Adiabatic quantum motors

Size: px
Start display at page:

Download "Adiabatic quantum motors"

Transcription

1 Felix von Oppen Freie Universität Berlin with Raul Bustos Marun and Gil Refael

2 Motion at the nanoscale Brownian motion Directed motion at the nanoscale?? 2

3 Directed motion at the nanoscale Nanocars 3

4 Nanoscale motor ac actuation 4

5 Powering Windsor Castle Wikipedia 5

6 θ Adiabatic quantum pump Periodic variation of parameters pumps current through device Adiabatic quantum motor Current through device causes periodic variation of motor degree of freedom 6

7 Thouless pump v=a/t Fermi energy in nth gap: n electrons per period a E F Sliding potential: quantized current I=nev 7

8 Thouless pump Electrons in 1d channel in GaAs heterostructure Moving periodic potential is due to surface acoustic waves Increased gaps due to Coulomb repulsion Talyanskii et al. Phys. Rev. B (1997) 8

9 Quantum pumps Pumped charge (Brouwer PRB 1998): see also: Zhou, Spivak, Altshuler (1999) 9

10 Gedanken motors θ Quantum motor based on chaotic quantum dot Thouless motor Mesoscopic conductor coupled to slow & classical motor degree(s) of freedom 10

11 Early design study [ ] 11

12 Gedanken motors θ Quantum motor based on chaotic quantum dot Thouless motor Mesoscopic conductor coupled to slow & classical motor degree(s) of freedom 12

13 Adiabatic approximation R: internuclear distance Coupling fast quantum system (electrons) to slow degree(s) of freedom (nuclei) compute electronic levels for fixed nuclear coordinates electrons exert potential (Born-Oppenheimer) force on nuclei 13

14 Beyond Born-Oppenheimer next order in quantum system acquires Berry s phase slow system subject to velocity-dependent force 14

15 Generalization: Scattering systems Alternative motivation: nanoelectromechanical systems Slow classical degrees of freedom coupled to fast quantum mechanical scattering system non-interacting mesoscopic conductor beyond linear response beyond a single mechanical mode beyond weak electron-vibron coupling express forces in terms of electronic S-matrix 15

16 Derivation I. Green functions: quantum dot Bode et al. PRL 2011 coupled to leads force adiabatic expansion scattering matrix (and A-matrix) II. Scattering theory Thomas et al. PRB

17 Born-Oppenheimer force adiabatic S-matrix: Born-Oppenheimer force: 17

18 Thermal equilibrium Born-Oppenheimer: Friedel sum rule: force is conservative in thermal equilbrium 18

19 Out of equilibrium Out-of-equilibrium mesoscopic conductor: Born-Oppenheimer force generally non-conservative see also: Todorov et al. 2008, Lü et al Work performed on mechanical modes per cycle Linear response: 19

20 Relation to quantum pumping quantum pumping of charge Q p through mesoscopic conductor Brouwer 1998 non-conservative Born-Oppenheimer force quantum pumping of charge 20

21 Adiabatic quantum motor one motor revolution pumped charge Q p electrical energy gain of motor per cycle Q p V Motor pumps charge with voltage drop and converts the electrical energy gain into motor action 21

22 Efficiency of quantum motor Output power: efficiency Input power: 22

23 Interesting consequences Thouless pumps underlie ideal quantum motors: quantized pumped charge at zero conductance η=1 Quantum motors can be fully quantum mechanical quantum pump based on chaotic quantum dot operates entirely through quantum interference 23

24 Motor dynamics Efficiency: motor dynamics! Simple case: driving force and load independent of state of motor steady state ideal quantum motor (G=0): maximum load: 24

25 Thouless motor 2π/a Linearized model near k= π/a: motor degree of freedom 25

26 Transfer matrix transfer matrix from x=l/2 to x=-l/2 by analogy with time-evolution operator in quantum mechanics: simplify: 26

27 S-matrix Relation of S- and transfer matrix: S-matrix: with and 27

28 Conductance & pumped charge Conductance (Landauer-Buttiker) imaginary in gap E F < real outside of gap E F > Pumped charge (Brouwer) 28

29 Efficiency Efficiency of Thouless motor: exponentially close to 1 inside gap (ideal motor) power-law decay & Fabry-Perot oscillations outside of gap 29

30 Beyond Born-Oppenheimer next order in quantum system acquires Berry s phase slow system subject to velocity-dependent force 30

31 Emergent Lorentz force emergent Lorentz force time-reversal symmetric conductor: Moskalets & Büttiker (2004) emergent Lorentz force vanishes in equilibrium is nonzero out of equilibrium (current breaks time reversal) 31

32 Friction force Berry: discrete quantum system no friction here: quantum mechanical scattering system w/ continuous spectrum friction appears naturally strictly positive eigenvalues Gilbert damping Brataas, Tserkovnyak, Bauer 2008 vanishes in equilibrium eigenvalues of arbitrary sign can make overall damping negative see also, e.g., Blanter et al Hussein et al

33 Dissipation of Thouless motor Intrinsic damping: Motor action requires minimal voltage at fixed current! 33

34 Ideal quantum motor again Thouless motor with load: Input power split into power consumed by the load: power dissipated by damping: load efficiency approaches unity for small currents since 34

35 Langevin force Fluctuation-dissipation theorem: Langevin force adiabatic approximation: force δ-correlated in time full Langevin dynamics of slow classical mode: 35

36 Conclusions Quantum motors can be realized based on inverting quantum pumps. Output power of motors can be related to characteristics of the underlying quantum pump. Motor based on chaotic quantum dot operates entirely based on quantum interference. Thouless motor has ideal efficiency η=1. Some open questions: beyond adiabatic limit, interacting pumps, quantum-mechanical motor degree of freedom, 36

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf Scattering theory of current-induced forces Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf Overview Current-induced forces in mesoscopic systems: In molecule/dot with slow mechanical

More information

Nanomagnet coupled to quantum spin Hall edge: An adiabatic quantum motor

Nanomagnet coupled to quantum spin Hall edge: An adiabatic quantum motor Nanomagnet coupled to quantum spin Hall edge: An adiabatic quantum motor Liliana Arrachea Departamento de Física, FCEyN, Universidad de Buenos Aires and IFIBA, Pabellón I, Ciudad Universitaria, 1428 CABA

More information

Martes Cuánticos. Quantum Capacitors. (Quantum RC-circuits) Victor A. Gopar

Martes Cuánticos. Quantum Capacitors. (Quantum RC-circuits) Victor A. Gopar Martes Cuánticos Quantum Capacitors (Quantum RC-circuits) Victor A. Gopar -Universal resistances of the quantum resistance-capacitance circuit. Nature Physics, 6, 697, 2010. C. Mora y K. Le Hur -Violation

More information

Scattering theory of thermoelectric transport. Markus Büttiker University of Geneva

Scattering theory of thermoelectric transport. Markus Büttiker University of Geneva Scattering theory of thermoelectric transport Markus Büttiker University of Geneva Summer School "Energy harvesting at micro and nanoscales, Workshop "Energy harvesting: models and applications, Erice,

More information

Quantum Transport and Dissipation

Quantum Transport and Dissipation Thomas Dittrich, Peter Hänggi, Gert-Ludwig Ingold, Bernhard Kramer, Gerd Schön and Wilhelm Zwerger Quantum Transport and Dissipation WILEY-VCH Weinheim Berlin New York Chichester Brisbane Singapore Toronto

More information

Collaborations: Tsampikos Kottos (Gottingen) Holger Schanz (Gottingen) Itamar Sela (BGU)

Collaborations: Tsampikos Kottos (Gottingen) Holger Schanz (Gottingen) Itamar Sela (BGU) From classical pumps of water to quantum pumping of electrons in closed devices Doron Cohen, Ben-Gurion University Collaborations: Tsampikos Kottos (Gottingen) Holger Schanz (Gottingen) Itamar Sela (BGU)

More information

The Physics of Nanoelectronics

The Physics of Nanoelectronics The Physics of Nanoelectronics Transport and Fluctuation Phenomena at Low Temperatures Tero T. Heikkilä Low Temperature Laboratory, Aalto University, Finland OXFORD UNIVERSITY PRESS Contents List of symbols

More information

Three-terminal quantum-dot thermoelectrics

Three-terminal quantum-dot thermoelectrics Three-terminal quantum-dot thermoelectrics Björn Sothmann Université de Genève Collaborators: R. Sánchez, A. N. Jordan, M. Büttiker 5.11.2013 Outline Introduction Quantum dots and Coulomb blockade Quantum

More information

Introduction to Spintronics and Spin Caloritronics. Tamara Nunner Freie Universität Berlin

Introduction to Spintronics and Spin Caloritronics. Tamara Nunner Freie Universität Berlin Introduction to Spintronics and Spin Caloritronics Tamara Nunner Freie Universität Berlin Outline Format of seminar How to give a presentation How to search for scientific literature Introduction to spintronics

More information

Topological Phenomena in Periodically Driven Systems: Disorder, Interactions, and Quasi-Steady States Erez Berg

Topological Phenomena in Periodically Driven Systems: Disorder, Interactions, and Quasi-Steady States Erez Berg Topological Phenomena in Periodically Driven Systems: Disorder, Interactions, and Quasi-Steady States Erez Berg In collaboration with: Mark Rudner (Copenhagen) Netanel Lindner (Technion) Paraj Titum (Caltech

More information

Dissipative nuclear dynamics

Dissipative nuclear dynamics Dissipative nuclear dynamics Curso de Reacciones Nucleares Programa Inter universitario de Fisica Nuclear Universidad de Santiago de Compostela March 2009 Karl Heinz Schmidt Collective dynamical properties

More information

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab Nanoscience, MCC026 2nd quarter, fall 2012 Quantum Transport, Lecture 1/2 Tomas Löfwander Applied Quantum Physics Lab Quantum Transport Nanoscience: Quantum transport: control and making of useful things

More information

Quantum Noise and Quantum Measurement

Quantum Noise and Quantum Measurement Quantum Noise and Quantum Measurement (APS Tutorial on Quantum Measurement)!F(t) Aashish Clerk McGill University (With thanks to S. Girvin, F. Marquardt, M. Devoret) t Use quantum noise to understand quantum

More information

MODERN OPTICS. P47 Optics: Unit 9

MODERN OPTICS. P47 Optics: Unit 9 MODERN OPTICS P47 Optics: Unit 9 Course Outline Unit 1: Electromagnetic Waves Unit 2: Interaction with Matter Unit 3: Geometric Optics Unit 4: Superposition of Waves Unit 5: Polarization Unit 6: Interference

More information

Spin and Charge transport in Ferromagnetic Graphene

Spin and Charge transport in Ferromagnetic Graphene Spin and Charge transport in Ferromagnetic Graphene Hosein Cheraghchi School of Physics, Damghan University Recent Progress in D Systems, Oct, 4, IPM Outline: Graphene Spintronics Background on graphene

More information

Atsevišķu elektronu precīza satveršana kvantu punktos

Atsevišķu elektronu precīza satveršana kvantu punktos Datorzinātnes pielietojumi un tās saiknes ar kvantu fiziku Atsevišķu elektronu precīza satveršana kvantu punktos Pavels Nazarovs 8.1.21 What is electron (quantum) pump? Usually by direct current (DC) understand

More information

Introduction to Stochastic Thermodynamics: Application to Thermo- and Photo-electricity in small devices

Introduction to Stochastic Thermodynamics: Application to Thermo- and Photo-electricity in small devices Université Libre de Bruxelles Center for Nonlinear Phenomena and Complex Systems Introduction to Stochastic Thermodynamics: Application to Thermo- and Photo-electricity in small devices Massimiliano Esposito

More information

Currents from hot spots

Currents from hot spots NANO-CTM Currents from hot spots Markus Büttiker, Geneva with Björn Sothmann, Geneva Rafael Sanchez, Madrid Andrew N. Jordan, Rochester Summer School "Energy harvesting at micro and nanoscales, Workshop

More information

What is Quantum Transport?

What is Quantum Transport? What is Quantum Transport? Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, U.S.A. http://www.physics.udel.edu/~bnikolic Semiclassical Transport (is boring!) Bloch-Boltzmann

More information

Quantum heat engine using energy quantization in potential barrier

Quantum heat engine using energy quantization in potential barrier Quantum heat engine using energy quantization in potential barrier Sibasish Ghosh Optics and Quantum Information Group The Institute of Mathematical Sciences C.I.T. Campus, Taramani Chennai 600113. [In

More information

Collaborations: Tsampikos Kottos (Gottingen) Antonio Mendez Bermudez (Gottingen) Holger Schanz (Gottingen)

Collaborations: Tsampikos Kottos (Gottingen) Antonio Mendez Bermudez (Gottingen) Holger Schanz (Gottingen) Quantum chaos and perturbation theory: from the analysis of wavefunctions to the implications on pumping, dissipation and decoherence Doron Cohen, Ben-Gurion University Collaborations: Tsampikos Kottos

More information

Building blocks for nanodevices

Building blocks for nanodevices Building blocks for nanodevices Two-dimensional electron gas (2DEG) Quantum wires and quantum point contacts Electron phase coherence Single-Electron tunneling devices - Coulomb blockage Quantum dots (introduction)

More information

Thermal Bias on the Pumped Spin-Current in a Single Quantum Dot

Thermal Bias on the Pumped Spin-Current in a Single Quantum Dot Commun. Theor. Phys. 62 (2014) 86 90 Vol. 62, No. 1, July 1, 2014 Thermal Bias on the Pumped Spin-Current in a Single Quantum Dot LIU Jia ( ) 1,2, and CHENG Jie ( ) 1 1 School of Mathematics, Physics and

More information

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois BCS Pairing Dynamics 1 ShengQuan Zhou Dec.10, 2006, Physics Department, University of Illinois Abstract. Experimental control over inter-atomic interactions by adjusting external parameters is discussed.

More information

Adiabatic Approximation

Adiabatic Approximation Adiabatic Approximation The reaction of a system to a time-dependent perturbation depends in detail on the time scale of the perturbation. Consider, for example, an ideal pendulum, with no friction or

More information

Laughlin quasiparticle interferometer: Observation of Aharonov-Bohm superperiod and fractional statistics

Laughlin quasiparticle interferometer: Observation of Aharonov-Bohm superperiod and fractional statistics Laughlin quasiparticle interferometer: Observation of Aharonov-Bohm superperiod and fractional statistics F.E. Camino, W. Zhou and V.J. Goldman Stony Brook University Outline Exchange statistics in 2D,

More information

Charges and Spins in Quantum Dots

Charges and Spins in Quantum Dots Charges and Spins in Quantum Dots L.I. Glazman Yale University Chernogolovka 2007 Outline Confined (0D) Fermi liquid: Electron-electron interaction and ground state properties of a quantum dot Confined

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 5 Beforehand Yesterday Today Anderson Localization, Mesoscopic

More information

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017.

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017. A. F. J. Levi 1 Engineering Quantum Mechanics. Fall 2017. TTh 9.00 a.m. 10.50 a.m., VHE 210. Web site: http://alevi.usc.edu Web site: http://classes.usc.edu/term-20173/classes/ee EE539: Abstract and Prerequisites

More information

Massachusetts Tests for Educator Licensure (MTEL )

Massachusetts Tests for Educator Licensure (MTEL ) Massachusetts Tests for Educator Licensure (MTEL ) FIELD 11: PHYSICS TEST OBJECTIVES Subarea Multiple-Choice Range of Objectives Approximate Test Weighting I. Nature of Science 01 05 12% II. Force and

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 6 Aug 2002

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 6 Aug 2002 Floquet scattering in parametric electron pumps Sang Wook Kim Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str 38, D-1187 Dresden, Germany (June 2, 217) arxiv:cond-mat/2899v1 [cond-matmes-hall]

More information

arxiv: v1 [cond-mat.mes-hall] 26 Jun 2009

arxiv: v1 [cond-mat.mes-hall] 26 Jun 2009 S-Matrix Formulation of Mesoscopic Systems and Evanescent Modes Sheelan Sengupta Chowdhury 1, P. Singha Deo 1, A. M. Jayannavar 2 and M. Manninen 3 arxiv:0906.4921v1 [cond-mat.mes-hall] 26 Jun 2009 1 Unit

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 6.2 6.3 6.4 6.5 6.6 6.7 The Schrödinger Wave Equation Expectation Values Infinite Square-Well Potential Finite Square-Well Potential Three-Dimensional Infinite-Potential

More information

MESOSCOPIC QUANTUM OPTICS

MESOSCOPIC QUANTUM OPTICS MESOSCOPIC QUANTUM OPTICS by Yoshihisa Yamamoto Ata Imamoglu A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Toronto Singapore Preface xi 1 Basic Concepts

More information

Semiclassical theory of non-local statistical measures: residual Coulomb interactions

Semiclassical theory of non-local statistical measures: residual Coulomb interactions of non-local statistical measures: residual Coulomb interactions Steve Tomsovic 1, Denis Ullmo 2, and Arnd Bäcker 3 1 Washington State University, Pullman 2 Laboratoire de Physique Théorique et Modèles

More information

Outline for Fundamentals of Statistical Physics Leo P. Kadanoff

Outline for Fundamentals of Statistical Physics Leo P. Kadanoff Outline for Fundamentals of Statistical Physics Leo P. Kadanoff text: Statistical Physics, Statics, Dynamics, Renormalization Leo Kadanoff I also referred often to Wikipedia and found it accurate and helpful.

More information

SIGNATURES OF SPIN-ORBIT DRIVEN ELECTRONIC TRANSPORT IN TRANSITION- METAL-OXIDE INTERFACES

SIGNATURES OF SPIN-ORBIT DRIVEN ELECTRONIC TRANSPORT IN TRANSITION- METAL-OXIDE INTERFACES SIGNATURES OF SPIN-ORBIT DRIVEN ELECTRONIC TRANSPORT IN TRANSITION- METAL-OXIDE INTERFACES Nicandro Bovenzi Bad Honnef, 19-22 September 2016 LAO/STO heterostructure: conducting interface between two insulators

More information

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems * Mesoscopic Nano-Electro-Mechanics of Shuttle Systems Robert Shekhter University of Gothenburg, Sweden Lecture1: Mechanically assisted single-electronics Lecture2: Quantum coherent nano-electro-mechanics

More information

Chapter 29. Quantum Chaos

Chapter 29. Quantum Chaos Chapter 29 Quantum Chaos What happens to a Hamiltonian system that for classical mechanics is chaotic when we include a nonzero h? There is no problem in principle to answering this question: given a classical

More information

eigenvalues eigenfunctions

eigenvalues eigenfunctions Born-Oppenheimer Approximation Atoms and molecules consist of heavy nuclei and light electrons. Consider (for simplicity) a diatomic molecule (e.g. HCl). Clamp/freeze the nuclei in space, a distance r

More information

Fluctuation Theorem for a Small Engine and Magnetization Switching by Spin Torque

Fluctuation Theorem for a Small Engine and Magnetization Switching by Spin Torque Fluctuation Theorem for a Small Engine and Magnetization Switching by Spin Torque Yasuhiro Utsumi Tomohiro Taniguchi Mie Univ. Spintronics Research Center, AIST YU, Tomohiro Taniguchi, PRL 114, 186601,

More information

Electrically Protected Valley-Orbit Qubit in Silicon

Electrically Protected Valley-Orbit Qubit in Silicon Quantum Coherence Lab Zumbühl Group Electrically Protected Valley-Orbit Qubit in Silicon - FAM talk - Florian Froning 21.09.2018 1 Motivation I [1] Zehnder, L., Zeitschrift für Instrumentenkunde. 11: 275

More information

Information to energy conversion in an electronic Maxwell s demon and thermodynamics of measurements.

Information to energy conversion in an electronic Maxwell s demon and thermodynamics of measurements. Information to energy conversion in an electronic Maxwell s demon and thermodynamics of measurements Stony Brook University, SUNY Dmitri V Averin and iang Deng Low-Temperature Lab, Aalto University Jukka

More information

Nuclear Reactions. Shape, interaction, and excitation structures of nuclei. scattered particles. detector. solid angle. target. transmitted particles

Nuclear Reactions. Shape, interaction, and excitation structures of nuclei. scattered particles. detector. solid angle. target. transmitted particles Nuclear Reactions Shape, interaction, and excitation structures of nuclei scattering expt. scattered particles detector solid angle projectile target transmitted particles http://www.th.phys.titech.ac.jp/~muto/lectures/qmii11/qmii11_chap21.pdf

More information

Summary lecture IX. The electron-light Hamilton operator reads in second quantization

Summary lecture IX. The electron-light Hamilton operator reads in second quantization Summary lecture IX The electron-light Hamilton operator reads in second quantization Absorption coefficient α(ω) is given by the optical susceptibility Χ(ω) that is determined by microscopic polarization

More information

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik Majorana single-charge transistor Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Majorana nanowires: Two-terminal device: Majorana singlecharge

More information

Spontaneous Spin Polarization in Quantum Wires

Spontaneous Spin Polarization in Quantum Wires Spontaneous Spin Polarization in Quantum Wires Julia S. Meyer The Ohio State University with A.D. Klironomos K.A. Matveev 1 Why ask this question at all GaAs/AlGaAs heterostucture 2D electron gas Quantum

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 3 Beforehand Weak Localization and Mesoscopic Fluctuations Today

More information

Density-matrix theory for time-resolved dynamics of superconductors in non-equilibrium

Density-matrix theory for time-resolved dynamics of superconductors in non-equilibrium Max Planck Institute for Solid State Research Density-matrix theory for time-resolved dynamics of superconductors in non-equilibrium co-workers and papers: (1) (2) (3) (4) Dirk Manske A. Knorr (TU Berlin),

More information

Experimental and theoretical aspects of quantum chaos

Experimental and theoretical aspects of quantum chaos Experimental and theoretical aspects of quantum chaos A SOCRATES Lecture Course at CAMTP, University of Maribor, Slovenia Hans-Jürgen Stöckmann Fachbereich Physik, Philipps-Universität Marburg, D-35032

More information

Quantum Master Equations for the Electron Transfer Problem

Quantum Master Equations for the Electron Transfer Problem 20/01/2010 Quantum Master Equations for the Electron Transfer Problem Seminarvortrag Dekohaerenz und Dissipation in Quantensystemen Antonio A. Gentile The general transport problem in micro/mesoscopic

More information

Local currents in a two-dimensional topological insulator

Local currents in a two-dimensional topological insulator Local currents in a two-dimensional topological insulator Xiaoqian Dang, J. D. Burton and Evgeny Y. Tsymbal Department of Physics and Astronomy Nebraska Center for Materials and Nanoscience University

More information

Weakly-coupled quasi-1d helical modes in disordered 3D topological insulator quantum wires

Weakly-coupled quasi-1d helical modes in disordered 3D topological insulator quantum wires Weakly-coupled quasi-1d helical modes in disordered 3D topological insulator quantum wires J. Dufouleur, 1 L. Veyrat, 1 B. Dassonneville, 1 E. Xypakis, 2 J. H. Bardarson, 2 C. Nowka, 1 S. Hampel, 1 J.

More information

Quantum Physics in the Nanoworld

Quantum Physics in the Nanoworld Hans Lüth Quantum Physics in the Nanoworld Schrödinger's Cat and the Dwarfs 4) Springer Contents 1 Introduction 1 1.1 General and Historical Remarks 1 1.2 Importance for Science and Technology 3 1.3 Philosophical

More information

Lecture 12. Electron Transport in Molecular Wires Possible Mechanisms

Lecture 12. Electron Transport in Molecular Wires Possible Mechanisms Lecture 12. Electron Transport in Molecular Wires Possible Mechanisms In Lecture 11, we have discussed energy diagrams of one-dimensional molecular wires. Here we will focus on electron transport mechanisms

More information

The Role of Spin in Ballistic-Mesoscopic Transport

The Role of Spin in Ballistic-Mesoscopic Transport The Role of Spin in Ballistic-Mesoscopic Transport INT Program Chaos and Interactions: From Nuclei to Quantum Dots Seattle, WA 8/12/2 CM Marcus, Harvard University Supported by ARO-MURI, DARPA, NSF Spin-Orbit

More information

Superconductivity at nanoscale

Superconductivity at nanoscale Superconductivity at nanoscale Superconductivity is the result of the formation of a quantum condensate of paired electrons (Cooper pairs). In small particles, the allowed energy levels are quantized and

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Nov 2001

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Nov 2001 Published in: Single-Electron Tunneling and Mesoscopic Devices, edited by H. Koch and H. Lübbig (Springer, Berlin, 1992): pp. 175 179. arxiv:cond-mat/0111505v1 [cond-mat.mes-hall] 27 Nov 2001 Resonant

More information

Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1 xi Contents Preface Preface to the Third Edition Preface to the Second Edition Preface to the First Edition v vii viii ix 1 Introduction 1 I GENERAL THEORY OF OPEN QUANTUM SYSTEMS 5 Diverse limited approaches:

More information

Floquet theory of photo-induced topological phase transitions: Application to graphene

Floquet theory of photo-induced topological phase transitions: Application to graphene Floquet theory of photo-induced topological phase transitions: Application to graphene Takashi Oka (University of Tokyo) T. Kitagawa (Harvard) L. Fu (Harvard) E. Demler (Harvard) A. Brataas (Norweigian

More information

QUANTUM- CLASSICAL ANALOGIES

QUANTUM- CLASSICAL ANALOGIES D. Dragoman M. Dragoman QUANTUM- CLASSICAL ANALOGIES With 78 Figures ^Ü Springer 1 Introduction 1 2 Analogies Between Ballistic Electrons and Electromagnetic Waves 9 2.1 Analog Parameters for Ballistic

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Andrei Tokmakoff,

More information

Chaotic motion. Phys 750 Lecture 9

Chaotic motion. Phys 750 Lecture 9 Chaotic motion Phys 750 Lecture 9 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t =0to

More information

Many-body resonances in double quantum-dot systems

Many-body resonances in double quantum-dot systems Many-body resonances in double quantum-dot systems Akinori Nishino Kanagawa University Collaborators Naomichi Hatano IIS, University of Tokyo Takashi Imamura RCAST, University of Tokyo Gonzalo Ordonez

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

QUANTUM INTERFERENCE IN SEMICONDUCTOR RINGS

QUANTUM INTERFERENCE IN SEMICONDUCTOR RINGS QUANTUM INTERFERENCE IN SEMICONDUCTOR RINGS PhD theses Orsolya Kálmán Supervisors: Dr. Mihály Benedict Dr. Péter Földi University of Szeged Faculty of Science and Informatics Doctoral School in Physics

More information

Polariton Condensation

Polariton Condensation Polariton Condensation Marzena Szymanska University of Warwick Windsor 2010 Collaborators Theory J. Keeling P. B. Littlewood F. M. Marchetti Funding from Macroscopic Quantum Coherence Macroscopic Quantum

More information

Coulomb Blockade and Kondo Effect in Nanostructures

Coulomb Blockade and Kondo Effect in Nanostructures Coulomb Blockade and Kondo Effect in Nanostructures Marcin M. Wysokioski 1,2 1 Institute of Physics Albert-Ludwigs-Universität Freiburg 2 Institute of Physics Jagiellonian University, Cracow, Poland 2.VI.2010

More information

Spin Currents in Mesoscopic Systems

Spin Currents in Mesoscopic Systems Spin Currents in Mesoscopic Systems Philippe Jacquod - U of Arizona I Adagideli (Sabanci) J Bardarson (Berkeley) M Duckheim (Berlin) D Loss (Basel) J Meair (Arizona) K Richter (Regensburg) M Scheid (Regensburg)

More information

COLLECTIVE SPIN STATES IN THE ELECTRON GAS IN DIFFERENT DIMENSIONS AND GEOMETRIES*)

COLLECTIVE SPIN STATES IN THE ELECTRON GAS IN DIFFERENT DIMENSIONS AND GEOMETRIES*) COLLECTIVE SPIN STATES IN THE ELECTRON GAS IN DIFFERENT DIMENSIONS AND GEOMETRIES*) ENRICO LIPPARINI, LEONARDO COLLETTI, GIUSI ORLANDINI Dipartimento di Fisica, Universita di Trento, I-38100 Povo, Trento,

More information

The effect of mutual angular misalignment in the quantized sliding of solid lubricants

The effect of mutual angular misalignment in the quantized sliding of solid lubricants Facoltà di Scienze e Tecnologie Laurea Triennale in Fisica The effect of mutual angular misalignment in the quantized sliding of solid lubricants Relatore: Prof. Nicola Manini Correlatore: Prof. Rosario

More information

Berry Phase Effects on Electronic Properties

Berry Phase Effects on Electronic Properties Berry Phase Effects on Electronic Properties Qian Niu University of Texas at Austin Collaborators: D. Xiao, W. Yao, C.P. Chuu, D. Culcer, J.R.Shi, Y.G. Yao, G. Sundaram, M.C. Chang, T. Jungwirth, A.H.MacDonald,

More information

Nuclear spin spectroscopy for semiconductor hetero and nano structures

Nuclear spin spectroscopy for semiconductor hetero and nano structures (Interaction and Nanostructural Effects in Low-Dimensional Systems) November 16th, Kyoto, Japan Nuclear spin spectroscopy for semiconductor hetero and nano structures Yoshiro Hirayama Tohoku University

More information

From cavity optomechanics to the Dicke quantum phase transition

From cavity optomechanics to the Dicke quantum phase transition From cavity optomechanics to the Dicke quantum phase transition (~k; ~k)! p Rafael Mottl Esslinger Group, ETH Zurich Cavity Optomechanics Conference 2013, Innsbruck Motivation & Overview Engineer optomechanical

More information

The statistical theory of quantum dots

The statistical theory of quantum dots The statistical theory of quantum dots Y. Alhassid Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, Connecticut 06520 A quantum dot is a sub-micron-scale conducting

More information

Electrical Noise under the Fluctuation-Dissipation framework

Electrical Noise under the Fluctuation-Dissipation framework Electrical Noise under the Fluctuation-Dissipation framework José Ignacio Izpura Department of Aerospace Systems, Air Transport and Airports Universidad Politécnica de Madrid. 28040-Madrid. Spain. e-mail:

More information

The Quantum Hall Conductance: A rigorous proof of quantization

The Quantum Hall Conductance: A rigorous proof of quantization Motivation The Quantum Hall Conductance: A rigorous proof of quantization Spyridon Michalakis Joint work with M. Hastings - Microsoft Research Station Q August 17th, 2010 Spyridon Michalakis (T-4/CNLS

More information

Time-Dependent Electron Localization Function! (TD-ELF)! GOAL! Time-resolved visualization of the breaking and formation of chemical bonds.!

Time-Dependent Electron Localization Function! (TD-ELF)! GOAL! Time-resolved visualization of the breaking and formation of chemical bonds.! Time-Dependent Electron Localization Function! (TD-ELF)! GOAL! Time-resolved visualization of the breaking and formation of chemical bonds.! How can one give a rigorous mathematical meaning to chemical

More information

To what extent does the selfconsistent

To what extent does the selfconsistent To what extent does the selfconsistent mean-field exist? Lu Guo Ibaraki University, Mito, Japan Collaborators: Prof. Fumihiko Sakata Institute of Applied Beam Science, Ibaraki University, Mito, Japan Prof.

More information

Time-dependent single-electron transport: irreversibility and out-of-equilibrium. Klaus Ensslin

Time-dependent single-electron transport: irreversibility and out-of-equilibrium. Klaus Ensslin Time-dependent single-electron transport: irreversibility and out-of-equilibrium Klaus Ensslin Solid State Physics Zürich 1. quantum dots 2. electron counting 3. counting and irreversibility 4. Microwave

More information

Quantum transport in nanoscale solids

Quantum transport in nanoscale solids Quantum transport in nanoscale solids The Landauer approach Dietmar Weinmann Institut de Physique et Chimie des Matériaux de Strasbourg Strasbourg, ESC 2012 p. 1 Quantum effects in electron transport R.

More information

Theory of Quantum Transport in Mesoscopic Systems Antidot Lattices

Theory of Quantum Transport in Mesoscopic Systems Antidot Lattices Theory of Quantum Transport in Mesoscopic Systems Antidot Lattices Tsuneya ANDO Institute for Solid State Physics, University of Tokyo 7 1 Roppongi, Minato-ku, Tokyo 106-8666, Japan A review of magnetotransport

More information

Quantum Transport through Coulomb-Blockade Systems

Quantum Transport through Coulomb-Blockade Systems Quantum Transport through Coulomb-Blockade Systems Björn Kubala Institut für Theoretische Physik III Ruhr-Universität Bochum COQUSY6 p.1 Overview Motivation Single-electron box/transistor Coupled single-electron

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

Commensurability-dependent transport of a Wigner crystal in a nanoconstriction

Commensurability-dependent transport of a Wigner crystal in a nanoconstriction NPCQS2012, OIST Commensurability-dependent transport of a Wigner crystal in a nanoconstriction David Rees, RIKEN, Japan Kimitoshi Kono (RIKEN) Paul Leiderer (University of Konstanz) Hiroo Totsuji (Okayama

More information

Exploring topological states with cold atoms and photons

Exploring topological states with cold atoms and photons Exploring topological states with cold atoms and photons Theory: Takuya Kitagawa, Dima Abanin, Erez Berg, Mark Rudner, Liang Fu, Takashi Oka, Immanuel Bloch, Eugene Demler Experiments: I. Bloch s group

More information

Surfaces, Interfaces, and Layered Devices

Surfaces, Interfaces, and Layered Devices Surfaces, Interfaces, and Layered Devices Building blocks for nanodevices! W. Pauli: God made solids, but surfaces were the work of Devil. Surfaces and Interfaces 1 Interface between a crystal and vacuum

More information

Semiconductor Physics and Devices Chapter 3.

Semiconductor Physics and Devices Chapter 3. Introduction to the Quantum Theory of Solids We applied quantum mechanics and Schrödinger s equation to determine the behavior of electrons in a potential. Important findings Semiconductor Physics and

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

CHEM3023: Spins, Atoms and Molecules

CHEM3023: Spins, Atoms and Molecules CHEM3023: Spins, Atoms and Molecules Lecture 3 The Born-Oppenheimer approximation C.-K. Skylaris Learning outcomes Separate molecular Hamiltonians to electronic and nuclear parts according to the Born-Oppenheimer

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 25 Jun 1999

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 25 Jun 1999 CHARGE RELAXATION IN THE PRESENCE OF SHOT NOISE IN COULOMB COUPLED MESOSCOPIC SYSTEMS arxiv:cond-mat/9906386v1 [cond-mat.mes-hall] 25 Jun 1999 MARKUS BÜTTIKER Département de Physique Théorique, Université

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Failure of the Wiedemann-Franz law in mesoscopic conductors

Failure of the Wiedemann-Franz law in mesoscopic conductors PHYSICAL REVIEW B 7, 05107 005 Failure of the Wiedemann-Franz law in mesoscopic conductors Maxim G. Vavilov and A. Douglas Stone Department of Applied Physics, Yale University, New Haven, Connecticut 0650,

More information

An improved brake squeal source model in the presence of kinematic and friction nonlinearities

An improved brake squeal source model in the presence of kinematic and friction nonlinearities An improved brake squeal source model in the presence of kinematic and friction nonlinearities Osman Taha Sen, Jason T. Dreyer, and Rajendra Singh 3 Department of Mechanical Engineering, Istanbul Technical

More information

SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER

SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER PETER PAZMANY CATHOLIC UNIVERSITY SEMMELWEIS UNIVERSITY Development of Complex Curricula for Molecular Bionics and Infobionics Programs within a consortial* framework** Consortium leader PETER PAZMANY

More information

Quantum Hall Effect in Graphene p-n Junctions

Quantum Hall Effect in Graphene p-n Junctions Quantum Hall Effect in Graphene p-n Junctions Dima Abanin (MIT) Collaboration: Leonid Levitov, Patrick Lee, Harvard and Columbia groups UIUC January 14, 2008 Electron transport in graphene monolayer New

More information

Minimal Update of Solid State Physics

Minimal Update of Solid State Physics Minimal Update of Solid State Physics It is expected that participants are acquainted with basics of solid state physics. Therefore here we will refresh only those aspects, which are absolutely necessary

More information

Dispersion interactions with long-time tails or beyond local equilibrium

Dispersion interactions with long-time tails or beyond local equilibrium Dispersion interactions with long-time tails or beyond local equilibrium Carsten Henkel PIERS session Casimir effect and heat transfer (Praha July 2015) merci à : G. Barton (Sussex, UK), B. Budaev (Berkeley,

More information

Mesoscopics with Superconductivity. Philippe Jacquod. U of Arizona. R. Whitney (ILL, Grenoble)

Mesoscopics with Superconductivity. Philippe Jacquod. U of Arizona. R. Whitney (ILL, Grenoble) Mesoscopics with Superconductivity Philippe Jacquod U of Arizona R. Whitney (ILL, Grenoble) Mesoscopics without superconductivity Mesoscopic = between «microscopic» and «macroscopic»; N. van Kampen 81

More information

Quantum Transport in Disordered Topological Insulators

Quantum Transport in Disordered Topological Insulators Quantum Transport in Disordered Topological Insulators Vincent Sacksteder IV, Royal Holloway, University of London Quansheng Wu, ETH Zurich Liang Du, University of Texas Austin Tomi Ohtsuki and Koji Kobayashi,

More information