEL, Grenoble, France B. Hackens, F. Martins, V. Bayot UCL, Louvain-la-Neuve,

More information

File name: Supplementary Information Description: Supplementary Figures and Supplementary References. File name: Peer Review File Description:

File name: Supplementary Information Description: Supplementary Figures and Supplementary References. File name: Peer Review File Description: File name: Supplementary Information Description: Supplementary Figures and Supplementary References File name: Peer Review File Description: Supplementary Figure Electron micrographs and ballistic transport

More information

FEW ELECTRON QUANTUM DOTS IN InAs/InP CORE SHELL NANOWIRES

FEW ELECTRON QUANTUM DOTS IN InAs/InP CORE SHELL NANOWIRES FEW ELECTRON QUANTUM DOTS IN InAs/InP CORE SHELL NANOWIRES By Shivendra Upadhyay Delft University of Technology Faculty of Applied Science Kavli Institute of Nanoscience Quantum Transport Group Drs. J.

More information

Presented by: Göteborg University, Sweden

Presented by: Göteborg University, Sweden SMR 1760-3 COLLEGE ON PHYSICS OF NANO-DEVICES 10-21 July 2006 Nanoelectromechanics of Magnetic and Superconducting Tunneling Devices Presented by: Robert Shekhter Göteborg University, Sweden * Mechanically

More information

Carbon Nanotubes for Interconnect Applications Franz Kreupl, Andrew P. Graham, Maik Liebau, Georg S. Duesberg, Robert Seidel, Eugen Unger

Carbon Nanotubes for Interconnect Applications Franz Kreupl, Andrew P. Graham, Maik Liebau, Georg S. Duesberg, Robert Seidel, Eugen Unger Carbon Nanotubes for Interconnect Applications Franz Kreupl, Andrew P. Graham, Maik Liebau, Georg S. Duesberg, Robert Seidel, Eugen Unger Infineon Technologies Corporate Research Munich, Germany Outline

More information

Coherence and Correlations in Transport through Quantum Dots

Coherence and Correlations in Transport through Quantum Dots Coherence and Correlations in Transport through Quantum Dots Rolf J. Haug Abteilung Nanostrukturen Institut für Festkörperphysik and Laboratory for Nano and Quantum Engineering Gottfried Wilhelm Leibniz

More information

Electron transport : From nanoparticle arrays to single nanoparticles. Hervé Aubin

Electron transport : From nanoparticle arrays to single nanoparticles. Hervé Aubin Electron transport : From nanoparticle arrays to single nanoparticles Hervé Aubin Qian Yu (PhD) Hongyue Wang (PhD) Helena Moreira (PhD) Limin Cui (Visitor) Irena Resa(Post-doc) Brice Nadal (Post-doc) Alexandre

More information

Qubits: Supraleitende Quantenschaltungen. (i) Grundlagen und Messung

Qubits: Supraleitende Quantenschaltungen. (i) Grundlagen und Messung Braunschweiger Supraleiter-Seminar Seminar Qubits: Supraleitende Quantenschaltungen (i) Grundlagen und Messung Jens Könemann, Bundesallee 100, 38116 Braunschweig Q Φ 26. Mai 0/ 16 Braunschweiger Supraleiter-Seminar

More information

Disordered Superconductors

Disordered Superconductors Cargese 2016 Disordered Superconductors Claude Chapelier, INAC-PHELIQS, CEA-Grenoble Superconductivity in pure metals Kamerlingh Onnes, H., "Further experiments with liquid helium. C. On the change of

More information

Time-dependent single-electron transport: irreversibility and out-of-equilibrium. Klaus Ensslin

Time-dependent single-electron transport: irreversibility and out-of-equilibrium. Klaus Ensslin Time-dependent single-electron transport: irreversibility and out-of-equilibrium Klaus Ensslin Solid State Physics Zürich 1. quantum dots 2. electron counting 3. counting and irreversibility 4. Microwave

More information

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering L. Nevou, F. H. Julien, M. Tchernycheva, J. Mangeney Institut d Electronique Fondamentale, UMR CNRS 8622, University Paris-Sud

More information

Gate-defined graphene double quantum dot and excited state spectroscopy

Gate-defined graphene double quantum dot and excited state spectroscopy pubs.acs.org/nanolett Gate-defined graphene double quantum dot and excited state spectroscopy Xing Lan Liu,* Dorothee Hug, and Lieven M. K. Vandersypen Kavli Institute of Nanoscience, Delft University

More information

Electrical and Optical Properties. H.Hofmann

Electrical and Optical Properties. H.Hofmann Introduction to Nanomaterials Electrical and Optical Properties H.Hofmann Electrical Properties Ohm: G= σw/l where is the length of the conductor, measured in meters [m], A is the cross-section area of

More information

J. Paaske, NBI. What s the problem? Jens Paaske, NBI Dias 1

J. Paaske, NBI. What s the problem? Jens Paaske, NBI Dias 1 Nonequilibrium Quantum Transport What s the problem? Jens Paaske, NBI Dias 1 Basic 3-terminal setup sou urce Three metallic electrodes:? V 1. Emitter (Source) 2. Base (Gate) 3. Collector (Drain)?te ga

More information

Tunable Non-local Spin Control in a Coupled Quantum Dot System. N. J. Craig, J. M. Taylor, E. A. Lester, C. M. Marcus

Tunable Non-local Spin Control in a Coupled Quantum Dot System. N. J. Craig, J. M. Taylor, E. A. Lester, C. M. Marcus Tunable Non-local Spin Control in a Coupled Quantum Dot System N. J. Craig, J. M. Taylor, E. A. Lester, C. M. Marcus Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA M. P.

More information

Semiconductor Nanowires: Motivation

Semiconductor Nanowires: Motivation Semiconductor Nanowires: Motivation Patterning into sub 50 nm range is difficult with optical lithography. Self-organized growth of nanowires enables 2D confinement of carriers with large splitting of

More information

Quantum physics in quantum dots

Quantum physics in quantum dots Quantum physics in quantum dots Klaus Ensslin Solid State Physics Zürich AFM nanolithography Multi-terminal tunneling Rings and dots Time-resolved charge detection Moore s Law Transistors per chip 10 9

More information

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab Nanoscience, MCC026 2nd quarter, fall 2012 Quantum Transport, Lecture 1/2 Tomas Löfwander Applied Quantum Physics Lab Quantum Transport Nanoscience: Quantum transport: control and making of useful things

More information

High-temperature single-electron transistor based on a gold nanoparticle

High-temperature single-electron transistor based on a gold nanoparticle High-temperature single-electron transistor based on a gold nanoparticle SA Dagesyan 1 *, A S Stepanov 2, E S Soldatov 1, G Zharik 1 1 Lomonosov Moscow State University, faculty of physics, Moscow, Russia,

More information

arxiv: v1 [cond-mat.mes-hall] 7 Sep 2012

arxiv: v1 [cond-mat.mes-hall] 7 Sep 2012 Coupling carbon nanotube mechanics to a superconducting circuit B.H. Schneider 1, S. Etaki 1, H.S.J. van der Zant 1, G.A. Steele 1 1 Kavli Institute of NanoScience, Delft University of Technology, PO Box

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Carbon contains 6 electrons: (1s) 2,

More information

Nanoelectronics 08. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture E = 2m 0 a 2 ξ 2.

Nanoelectronics 08. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture E = 2m 0 a 2 ξ 2. Nanoelectronics 08 Atsufumi Hirohata Department of Electronics 09:00 Tuesday, 6/February/2018 (P/T 005) Quick Review over the Last Lecture 1D quantum well : E = 2 2m 0 a 2 ξ 2 ( Discrete states ) Quantum

More information

Manipulation of Majorana fermions via single charge control

Manipulation of Majorana fermions via single charge control Manipulation of Majorana fermions via single charge control Karsten Flensberg Niels Bohr Institute University of Copenhagen Superconducting hybrids: from conventional to exotic, Villard de Lans, France,

More information

Single Electron Transistor (SET)

Single Electron Transistor (SET) Single Electron Transistor (SET) SET: e - e - dot A single electron transistor is similar to a normal transistor (below), except 1) the channel is replaced by a small dot. C g 2) the dot is separated from

More information

Josephson current and multiple Andreev reflections in graphene SNS junctions

Josephson current and multiple Andreev reflections in graphene SNS junctions Josephson current and multiple Andreev reflections in graphene SNS junctions Xu Du, Ivan Skachko, and Eva Y. Andrei Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854,

More information

Imaging a Single-Electron Quantum Dot

Imaging a Single-Electron Quantum Dot Imaging a Single-Electron Quantum Dot Parisa Fallahi, 1 Ania C. Bleszynski, 1 Robert M. Westervelt, 1* Jian Huang, 1 Jamie D. Walls, 1 Eric J. Heller, 1 Micah Hanson, 2 Arthur C. Gossard 2 1 Division of

More information

ANDREEV BOUND STATES IN SUPERCONDUCTOR-QUANTUM DOT CHAINS. by Zhaoen Su Bachelor of Science, Lanzhou University, 2011

ANDREEV BOUND STATES IN SUPERCONDUCTOR-QUANTUM DOT CHAINS. by Zhaoen Su Bachelor of Science, Lanzhou University, 2011 ANDREEV BOUND STATES IN SUPERCONDUCTOR-QUANTUM DOT CHAINS by Zhaoen Su Bachelor of Science, Lanzhou University, 211 Submitted to the Graduate Faculty of the Kenneth P. Dietrich School of Arts and Sciences

More information

Superconducting fluctuations, interactions and disorder : a subtle alchemy

Superconducting fluctuations, interactions and disorder : a subtle alchemy Les défis actuels de la supraconductivité Dautreppe 2011 Superconducting fluctuations, interactions and disorder : a subtle alchemy Claude Chapelier, Benjamin Sacépé, Thomas Dubouchet INAC-SPSMS-LaTEQS,

More information

Tunable Orbital Pseudospin and Multi-level Kondo Effect in Carbon Nanotubes

Tunable Orbital Pseudospin and Multi-level Kondo Effect in Carbon Nanotubes Tunable Orbital Pseudospin and Multi-level Kondo Effect in Carbon Nanotubes Pablo Jarillo-Herrero, Jing Kong, Herre S.J. van der Zant, Cees Dekker, Leo P. Kouwenhoven, Silvano De Franceschi Kavli Institute

More information

A Tunable Kondo Effect in Quantum Dots

A Tunable Kondo Effect in Quantum Dots A Tunable Kondo Effect in Quantum Dots Sara M. Cronenwett *#, Tjerk H. Oosterkamp *, and Leo P. Kouwenhoven * * Department of Applied Physics and DIMES, Delft University of Technology, PO Box 546, 26 GA

More information

Building blocks for nanodevices

Building blocks for nanodevices Building blocks for nanodevices Two-dimensional electron gas (2DEG) Quantum wires and quantum point contacts Electron phase coherence Single-Electron tunneling devices - Coulomb blockage Quantum dots (introduction)

More information

Signatures of pseudo diffusive transport in ballistic suspended graphene superconductor junctions. Piranavan Kumaravadivel 1 and Xu Du 1

Signatures of pseudo diffusive transport in ballistic suspended graphene superconductor junctions. Piranavan Kumaravadivel 1 and Xu Du 1 Signatures of pseudo diffusive transport in ballistic suspended graphene superconductor junctions Piranavan Kumaravadivel 1 and Xu Du 1 1 Department of Physics and Astronomy, Stony Brook University Abstract

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

Electronic refrigeration and thermometry in nanostructures at low temperatures

Electronic refrigeration and thermometry in nanostructures at low temperatures Electronic refrigeration and thermometry in nanostructures at low temperatures Jukka Pekola Low Temperature Laboratory Aalto University, Finland Nanostructures Temperature Energy relaxation Thermometry

More information

The Role of Spin in Ballistic-Mesoscopic Transport

The Role of Spin in Ballistic-Mesoscopic Transport The Role of Spin in Ballistic-Mesoscopic Transport INT Program Chaos and Interactions: From Nuclei to Quantum Dots Seattle, WA 8/12/2 CM Marcus, Harvard University Supported by ARO-MURI, DARPA, NSF Spin-Orbit

More information

LECTURE 3: Refrigeration

LECTURE 3: Refrigeration LECTURE 3: Refrigeration Refrigeration on-chip Thermoelectric refrigeration Peltier refrigerators, Peltier 1834 Thermionic refrigeration, Mahan, 1994 Korotkov and Likharev, 1999 Quantum-dot refrigerator,

More information

Modeling Schottky barrier SINIS junctions

Modeling Schottky barrier SINIS junctions Modeling Schottky barrier SINIS junctions J. K. Freericks, B. Nikolić, and P. Miller * Department of Physics, Georgetown University, Washington, DC 20057 * Department of Physics, Brandeis University, Waltham,

More information

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots O. Krebs, B. Eble (PhD), S. Laurent (PhD), K. Kowalik (PhD) A. Kudelski, A. Lemaître, and P. Voisin Laboratoire

More information

Fig. 8.1 : Schematic for single electron tunneling arrangement. For large system this charge is usually washed out by the thermal noise

Fig. 8.1 : Schematic for single electron tunneling arrangement. For large system this charge is usually washed out by the thermal noise Part 2 : Nanostuctures Lecture 1 : Coulomb blockade and single electron tunneling Module 8 : Coulomb blockade and single electron tunneling Coulomb blockade and single electron tunneling A typical semiconductor

More information

chiral m = n Armchair m = 0 or n = 0 Zigzag m n Chiral Three major categories of nanotube structures can be identified based on the values of m and n

chiral m = n Armchair m = 0 or n = 0 Zigzag m n Chiral Three major categories of nanotube structures can be identified based on the values of m and n zigzag armchair Three major categories of nanotube structures can be identified based on the values of m and n m = n Armchair m = 0 or n = 0 Zigzag m n Chiral Nature 391, 59, (1998) chiral J. Tersoff,

More information

arxiv: v2 [cond-mat.mes-hall] 12 Aug 2008

arxiv: v2 [cond-mat.mes-hall] 12 Aug 2008 Giant fluctuations and gate control of the g-factor in InAs arxiv:0808.1492v2 [cond-mat.mes-hall] 12 Aug 2008 Nanowire Quantum Dots August 12, 2008 S. Csonka 1, L. Hofstetter, F. Freitag, S. Oberholzer

More information