Electronic refrigeration and thermometry in nanostructures at low temperatures

Size: px
Start display at page:

Download "Electronic refrigeration and thermometry in nanostructures at low temperatures"

Transcription

1 Electronic refrigeration and thermometry in nanostructures at low temperatures Jukka Pekola Low Temperature Laboratory Aalto University, Finland Nanostructures Temperature Energy relaxation Thermometry Refrigeration Present topics of interest

2 What new can micro- and nanostructures provide at low temperatures? 1. New physical phenomena and versatile fabrication techniques lead to new electronic device concepts. - quantum mechanical effects - single-electron effects - superconductivity - non-equilibrium effects 2. Thermal properties are very different from those of macroscopic systems, especially at low temperature. Local refrigeration and thermometry become possible.

3 Technological basis: micro- and nanofabrication 1. Lithography and thin film deposition (structures in 2D) A. Kemppinen et al., Single-electron transistor 2. Etching (structures in 3D) A. Luukanen et al., Antenna Coupled Microbolometer

4 f(e) Temperature in an electronic device E = m hot intermediate cold E

5 Generic thermal model for an electronic thermometer

6 The energy distribution of electrons in a small metal conductor The distribution is determined by energy relaxation: Equilibrium Thermometer measures the temperature of the bath Quasi-equilibrium Thermometer measures the temperature of the electron system which can be different from that of the bath Non-equilibrium There is no well defined temperature measured by the thermometer Illustration: diffusive normal metal wire H. Pothier et al. 1997

7 Electron-phonon relaxation in metals at low T

8 Tunnelling and thermometry by tunnel junctions G + METAL METAL G - Symbols: Normal junction Superconducting junction

9 Tunnel barrier Examples of aluminium-oxide tunnel barriers

10 Basics of tunnel junctions E 1 2 Tunneling from occupied states to empty states Energy is conserved V

11 E Metal Insulator Metal (MIM or NIN) tunnel junction Now, density of states (DOS) is almost constant over the small energy interval: V If f 1 = f 2 = f, we may use Ohmic, no temperature dependence NOT A THERMOMETER!

12 Noise? Average current through a basic tunnel junction is not sensing T. How about fluctuations around the mean current? Equilibrium noise: I ave = 0 Tunnel junction behaves like a resistor S I SV Noise thermometry is possible, but it is seldom used as such in nanostructures.

13 Non-equilibrium: Shot noise thermometry (SNT) L. Spietz et al., Science 300, 1929 (2003); PhD thesis 2006; APL 89, (2006).

14 SNT quantitative analysis Idea: measure the crossover voltage between thermal noise and shot noise; not necessary to know the absolute calibration for noise measurement.

15 Single-electron tunneling and Coulomb blockade thermometry

16 Single-electron transistor (SET) R T1, C 1 ne R T2, C 2 Unit of charging energy: V/2 V g C g V/2

17 2 CONDUCTANCE di/dv CURRENT Coulomb Blockade Thermometry principal idea VOLTAGE IV curve I (e/2r T C ) V (e/c ) conductance With increasing temperature the IV curve of a SET transistor gets increasingly smeared VOLTAGE

18 Basic properties of a Coulomb blockade thermometer (CBT) An array of N tunnel junctions in weak Coulomb blockade, E C << k B T: primary thermometer secondary thermometer J.P. et al., PRL 73, 2903 (1994)

19 CBT (mk) CBT performance at low T Experiments against MCT at CNRS Grenoble and at PTB CBTs produced by VTT optical lithography process (2007) Thermal decoupling 3He MCT (mk) Solution: Larger islands and make a (known) correction. M. Meschke et al., J. Low Temp. Phys. 134, 1119 (2004); arxiv: (2010).

20 CBT in magnetic field T = 1.46 K B (T) Magnetic field has no observable influence on CBT J. Appl. Phys. 83, 5582 (1998) J. Low Temp. Phys. 128, 263 (2002) T = 1.46 K

21 Single junction thermometer (SJT) CBT SJT I I In both cases: V V PRL 101, (2008) V Nk e B T

22 Single Junction Thermometer for T > 77 K FABRICATED BY Yu. Pashkin, NEC

23 Single Junction Thermometer V 1/2 G/G T 0.94 V 1/ T=77 K T=42 K U BIAS (mv) Error of ~1% mainly due to background

24 NIS-tunnelling and thermometry 3 2 er T I/ ev/

25 V (mv) NIS-thermometry Probes electron temperature of N island (and not of S!) I = 3 pa I (na) mK 48mK 78mK 110mK 145mK 180mK 215mK 250mK 285mK 320mK 360mK 395mK 430mK V (mv) T (mk)

26 Outlook Electronic primary thermometers, SNT, CBT and SJT presented as prime examples, show great promise 1. as practical calibration-free on-chip thermometers over a wide temperature range 2. in realising the temperature scale, based on a fixed value of the Boltzmann constant, in the sub - 10 K regime Problems: Measurement of SNTs is not straightforward CBTs suffer from self-heating at the lowest temperatures

27 NANO-REFRIGERATION

28 Refrigeration on-chip Thermoelectric refrigeration Peltier refrigerators, Peltier 1834 Thermionic refrigeration, Mahan, 1994 Korotkov and Likharev, 1999 Quantum-dot refrigerator, Edwards et. al., 1993 Experiment: Prance et al., PRL 102, (2009).

29 Refrigeration by tunnelling

30 Energy current in a tunnel junction In order to find energy current (from conductor 1) one replaces e by E ev in the corresponding expression: Compare to: For a NIN junction, we obtain This means that the Joule power is divided evenly between 1 and 2.

31 NIS junction as a refrigerator Cooling power of a NIS junction: Optimum cooling power is reached at V /e: Optimum cooling power of a NIS junction at T S,T N << T C Efficiency (coefficient of performance) of a NIS junction refrigerator:

32 SINIS structure cooler junctions V c /2 S N N S -V c /2 S V/2 S -V/2 probe junctions Basic idea: - bias voltage V c modifies electron distribution f(e) on N island - probe junctions measure modified f(e)

33 Early experiments M. Leivo et al., 1996

34 Cooling of a superconductor (SIS IS cooler) Ti Al sample [T C (Ti) = 0.5 K, T C (Al) = 1.3 K] COOLING FROM NORMAL TO SUPERCONDUCTING STATE A. J. Manninen et al., Appl. Phys. Lett. 74, 3020 (1999).

35 Experimental status Nahum, Eiles, Martinis 1994 Demonstration of NIS cooling Leivo, Pekola, Averin 1996, Kuzmin 2003, Rajauria et al Cooling electrons 300 mk -> 100 mk by SINIS Manninen et al Cooling by SIS IS see also Chi and Clarke 1979 and Blamire et al. 1991, Tirelli et al Manninen et al. 1997, Luukanen et al Lattice refrigeration by SINIS Savin et al S Schottky Semic Schottky S cooling Clark et al. 2005, Miller et al x-ray detector refrigerated by SINIS Prance et al Electronic refrigeration of a 2DEG Kafanov et al RF-refrigeration Refrigeration of a bulk object For a review, see Rev. Mod. Phys. 78, 217 (2006). A. Clark et al., Appl. Phys. Lett. 86, (2005).

36 RF-refrigerator Question: can one cool the island of a single-electron box by gate?

37 Typical cooling cycle J. P., F. Giazotto, O.-P. Saira, PRL 98, (2007) Influence of photon assisted tunneling: N. Kopnin et al., PRB 77, (2008)

38 RF-refrigerator - experiment S. Kafanov et al., PRL

39 Hybrid single-electron turnstile (SINIS)

40 DC properties of the cooler Source-drain voltage cools the island, measured current yields temperature

41 [K] Results of the RF experiments DC current provides thermometry for RF cooling G - G + ev A G - / G + = e -ev/kt [e] [e]

42 Curiosity experiments and (till now) Gedanken experiments Quantum of thermal conductance Brownian refrigerator Temperature fluctuations

43 Quantized conductance Electrons: Electrical conductance in a ballistic contact: Thermal conductance: G Q and s Q related by Wiedemann-Franz law More generally: Expression of G Q is expected to hold for carriers obeying arbitrary statistics, in particular for electrons, phonons, photons (Pendry 1983, Greiner et al. 1997, Rego and Kirczenow 1999, Blencowe and Vitelli 1999).

44 Example of quantized thermal conductance: phonons in a nanobridge K. Schwab et al., Nature 404, 974 (2000) C. Yung, D. Schmidt and A. Cleland, Appl. Phys. Lett (2002)

45 Electromagnetic transfer of heat (photons) Electron system G n Electrical environment Lattice Schmidt et al., PRL 93, (2004) Meschke et al., Nature 444, 187 (2006) Ojanen et al., PRB 76, (2007), PRL 100, (2008) D. Segal, PRL 100, (2008)

46 Heat transported between two resistors Radiative contribution to net heat flow between electrons of 1 and 2: Impedance matching: Linearized expression for small temperature difference T = T e1 T e2 :

47 Classical or quantum heat transport? w w w C w C Classical Quantum

48 Classical or quantum heat transport? Classical: Johnson, Nyquist 1928 Quantum limited:

49 e1 Demonstration of photonic heat x R 2 x x R 1 x 10 µm L J C J F conduction Tunable impedance matching using DC-SQUIDs Thermal model T (mk) Gen n F (a.u.) T 0 = 167mK 157mK 118mK 105mK 75mK 60mK M. Meschke, W. Guichard and J.P., Nature 444, 187 (2006)

50 SAMPLE A in a loop ( matched ) [SAMPLE B without loop ( not matched )] 2nd experiment

51 Heat transport in different set-ups Loop geometry (Sample A) R T 1 r ~ 1 R T 2 ~ ~ Linear geometry (Sample B) R T 1 r << 1 R T 2 ~ ~ C C for small temperature difference in the present experiment

52 Results in the two sample geometries Heat transported by residual quasiparticles at T > 0.3 K and by photons (in the loop sample) at T < 0.3 K A. Timofeev et al., PRL 2009 Quasiparticles

53 Brownian refrigerator

54 Heat flows from hot to cold by photon radiation This happens between two resistors The situation is identical if we replace one resistor by an ordinary tunnel junction R, T R N N R T, T N

55 Harmonic vs stochastic drive in refrigeration R, T R R, T R R, T R N R T, T N,S S Sinusoidal bias Refrigerates N if frequency and amplitude are not too high N S N S R T, T N,S R T, T N,S Stochastic drive Refrigerates N if spectrum is suitable Brownian refrigerator?

56 COOLING POWER OF N (fw) Brownian refrigerator R, T R N S R T, T N,S J.P. and F. Hekking, PRL 98, (2007)

57 Preliminary experiment on the Brownian refrigerator A. Timofeev et al., unpublished

58 Temperature fluctuations

59 Temperature fluctuations

60 Classical temperature fluctuations Assume that all T i are equal, and equal to the average of T (equilibrium fluctuations) (fluctuation-dissipation theorem) (balance equation) (Fourier transform into noise spectra)

61 Classical temperature fluctuations

62 Example system: electrons in the phonon bath electrons phonon bath In this grain at T = 100 mk, = (10 mk) 2. S T f / f C Cut-off frequency f c determined by electronphonon relaxation rate, it varies in the range 10 khz 10 MHz: suitable for a measurement.

63 I p [¹ A] Preliminary measurements Experimental setup Resonance: Quality factor: Optimal bias point: 2 0 I p V p [mv] Magnitude response: Phase response:

64 CBT results for an array Uniform array, E C << k B T: G/G T V (mv)

65 CBT sensors Low T High T 1 mm Long arrays suppress efficiently the errors due to co-tunnelling and finite impedance of the electromagnetic environment. Parallel arrays lower the sensor impedance to a convenient value. Another configuration is a 2D array, employed by T. Bergsten et al., APL 78, 1264 (2001).

66 NIS-thermometry This method is self-calibrating and can be considered (almost) primary

67 On-Chip Cooling/small junctions Cooling of electrons from 0.3 K to 0.1 K (M.M. Leivo, J.P. Pekola, and D.V: Averin, Appl. Phys. Lett. 68, 1996 (1996).) Cooling of lattice from 0.2 K to 0.1 K (A. Luukanen, M.M. Leivo, J.K. Suoknuuti, A.J. Manninen, and J.P. Pekola, JLTP, 120, 281 (2000).)

68 Schottky barrier coolers with superconductor and heavily doped silicon U th I th I 60mm I 30mm A. M. Savin et al., Appl. Phys. Lett. 79, 1471 (2001).

69 I T /mk I / ma Schottky barrier coolers results , X3F2, cooler 20x mk 163 mk 255 mk 424 mk 631 mk V / mv 812 mk 940 mk 1060 mk 1340 mk V Thermometry by S-Sm-S Schottky barrier I V / mv Cooling results

70 2nd experiment N S N SAMPLE B ( mismatched )

71 Results in the two sample geometries BLUE LINE: Directly cooled resistor RED LINE: Remote resistor

LECTURE 2: Thermometry

LECTURE 2: Thermometry LECTURE 2: Thermometry Tunnel barrier Examples of aluminium-oxide tunnel barriers Basics of tunnel junctions E 1 2 Tunneling from occupied states to empty states V Metal Insulator Metal (NIN) tunnel junction

More information

LECTURE 3: Refrigeration

LECTURE 3: Refrigeration LECTURE 3: Refrigeration Refrigeration on-chip Thermoelectric refrigeration Peltier refrigerators, Peltier 1834 Thermionic refrigeration, Mahan, 1994 Korotkov and Likharev, 1999 Quantum-dot refrigerator,

More information

Micro & nano-cooling: electronic cooling and thermometry based on superconducting tunnel junctions

Micro & nano-cooling: electronic cooling and thermometry based on superconducting tunnel junctions Micro & nano-cooling: electronic cooling and thermometry based on superconducting tunnel junctions Hervé Courtois Néel Institute, CNRS and Université Joseph Fourier, Grenoble, France with L. Pascal, H.

More information

Supplementary Information Interfacial Engineering of Semiconductor Superconductor Junctions for High Performance Micro-Coolers

Supplementary Information Interfacial Engineering of Semiconductor Superconductor Junctions for High Performance Micro-Coolers Supplementary Information Interfacial Engineering of Semiconductor Superconductor Junctions for High Performance Micro-Coolers D. Gunnarsson 1, J.S. Richardson-Bullock 2, M.J. Prest 2, H. Q. Nguyen 3,

More information

Pekola, Jukka & Giazotto, Francesco & Saira, Olli-Pentti Radio-Frequency Single-Electron Refrigerator

Pekola, Jukka & Giazotto, Francesco & Saira, Olli-Pentti Radio-Frequency Single-Electron Refrigerator Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Title: Pekola, Jukka &

More information

Trapping hot quasi-particles in a high-power superconducting electronic cooler

Trapping hot quasi-particles in a high-power superconducting electronic cooler PAPER OPEN ACCESS Trapping hot quasi-particles in a high-power superconducting electronic cooler To cite this article: H Q Nguyen et al 2013 New J. Phys. 15 085013 View the article online for updates and

More information

Measuring heat current and its fluctuations in superconducting quantum circuits

Measuring heat current and its fluctuations in superconducting quantum circuits Measuring heat current and its fluctuations in superconducting quantum circuits Bayan Karimi QTF Centre of Excellence, Department of Applied Physics, Aalto University, Finland Supervisor: Jukka P. Pekola

More information

The Physics of Nanoelectronics

The Physics of Nanoelectronics The Physics of Nanoelectronics Transport and Fluctuation Phenomena at Low Temperatures Tero T. Heikkilä Low Temperature Laboratory, Aalto University, Finland OXFORD UNIVERSITY PRESS Contents List of symbols

More information

Quantized current of a hybrid single-electron transistor with superconducting leads and a normal-metal island

Quantized current of a hybrid single-electron transistor with superconducting leads and a normal-metal island Quantized current of a hybrid single-electron transistor with superconducting leads and a normal-metal island Antti Kemppinen, 1 Matthias Meschke, 2 Mikko Möttönen, 2, 3 Dmitri V. Averin, 4 and Jukka P.

More information

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Title: Kemppinen, Antti

More information

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Nadya Mason Travis Dirk, Yung-Fu Chen, Cesar Chialvo Taylor Hughes, Siddhartha Lal, Bruno Uchoa Paul Goldbart University

More information

Three-terminal quantum-dot thermoelectrics

Three-terminal quantum-dot thermoelectrics Three-terminal quantum-dot thermoelectrics Björn Sothmann Université de Genève Collaborators: R. Sánchez, A. N. Jordan, M. Büttiker 5.11.2013 Outline Introduction Quantum dots and Coulomb blockade Quantum

More information

single-electron electron tunneling (SET)

single-electron electron tunneling (SET) single-electron electron tunneling (SET) classical dots (SET islands): level spacing is NOT important; only the charging energy (=classical effect, many electrons on the island) quantum dots: : level spacing

More information

Intrinsic Charge Fluctuations and Nuclear Spin Order in GaAs Nanostructures

Intrinsic Charge Fluctuations and Nuclear Spin Order in GaAs Nanostructures Physics Department, University of Basel Intrinsic Charge Fluctuations and Nuclear Spin Order in GaAs Nanostructures Dominik Zumbühl Department of Physics, University of Basel Basel QC2 Center and Swiss

More information

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000 Final Report Superconducting Qubits for Quantum Computation Contract MDA904-98-C-A821/0000 Project Director: Prof. J. Lukens Co-project Director: Prof. D. Averin Co-project Director: Prof. K. Likharev

More information

Shot Noise and the Non-Equilibrium FDT

Shot Noise and the Non-Equilibrium FDT Shot Noise and the Non-Equilibrium FDT Rob Schoelkopf Applied Physics Yale University Gurus: Michel Devoret, Steve Girvin, Aash Clerk And many discussions with D. Prober, K. Lehnert, D. Esteve, L. Kouwenhoven,

More information

Coulomb blockade and single electron tunnelling

Coulomb blockade and single electron tunnelling Coulomb blockade and single electron tunnelling Andrea Donarini Institute of theoretical physics, University of Regensburg Three terminal device Source System Drain Gate Variation of the electrostatic

More information

Quantum physics in quantum dots

Quantum physics in quantum dots Quantum physics in quantum dots Klaus Ensslin Solid State Physics Zürich AFM nanolithography Multi-terminal tunneling Rings and dots Time-resolved charge detection Moore s Law Transistors per chip 10 9

More information

Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique

Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique GDR Physique Quantique Mésoscopique, Aussois, 19-22 mars 2007 Simon Gustavsson Matthias Studer Renaud Leturcq Barbara Simovic

More information

arxiv: v2 [cond-mat.supr-con] 4 Jul 2016

arxiv: v2 [cond-mat.supr-con] 4 Jul 2016 Microwave quantum refrigeration based on the Josephson effect Paolo Solinas, 1 Riccardo Bosisio, 1, 2 and Francesco Giazotto 2 1 SPIN-CNR, Via Dodecaneso 33, 16146 Genova, Italy 2 NEST, Instituto Nanoscienze-CNR

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES 1 SUPPLEMENTARY FIGURES Supplementary Figure 1: Schematic representation of the experimental set up. The PC of the hot line being biased, the temperature raises. The temperature is extracted from noise

More information

Strong tunable coupling between a charge and a phase qubit

Strong tunable coupling between a charge and a phase qubit Strong tunable coupling between a charge and a phase qubit Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Bernard Pannetier Aurélien Fay Ioan Pop Florent Lecocq Rapaël Léone Nicolas Didier

More information

Electronic transport in low dimensional systems

Electronic transport in low dimensional systems Electronic transport in low dimensional systems For example: 2D system l

More information

Calorimetric tunneling study of heat generation in metal-vacuum-metal tunnel junction

Calorimetric tunneling study of heat generation in metal-vacuum-metal tunnel junction arxiv:cond-mat/0402336v4 [cond-mat.other] 30 Nov 2004 Calorimetric tunneling study of heat generation in metal-vacuum-metal tunnel junction Ivan Bat ko and Marianna Bat ková Institute of Experimental Physics,

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

arxiv: v3 [cond-mat.supr-con] 6 Aug 2010

arxiv: v3 [cond-mat.supr-con] 6 Aug 2010 Environment-assisted tunneling as an origin of the Dynes density of states arxiv:11.3853v3 [cond-mat.supr-con] 6 Aug 21 J. P. Pekola, 1 V. F. Maisi, 2 S. Kafanov, 1 N. Chekurov, 3 A. Kemppinen, 2 Yu. A.

More information

Manual. CBT Sensor H3L3 v1.0. Updates to this manual found at:

Manual. CBT Sensor H3L3 v1.0. Updates to this manual found at: Manual CBT Sensor H3L3 v1.0 This manual describes the handling and assembly of CBT sensor provided by Aivon Oy, Finland. Further information: Aivon Oy Tietotie 3, FI-02150 Finland tel. +358-400-265501

More information

Chapter 3 Properties of Nanostructures

Chapter 3 Properties of Nanostructures Chapter 3 Properties of Nanostructures In Chapter 2, the reduction of the extent of a solid in one or more dimensions was shown to lead to a dramatic alteration of the overall behavior of the solids. Generally,

More information

Nano devices for single photon source and qubit

Nano devices for single photon source and qubit Nano devices for single photon source and qubit, Acknowledgement K. Gloos, P. Utko, P. Lindelof Niels Bohr Institute, Denmark J. Toppari, K. Hansen, S. Paraoanu, J. Pekola University of Jyvaskyla, Finland

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Maxwell's Demons and Quantum Heat Engines in Superconducting Circuits

Maxwell's Demons and Quantum Heat Engines in Superconducting Circuits Maxwell's Demons and Quantum Heat Engines in Superconducting Circuits Jukka Pekola, Low Temperature Laboratory Aalto University, Helsinki, Finland Jonne Koski, now ETH Olli-Pentti Saira, now Caltech Ville

More information

Measurement of the thermal conductance of silicon nanowires at low temperature

Measurement of the thermal conductance of silicon nanowires at low temperature Measurement of the thermal conductance of silicon nanowires at low temperature Olivier Bourgeois a), Thierry Fournier and Jacques Chaussy Centre de Recherches sur les Très Basses Températures, CNRS, laboratoire

More information

Nanoelectronics. Topics

Nanoelectronics. Topics Nanoelectronics Topics Moore s Law Inorganic nanoelectronic devices Resonant tunneling Quantum dots Single electron transistors Motivation for molecular electronics The review article Overview of Nanoelectronic

More information

Terahertz sensing and imaging based on carbon nanotubes:

Terahertz sensing and imaging based on carbon nanotubes: Terahertz sensing and imaging based on carbon nanotubes: Frequency-selective detection and near-field imaging Yukio Kawano RIKEN, JST PRESTO ykawano@riken.jp http://www.riken.jp/lab-www/adv_device/kawano/index.html

More information

arxiv: v2 [cond-mat.mes-hall] 16 Aug 2007

arxiv: v2 [cond-mat.mes-hall] 16 Aug 2007 Hybrid single-electron transistor as a source of quantized electric current Jukka P. Pekola, 1 Juha J. Vartiainen, 1 Mikko Möttönen, 1,2 Olli-Pentti Saira, 1 Matthias Meschke, 1 and Dmitri V. Averin 3

More information

Characterization of a high-performance Ti/Au TES microcalorimeter with a central Cu absorber

Characterization of a high-performance Ti/Au TES microcalorimeter with a central Cu absorber Journal of Low Temperature Physics manuscript No. (will be inserted by the editor) Y. Takei L. Gottardi H.F.C. Hoevers P.A.J. de Korte J. van der Kuur M.L. Ridder M.P. Bruijn Characterization of a high-performance

More information

Coulomb blockade thermometry, primary thermometer, traceability, thermodynamic temperature

Coulomb blockade thermometry, primary thermometer, traceability, thermodynamic temperature Traceable Coulomb Blockade Thermometry O. Hahtela 1, E. Mykkänen 1, A. Kemppinen 1, M. Meschke 2, M. Prunnila 1, D. Gunnarsson 1,4, L. Roschier 3,4, J. Penttilä 3, J. Pekola 2 1 VTT Technical Research

More information

Currents from hot spots

Currents from hot spots NANO-CTM Currents from hot spots Markus Büttiker, Geneva with Björn Sothmann, Geneva Rafael Sanchez, Madrid Andrew N. Jordan, Rochester Summer School "Energy harvesting at micro and nanoscales, Workshop

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP12851 TITLE: Single Photon Turnstile Device DISTRIBUTION: Approved for public release, distribution unlimited Availability:

More information

Superconductivity at nanoscale

Superconductivity at nanoscale Superconductivity at nanoscale Superconductivity is the result of the formation of a quantum condensate of paired electrons (Cooper pairs). In small particles, the allowed energy levels are quantized and

More information

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg Laurens W. Molenkamp Physikalisches Institut, EP3 Universität Würzburg Onsager Coefficients I electric current density J particle current density J Q heat flux, heat current density µ chemical potential

More information

Charge fluctuators, their temperature and their response to sudden electrical fields

Charge fluctuators, their temperature and their response to sudden electrical fields Charge fluctuators, their temperature and their response to sudden electrical fields Outline Charge two-level fluctuators Measuing noise with an SET Temperature and bias dependence of the noise TLF temperature

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

Final exam. Introduction to Nanotechnology. Name: Student number:

Final exam. Introduction to Nanotechnology. Name: Student number: 1 Final exam. Introduction to Nanotechnology Name: Student number: 1. (a) What is the definition for a cluster size-wise? (3%) (b) Calculate the energy separation near the Fermi surface of a metallic cluster

More information

LECTURE 4: Information-powered refrigerators; quantum engines and refrigerators

LECTURE 4: Information-powered refrigerators; quantum engines and refrigerators LECTURE 4: Information-powered refrigerators; quantum engines and refrigerators Fluctuation relations U. Seifert, Rep. Prog. Phys. 75, 126001 (2012) Fluctuation relations in a circuit Experiment on a double

More information

Dynamical Casimir effect in superconducting circuits

Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in a superconducting coplanar waveguide Phys. Rev. Lett. 103, 147003 (2009) Dynamical Casimir effect in superconducting microwave

More information

Lecture 9: Metal-semiconductor junctions

Lecture 9: Metal-semiconductor junctions Lecture 9: Metal-semiconductor junctions Contents 1 Introduction 1 2 Metal-metal junction 1 2.1 Thermocouples.......................... 2 3 Schottky junctions 4 3.1 Forward bias............................

More information

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube Objective: learn about nano-manipulation techniques with a STM or an AFM. 5.1: With a nanotube Moving a nanotube Cutting a nanotube Images at large distance At small distance : push the NT Voltage pulse

More information

Spin injection. concept and technology

Spin injection. concept and technology Spin injection concept and technology Ron Jansen ャンセンロン Spintronics Research Center National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan Spin injection Transfer of spin

More information

2003 American Physical Society. Reprinted with permission.

2003 American Physical Society. Reprinted with permission. René Lindell, Jari Penttilä, Mika Sillanpää, and Pertti Hakonen, Quantum states of a mesoscopic SQUID measured using a small Josephson junction, Physical Review B 68, 052506 (2003). 2003 American Physical

More information

The quantum mechanical character of electronic transport is manifest in mesoscopic

The quantum mechanical character of electronic transport is manifest in mesoscopic Mesoscopic transport in hybrid normal-superconductor nanostructures The quantum mechanical character of electronic transport is manifest in mesoscopic systems at low temperatures, typically below 1 K.

More information

Microwave Enhanced Cotunneling in SET Transistors

Microwave Enhanced Cotunneling in SET Transistors Downloaded from orbit.dtu.dk on: Dec 09, 2017 Microwave Enhanced Cotunneling in SET Transistors Manscher, Martin; Savolainen, M.; Mygind, Jesper Published in: I E E E Transactions on Applied Superconductivity

More information

Quantum Noise Measurement of a Carbon Nanotube Quantum dot in the Kondo Regime

Quantum Noise Measurement of a Carbon Nanotube Quantum dot in the Kondo Regime Quantum Noise Measurement of a Carbon Nanotube Quantum dot in the Kondo Regime J. Basset, 1 A.Yu. Kasumov, 1 C.P. Moca, G. Zarand,, 3 P. Simon, 1 H. Bouchiat, 1 and R. Deblock 1 1 Laboratoire de Physique

More information

arxiv: v1 [cond-mat.mes-hall] 9 Apr 2017

arxiv: v1 [cond-mat.mes-hall] 9 Apr 2017 Thermal Conductance of a Single-Electron Transistor B. Dutta, J. T. Peltonen, D. S. Antonenko,,, 5 M. Meschke, M. A. Skvortsov,,, 5 B. Kubala,6 J. Ko nig,7 C. B. Winkelmann, H. Courtois, and J. P. Pekola

More information

THz direct detector with 2D electron gas periodic structure absorber.

THz direct detector with 2D electron gas periodic structure absorber. THz direct detector with D electron gas periodic structure absorber. D. Morozov a, P. Mauskopf a, I. Bacchus a, M. Elliott a, C. Dunscombe a, M. Hopkinson b, M. Henini c a School of Physics and Astronomy,

More information

Olivier Bourgeois Institut Néel

Olivier Bourgeois Institut Néel Olivier Bourgeois Institut Néel Outline Introduction: necessary concepts: phonons in low dimension, characteristic length Part 1: Transport and heat storage via phonons Specific heat and kinetic equation

More information

Superconducting Qubits

Superconducting Qubits Superconducting Qubits Fabio Chiarello Institute for Photonics and Nanotechnologies IFN CNR Rome Lego bricks The Josephson s Lego bricks box Josephson junction Phase difference Josephson equations Insulating

More information

Electron counting with quantum dots

Electron counting with quantum dots Electron counting with quantum dots Klaus Ensslin Solid State Physics Zürich with S. Gustavsson I. Shorubalko R. Leturcq T. Ihn A. C. Gossard Time-resolved charge detection Single photon detection Time-resolved

More information

Low Temperature Thermal Transport in Partially Perforated Silicon Nitride. Membranes

Low Temperature Thermal Transport in Partially Perforated Silicon Nitride. Membranes Low Temperature Thermal Transport in Partially Perforated Silicon Nitride Membranes V. Yefremenko, G. Wang, V. Novosad ( * ), A. Datesman, and J. Pearson Materials Science Division, Argonne National Laboratory,

More information

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University g Q 2 m T + S Mirror U 3 U 1 U 2 U 3 Mirror Detector See Hanson et al., Rev. Mod. Phys.

More information

Transition Edge Sensor Thermometry for On-chip Materials Characterization

Transition Edge Sensor Thermometry for On-chip Materials Characterization Transition Edge Sensor Thermometry for On-chip Materials Characterization D. J. Goldie, D. M. Glowacka, K. Rostem and S. Withington Detector and Optical Physics Group Cavendish Laboratory University of

More information

Presented by: Göteborg University, Sweden

Presented by: Göteborg University, Sweden SMR 1760-3 COLLEGE ON PHYSICS OF NANO-DEVICES 10-21 July 2006 Nanoelectromechanics of Magnetic and Superconducting Tunneling Devices Presented by: Robert Shekhter Göteborg University, Sweden * Mechanically

More information

Spectroscopies for Unoccupied States = Electrons

Spectroscopies for Unoccupied States = Electrons Spectroscopies for Unoccupied States = Electrons Photoemission 1 Hole Inverse Photoemission 1 Electron Tunneling Spectroscopy 1 Electron/Hole Emission 1 Hole Absorption Will be discussed with core levels

More information

Time-dependent single-electron transport: irreversibility and out-of-equilibrium. Klaus Ensslin

Time-dependent single-electron transport: irreversibility and out-of-equilibrium. Klaus Ensslin Time-dependent single-electron transport: irreversibility and out-of-equilibrium Klaus Ensslin Solid State Physics Zürich 1. quantum dots 2. electron counting 3. counting and irreversibility 4. Microwave

More information

NANO/MICROSCALE HEAT TRANSFER

NANO/MICROSCALE HEAT TRANSFER NANO/MICROSCALE HEAT TRANSFER Zhuomin M. Zhang Georgia Institute of Technology Atlanta, Georgia New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore

More information

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat, and R. Deblock Laboratoire de Physique des Solides Orsay (France) Theory : P. Simon (LPS),

More information

Charge spectrometry with a strongly coupled superconducting single-electron transistor

Charge spectrometry with a strongly coupled superconducting single-electron transistor PHYSICAL REVIEW B, VOLUME 64, 245116 Charge spectrometry with a strongly coupled superconducting single-electron transistor C. P. Heij, P. Hadley, and J. E. Mooij Applied Physics and Delft Institute of

More information

Quantum-dot cellular automata

Quantum-dot cellular automata Quantum-dot cellular automata G. L. Snider, a) A. O. Orlov, I. Amlani, X. Zuo, G. H. Bernstein, C. S. Lent, J. L. Merz, and W. Porod Department of Electrical Engineering, University of Notre Dame, Notre

More information

Superconducting Flux Qubits: The state of the field

Superconducting Flux Qubits: The state of the field Superconducting Flux Qubits: The state of the field S. Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK Outline A brief introduction to the Superconducting

More information

Coherent oscillations in a charge qubit

Coherent oscillations in a charge qubit Coherent oscillations in a charge qubit The qubit The read-out Characterization of the Cooper pair box Coherent oscillations Measurements of relaxation and decoherence times Tim Duty, Kevin Bladh, David

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Collapse of superconductivity in a hybrid tin graphene Josephson junction array by Zheng Han et al. SUPPLEMENTARY INFORMATION 1. Determination of the electronic mobility of graphene. 1.a extraction from

More information

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab Nanoscience, MCC026 2nd quarter, fall 2012 Quantum Transport, Lecture 1/2 Tomas Löfwander Applied Quantum Physics Lab Quantum Transport Nanoscience: Quantum transport: control and making of useful things

More information

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD Hanhee Paik IBM Quantum Computing Group IBM T. J. Watson Research Center, Yorktown Heights, NY USA

More information

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Gang Chen Massachusetts Institute of Technology OXFORD UNIVERSITY PRESS 2005 Contents Foreword,

More information

Nanoscale Heat Transfer and Information Technology

Nanoscale Heat Transfer and Information Technology Response to K.E. Goodson Nanoscale Heat Transfer and Information Technology Gang Chen Mechanical Engineering Department Massachusetts Institute of Technology Cambridge, MA 02139 Rohsenow Symposium on Future

More information

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems * Mesoscopic Nano-Electro-Mechanics of Shuttle Systems Robert Shekhter University of Gothenburg, Sweden Lecture1: Mechanically assisted single-electronics Lecture2: Quantum coherent nano-electro-mechanics

More information

Coherence and Correlations in Transport through Quantum Dots

Coherence and Correlations in Transport through Quantum Dots Coherence and Correlations in Transport through Quantum Dots Rolf J. Haug Abteilung Nanostrukturen Institut für Festkörperphysik and Laboratory for Nano and Quantum Engineering Gottfried Wilhelm Leibniz

More information

Ultrasensitive graphene far-infrared power detectors

Ultrasensitive graphene far-infrared power detectors Home Search Collections Journals About Contact us My IOPscience Ultrasensitive graphene far-infrared power detectors This content has been downloaded from IOPscience. Please scroll down to see the full

More information

Zurich Open Repository and Archive. Current-Induced Critical State in NbN Thin-Film Structures

Zurich Open Repository and Archive. Current-Induced Critical State in NbN Thin-Film Structures University of Zurich Zurich Open Repository and Archive Winterthurerstr. 190 CH-8057 Zurich http://www.zora.uzh.ch Year: 2008 Current-Induced Critical State in NbN Thin-Film Structures Il in, K; Siegel,

More information

Non-equilibrium Green s functions: Rough interfaces in THz quantum cascade lasers

Non-equilibrium Green s functions: Rough interfaces in THz quantum cascade lasers Non-equilibrium Green s functions: Rough interfaces in THz quantum cascade lasers Tillmann Kubis, Gerhard Klimeck Department of Electrical and Computer Engineering Purdue University, West Lafayette, Indiana

More information

Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1 xi Contents Preface Preface to the Third Edition Preface to the Second Edition Preface to the First Edition v vii viii ix 1 Introduction 1 I GENERAL THEORY OF OPEN QUANTUM SYSTEMS 5 Diverse limited approaches:

More information

Metallic: 2n 1. +n 2. =3q Armchair structure always metallic = 2

Metallic: 2n 1. +n 2. =3q Armchair structure always metallic = 2 Properties of CNT d = 2.46 n 2 2 1 + n1n2 + n2 2π Metallic: 2n 1 +n 2 =3q Armchair structure always metallic a) Graphite Valence(π) and Conduction(π*) states touch at six points(fermi points) Carbon Nanotube:

More information

Single ion implantation for nanoelectronics and the application to biological systems. Iwao Ohdomari Waseda University Tokyo, Japan

Single ion implantation for nanoelectronics and the application to biological systems. Iwao Ohdomari Waseda University Tokyo, Japan Single ion implantation for nanoelectronics and the application to biological systems Iwao Ohdomari Waseda University Tokyo, Japan Contents 1.History of single ion implantation (SII) 2.Novel applications

More information

Thermoelectricity with cold atoms?

Thermoelectricity with cold atoms? Thermoelectricity with cold atoms? Ch. Grenier, C. Kollath & A. Georges Centre de physique Théorique - Université de Genève - Collège de France Université de Lorraine Séminaire du groupe de physique statistique

More information

XI. Bolometers Principle XII. Bolometers Response. This lecture course follows the textbook Detection of

XI. Bolometers Principle XII. Bolometers Response. This lecture course follows the textbook Detection of Detection of Light XI. Bolometers Principle XII. Bolometers Response This lecture course follows the textbook Detection of Light 23-3-2018 by George Rieke, Detection Cambridge of Light Bernhard Brandl

More information

Thermoelectric effect

Thermoelectric effect Thermoelectric effect See Mizutani the temperature gradient can also induce an electrical current. linearized Boltzmann transport equation in combination with the relaxation time approximation. Relaxation

More information

Thermoelectric transport of ultracold fermions : theory

Thermoelectric transport of ultracold fermions : theory Thermoelectric transport of ultracold fermions : theory Collège de France, December 2013 Theory : Ch. Grenier C. Kollath A. Georges Experiments : J.-P. Brantut J. Meineke D. Stadler S. Krinner T. Esslinger

More information

Demonstration of a functional quantum-dot cellular automata cell

Demonstration of a functional quantum-dot cellular automata cell Demonstration of a functional quantum-dot cellular automata cell Islamshah Amlani, a) Alexei O. Orlov, Gregory L. Snider, Craig S. Lent, and Gary H. Bernstein Department of Electrical Engineering, University

More information

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Title: Giazotto, Francesco

More information

M.C. Escher. Angels and devils (detail), 1941

M.C. Escher. Angels and devils (detail), 1941 M.C. Escher Angels and devils (detail), 1941 1 Coherent Quantum Phase Slip: Exact quantum dual to Josephson Tunneling (Coulomb blockade is a partial dual) Degree of freedom in superconductor: Phase and

More information

Quantum transport in nanostructures-ii

Quantum transport in nanostructures-ii Quantum transport in nanostructures-ii Prof. Ilari Maasilta Nanoscience Center, Department of Physics, University of Jyväskylä YN 215, maasilta@phys.jyu.fi Some topics in quantum transport of heat Energy

More information

Transport of Electrons on Liquid Helium across a Tunable Potential Barrier in a Point Contact-like Geometry

Transport of Electrons on Liquid Helium across a Tunable Potential Barrier in a Point Contact-like Geometry Journal of Low Temperature Physics - QFS2009 manuscript No. (will be inserted by the editor) Transport of Electrons on Liquid Helium across a Tunable Potential Barrier in a Point Contact-like Geometry

More information

High speed photon number resolving detector with titanium transition edge sensor

High speed photon number resolving detector with titanium transition edge sensor Journal of Low Temperature Physics manuscript No. (will be inserted by the editor) D. Fukuda G. Fujii A. Yoshizawa H. Tsuchida R.M.T. Damayanthi H. Takahashi S. Inoue M. Ohkubo High speed photon number

More information

Building blocks for nanodevices

Building blocks for nanodevices Building blocks for nanodevices Two-dimensional electron gas (2DEG) Quantum wires and quantum point contacts Electron phase coherence Single-Electron tunneling devices - Coulomb blockage Quantum dots (introduction)

More information

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical eptember 2011 Interconnects Leonid Tsybeskov Department of Electrical and Computer Engineering New Jersey Institute

More information

IbIs Curves as a useful sensor diagnostic

IbIs Curves as a useful sensor diagnostic IbIs Curves as a useful sensor diagnostic Tarek Saab November 7, 999 Abstract The IbIs plot is a very useful diagnostic for understanding the the behaviour and parameters of a TES as well as extracting

More information

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble The Nanotube SQUID J.-P. Cleuziou,, Th. Ondarçuhu uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble Outline Sample fabrication Proximity effect in CNT The CNT superconducting

More information

"~l. >-T=SSsäÄs5i5ÄSfSSäsiwä AFRL-SR-BL-TR-98- REPORT DOCUMENTATION f'age "UNCLASSIFIED. ?inal 01 Jan 95 to 51 Mar

~l. >-T=SSsäÄs5i5ÄSfSSäsiwä AFRL-SR-BL-TR-98- REPORT DOCUMENTATION f'age UNCLASSIFIED. ?inal 01 Jan 95 to 51 Mar AFRL-SR-BL-TR-98- REPORT DOCUMENTATION f'age form Approvttt OMM NO. OTO4-0TM* "~l >-T=SSsäÄs5i5ÄSfSSäsiwä 3 4. AtflHCV USf ONLY (Itivi blink). TITU A*D SUBTITLE Single Electronics 3. MrOftT OATE nr: "'

More information

Single Electron Tunneling Examples

Single Electron Tunneling Examples Single Electron Tunneling Examples Danny Porath 2002 (Schönenberger et. al.) It has long been an axiom of mine that the little things are infinitely the most important Sir Arthur Conan Doyle Books and

More information

How a single defect can affect silicon nano-devices. Ted Thorbeck

How a single defect can affect silicon nano-devices. Ted Thorbeck How a single defect can affect silicon nano-devices Ted Thorbeck tedt@nist.gov The Big Idea As MOS-FETs continue to shrink, single atomic scale defects are beginning to affect device performance Gate Source

More information