Probing a Metallic Spin Glass Nanowire via Coherent Electronic Waves Diffusion

Size: px
Start display at page:

Download "Probing a Metallic Spin Glass Nanowire via Coherent Electronic Waves Diffusion"

Transcription

1 Probing a Metallic Spin Glass Nanowire via Coherent Electronic Waves Diffusion D. Carpentier, (Ecole Normale Supérieure de Lyon) Theory : A. Fedorenko, E. Orignac, G. Paulin (PhD) (Ecole Normale Supérieure de Lyon) Experiments : C. Bäuerle, T. Capron (PhD), L. Lévy, T. Meunier, L. Saminadayar (Quantum Coherence Group, Institut Néel, Grenoble) Support : CNRS, Computing center of ENS-Lyon (PSMN) and ANR MesoGlass

2 Using waves to probe matter Various methods to probe (soft) condensed matter using coherent diffusion of light / acoustic waves : Simple diffusion (radar, seismic detector, doppler velocimetry, etc) Source Detector Multiple diffusion : use of correlation Diffusion (acoustic) / coda wave spectroscopy, etc Detector Source Output : speckle no imaging possible

3 Coherent mult. diffusion : acoustic wave spectroscopy Output : speckle too difficult to analyze / use to probe Idea : analyze change of output when the diffusing medium is modified Source R. Snieder and J. Page, Physics Today (2007) Detector Detector Source ~ Interferometer Intensity modified by small variations of diffusion medium good sensitivity

4 Coherent mult. diffusion : acoustic wave spectroscopy Procedure :. At time T : send a pulse Source 2. Record the transmitted amplitude ψ(t,t) as a function of time 3. Repeat another trace ψ(t2,t) at time T2= T+ΔT 4. etc Correlation between traces : mean relative displacement in the medium g(δt) ψ(t,t) ψ*(t+δt,t) dt exp(- N(t)k 2 <Δr 2 (ΔT)>) AMPLITUDE (arbitrary units) a PROPAGATION TIME t ( µ s) AMPLITUDE (arbitrary units) b R. Snieder and J. Page, Physics Today (2007) PROPAGATION TIME t (s) µ Detector ultrasonic pulse in particulate suspension sismographic wave transmitted near Mount Merapi from R. Snieder and J. Page, Physics Today (2007)

5 What about electronic waves? waves diffusion : necessity to be phase coherent electrons interact with environment (phonons, other electrons, impurities) randomization of its phase looses memory of its phase over coherence length L φ (T ) electronic transport is classical in standard situations (Ohm s law) but quantum at low T (fewer phonons), and small length (few μm) L φ (T ) quantum diffusion classical diffusion, Ohm s Law L L φ (T ) only total flux (current) detected : no angle information, no speckle advantages : charge (sensitive to magnetic flux), spin (use it here).

6 General Idea of this work P. de Vegvar, L. Lévy, and T. Fulton, Phys. Rev. Lett. 66, 2380 (99) D.C. and E. Orignac, Phys. Rev. Lett. 00 (2008) How to measure correlations between different spin configurations? Our proposal : use coherent electronic transport to probe of a spin configuration : correlation of spin configurations correlation of transport properties Quantity analogous to Speckle? Coherent transport regime : transport on distances comparable with the coherence length scale L φ (T ) wires ( L z µm) L z : small L z L φ L x, L y L. Lévy et al. : 000ppm Cu:Mn, (d SS 23Å),L µm, L φ 0.5µm, L y 900Å,Nspins 40 L φ (T ) is limited by inelastic scattering : phonons low temperatures (T~ 00 mk) inelastic magnetic scattering : reduced in spin glass!!! L φ (T ) increases in the Spin Glass phase Transport in a wire : L x,l y L z,l φ

7 Transport probe : Classical Quantum Diffusion Probability to diffuse from r P (r r ) to r path C r r Phase variation along a diffusion path : Average interferences vanish, except if C = C (reversed ring) random in a metal Quantum correction : loop contributions (weak localization : first signs of Anderson Localization of waves) A C 2 = C δφ C =2π L C λ F Classical A C 2 + C=C A C A C O E. Akkermans and G. Montambaux, Mesoscopic Physics of electrons and photons, 2007 Interferences

8 Transport probe : Magnetic field effects E. Akkermans and G. Montambaux, Mesoscopic Physics of electrons and photons, 2007 Application of a magnetic field : dephase path with respect to each other : δφc,c = 2πΦC,C /Φ0 quantum corrections affected with 2 consequences : mk B 2000 conductance -0.2 Conductance, same sample, different spins config. universal conductance fluctuations : fingerprint of disorder configurations weak localization (long wires) -5 O Flux Through the Sample Quantity analogous to Speckle 00

9 Transport probe : Magnetic field effects Application of a magnetic field : dephase path with respect to each other : δφ C,C =2πΦ C,C /Φ 0 E. Akkermans and G. Montambaux, Mesoscopic Physics of electrons and photons, 2007 quantum corrections affected with 2 consequences : universal conductance fluctuations : fingerprint of disorder configurations P (r r ) O path C r r A C 2 = C A C 2 + C=C A C A C conductance Conductance, same sample, different spins config Flux Through the Sample Quantity analogous to Speckle Ergodic Hypothesis : Changing random potential (length of paths) or applying B : similar statistical dephasing averaging over B or V equivalent (δg(b,v )) 2 B = (δg(b,v )) 2 V = c e2 h Crucial for theoretician

10 General Idea of this work (2) D.C. and E. Orignac, Phys. Rev. Lett. 00 (2008) correlation of spin configurations correlation of transport properties Measure traces G(B) in sample, but for 2 spin configurations G B,{S () j },G B,{S (2) j } L x, L y L z L φ Consider average correlation between the two traces : δg B,{S () δg B,{S (2) j } Provides a measure of correlation between the spin configurations? B exp B,E F Temperature, T T T SG T exp 0 {S (n) i } t w {S (n+) i } j } B Conductance, same sample, different spins config Flux Through the Sample time t

11 D Diffusion but 3D Spin Glass! In theory : no Spin Glass phase in d=,2 (Ising SG) Typical number of spins in a section : N 40 putative overlap / equilibration length for a 3D spin glass (t) Evaluation of (t) from field change experiments and recent simulations (Ising SG) : (t w = 000s) 30 50spins N (3D) eq N (3D) eq N (3D) eq Depending on concentration : L x, L y L z L φ Probing a 3D spin glass through D coherent electronic diffusion ( N N eq (3D) (t w ) ) Probing D/3D cross-over through D coherent electronic diffusion J.-P. Bouchaud, V. Dupuis, J. Hammann, and E. Vincent, Phys. Rev. B 65, (200) S. Jimenez, V. Martin-Mayor, and S. Perez-Gaviro, Phys. Rev. B 72, (2005). L. Lévy et al. (99) : 000ppm Cu:Mn, (d SS 23Å), L µm, L φ 0.5µm, L y 900Å, N spins 40

12 Brief history P. de Vegvar, L. Lévy, and T. Fulton, Phys. Rev. Lett. 66, 2380 (99) N. Israeloff, et al., Phys. Rev. Lett. 63, 794 (989). G. Alers, M. Weissman, and N. Israeloff, Phys. Rev. B 46, 507 (992). J. Jaroszynski, et al. Phys. Rev. Lett. 80, 5635 (998) G. Neuttiens, et al., Phys. Rev. B 62, 3905 (2000). Pioneering work of L. Lévy et al.: Coupling between SG freezing and electronic transport 000ppm Cu:Mn Electron s transport is coherent de Vegvar et al. PRL (99) But most focused electronic (/f) noise Signature of slow relaxation of SG? but difficult to interpret (see M. Weissman RMP (993)) diluted magn. semicond. Cd0,93 Mn0,07Te AuFe 5% at. Jaroszynski et al., PRL (998) Neuttiens et al. PRB (2000) Here focus on correlations!

13 Theoretical Model H = <i,j> tc i c j + h.c. + i v i c i c i + i Jc i σ c i. S i Random flips Spins assumed randomly frozen Anderson model + Spins scalar disorder v i [ W/2, +W/2] (characterizes a sample) Frozen spins : randomly oriented, but correlated between configurations Spins of magnetic impurities : dephasing of electrons new length L m (J) diffuson/cooperon : reduction of UCF B. Alʼtshuler and B. Spivak, JETP Lett. 42, 447 (985) M. G. Vavilov, L. I. Glazman, and A. I. Larkin, Phys. Rev. B 68, 0759 (2003) D.C. and E. Orignac, Phys. Rev. Lett. 00 (2008) Initial Configuration (characterizes a Spin Glass state) Overlap General idea here : consider a given sample : {v i } 2 spin config. { S () i } and { S (2) i } (2 Spin Glass states) Study correlation between G V,{S () j } and G V,{S (2) j } Ergodic Hypothesis : corresponds to correlation between magnetoconductance traces in 2 Spin Glass states G φ, {S () and G φ, {S (2) j } j } Conductance, same sample, different spins config Flux Through the Sample

14 Techniques H = <i,j> tc i c j + h.c. + i v i c i c i + i Jc i σ c i. S i Spins assumed randomly frozen Anderson model + Spins scalar disorder v i [ W/2, +W/2] (characterizes a sample) Frozen spins : randomly oriented, but correlated between configurations (characterizes a Spin Glass state) Quantitative conductance correlations in a spin glass : Weak localization diagrammatic (perturb.) (D.C. and E. Orignac, Phys. Rev. Lett. 00 (2008)) magnetic dephasing of the cooperons and diffusons Field Theory (non-linear Sigma) (A.A. Fedorenko and D.C., arxiv:0904.0, EPL 200) study crossover between orthogonal and unitary classes, extend to calculations of conductance correlations Numerical Landauer method (G. Paulin and D.C., arxiv: )

15 Flavor of diagrammatic... (or why this idea can work) D.C. and E. Orignac, Phys. Rev. Lett. 00 (2008) We consider the correlation δg V,{S () j } δg V,{S (2) j } V φ(c, { S () }) φ(c, { S (2) }) The 2 components of propagating Diffuson / Cooperon see different spin configurations Same sample (positions of impurities) If two spin configurations similar : weak relative dephasing if two spin configurations different : strong relative dephasing Along a diffusion path : dependance on the overlap e i(js)ŝ() j.σ () e ±i(js)ŝ(2) j.σ (2) Q 2 = N imp + work to lower order in J j different dephasing rate/length for singlet / triplet component L (D,S) = L m / of the Diffuson / Cooperon Q 2, L (D,T ) = L m / : +Q 2 /2 N imp i= S () i. S (2) i L 2 m =2πρ 0 n imp D J 2 S 2

16 Lm(J) : cross-over length scale H = tc i c j + h.c. + v i c i c i + <i,j> i i Elastic scattering time : τ e = 2πρ 0 n i v0 2 G. Paulin and D.C., unpublished Jc i σ c i. S i l e = v F τ e, ξ loc N l e le k k Elastic scattering time : τ m = 2πρ 0 n i J 2 S 2 weak J L m = Dτ m D = v 2 F + τ e τ m Lm le

17 Lm(J) : cross-over length scale H = <i,j> tc i c j + h.c. + i Elastic scattering time : Elastic scattering time : τ e = τ m = v i c i c i + i 2πρ 0 n i v 2 0 2πρ 0 n i J 2 S 2 G. Paulin and D.C., unpublished Jc i σ c i. S i weak J l e = v F τ e, ξ loc N l e L m = Dτ m D = v 2 F + τ e τ m l e L m UCF (universal metal) L φ (T ) ξ loc Length of wire L Strong magnetic disorder : Unitary Class Sensitive to few spin flips

18 Lm(J) : cross-over length scale H = <i,j> tc i c j + h.c. + i Elastic scattering time : Elastic scattering time : τ e = τ m = v i c i c i + i 2πρ 0 n i v 2 0 2πρ 0 n i J 2 S 2 G. Paulin and D.C., unpublished Jc i σ c i. S i weak J l e = v F τ e, ξ loc N l e L m = Dτ m D = v 2 F + τ e τ m l e L m UCF (universal metal) L φ (T ) ξ loc Length of wire L Very Weak magnetic disorder : Orthogonal Class Not Sensitive to spins

19 Lm(J) : cross-over length scale H = <i,j> tc i c j + h.c. + i Elastic scattering time : Elastic scattering time : τ e = τ m = v i c i c i + i 2πρ 0 n i v 2 0 2πρ 0 n i J 2 S 2 G. Paulin and D.C., unpublished Jc i σ c i. S i weak J l e = v F τ e, ξ loc N l e L m = Dτ m D = v 2 F + τ e τ m l e L m UCF (universal metal) L φ (T ) ξ loc Length of wire L Weak magnetic disorder : Cross-over Sensitive to rearrangement of config. of spins

20 Numerical Landauer Method G. Paulin and D.C., arxiv: G. Paulin and D.C., arxiv: g Transport in Nanowires : Landauer formula g = e2 h modes α,β T αβ µ R j j L R,T Réservoir Réservoir 2 R 2 j j L 2 µ 2 Scattering Matrix S obtained through the Fisher-Lee relations : S G R wave function φ α (y, x) of mode α, velocity v α transmission coefficient ( G R electronic Green s function) : t αβ = i v α v β dy α dy β φ α (y α,x= 0)G R (y α,x=0 y β,x= L)φ β (y β,x= L) Green s function : recursive method Dyson eq. : G R = G R 0 + G R 0 VG + V Build wire row by row Connect the reservoirs G R (,L) G R (L +,L+ ) G R (,L+ ) + +

21 Distribution of Correlations Distribution of G({v i, S () i }) G({v i, S (2) i }) when V = {v i }) varies (5000 samples) G. Paulin and D.C., unpublished

22 Distribution of Correlations Distribution of G({v i, S () i }) G({v i, S (2) i }) when V = {v i }) varies (5000 samples) G. Paulin and D.C., unpublished +,- '"# ' &"# & %"# %!"#!./0/$"!/2 3 /0/!4$$/5/0/#$$$/6789:; )/0/4/*/0/</=/0/$"><>>?)@;;8)9/+,- )/0/</*/0/!4/=/0/$">!%A )/0/>/*/0/!4/=/0/$">!$$ )/0/!$/*/0/!4/=/0/$">$A< )/0/!&/*/0/!#/=/0/$">$><?)@;;8)9/+,- / pair of config. with correlation Q pair of config. with correlation Q2 $"# $ /!!"#!!!$"# $ $"#!!"# ( )!( *

23 Distribution of Correlations Distribution of G({v i, S () i }) G({v i, S (2) i }) when V = {v i }) varies (5000 samples) G. Paulin and D.C., unpublished./0/$"!/2 3 /0/!4$$/5/0/#$$$/6789:; +,- / '"# ' )/0/4/*/0/</=/0/$"><>> &"#?)@;;8)9/+,- )/0/</*/0/!4/=/0/$">!%A )/0/>/*/0/!4/=/0/$">!$$ & )/0/!$/*/0/!4/=/0/$">$A< )/0/!&/*/0/!#/=/0/$">$>< %"#?)@;;8)9/+,- %!"#! $"# / $!!"#!!!$"# $ $"#!!"# ( )!( *./0/!"'/2 3 /0/'$!!/4/0/5!!!/6789:; +,- '% '& '! # $ <)=;;8)9/+,-/>/0/!"???& <)=;;8)9/+,-/>/0/!"??#5 <)=;;8)9/+,-/>/0/!"??#! <)=;;8)9/+,-/>/0/!"??@A <)=;;8)9/+,-/>/0/!"?#?? <)=;;8)9/+,-/>/0/!"?#!$ <)=;;8)9/+,-/>/0/!"?'!! <)=;;8)9/+,-/>/0/!"%$!@ <)=;;8)9/+,-/>/0/!"&$?$ <)=;;8)9/+,-/>/0/!"!!&! <)=;;8)9/+,-/>/0/!/B8C8: / Evolution of PDF of correlations of g when correlation of spins Q varies % &! /!!"#!!"$!!"%!!"&!!"&!"%!"$!"# ( )!( *

24 Distribution of Correlations Distribution of G({v i, S () i }) G({v i, S (2) i }) when V = {v i }) varies (5000 samples) Variance : Probe of overlap *+,-./0,/23* ,7 "%$& "%$( "%$' "%$$ "%$ "%!& "%!( "%!' "%!$ "%! δg V,{S () j } :3;3<3"%"=:3>? 3<3&"" :3;3<3"%"=:3>? 3<3!$"" :3;3<3"%"=:3>? 3<3!("" δg V,{S (2) Q = j } S () i. S N (2) i i G. Paulin and D.C., unpublished V = F (L/L m,q) 3 / '"# ' )/0/4/*/0/</=/0/$"><>> &"#?)@;;8)9/+,- )/0/</*/0/!4/=/0/$">!%A )/0/>/*/0/!4/=/0/$">!$$ & )/0/!$/*/0/!4/=/0/$">$A< )/0/!&/*/0/!#/=/0/$">$>< %"#?)@;;8)9/+,- %!"#! $"# +,-./0/$"!/2 3 /0/!4$$/5/0/#$$$/6789:; +,- / $!!"#!!!$"# $ $"#!!"# ( )!( *./0/!"'/2 3 /0/'$!!/4/0/5!!!/6789:; / '% <)=;;8)9/+,-/>/0/!"???& <)=;;8)9/+,-/>/0/!"??#5 <)=;;8)9/+,-/>/0/!"??#! '& <)=;;8)9/+,-/>/0/!"??@A <)=;;8)9/+,-/>/0/!"?#?? <)=;;8)9/+,-/>/0/!"?#!$ '! <)=;;8)9/+,-/>/0/!"?'!! <)=;;8)9/+,-/>/0/!"%$!@ <)=;;8)9/+,-/>/0/!"&$?$ # <)=;;8)9/+,-/>/0/!"!!&! <)=;;8)9/+,-/>/0/!/B8C8: $ % &! /!!"#!!"$!!"%!!"&!!"&!"%!"$!"# ( )!( * "%"& 3!"!#!"!$!"!!!" "!!)

25 Distribution of Correlations Distribution of G({v i, S () i }) G({v i, S (2) i }) when V = {v i }) varies (5000 samples) δg Variance : Probe of overlap V,{S () j } δg V,{S (2) Q = j } S () i. S N (2) i i,-.-"'"( G. Paulin and D.C., unpublished V = F (L/L m,q) / '"# ' )/0/4/*/0/</=/0/$"><>> &"#?)@;;8)9/+,- )/0/</*/0/!4/=/0/$">!%A )/0/>/*/0/!4/=/0/$">!$$ & )/0/!$/*/0/!4/=/0/$">$A< )/0/!&/*/0/!#/=/0/$">$>< %"#?)@;;8)9/+,- %!"#! $"# +,-./0/$"!/2 3 /0/!4$$/5/0/#$$$/6789:; +,- / $!!"#!!!$"# $ $"#!!"# ( )!( *./0/!"'/2 3 /0/'$!!/4/0/5!!!/6789:; / '% <)=;;8)9/+,-/>/0/!"???& <)=;;8)9/+,-/>/0/!"??#5 <)=;;8)9/+,-/>/0/!"??#! '& <)=;;8)9/+,-/>/0/!"??@A <)=;;8)9/+,-/>/0/!"?#?? <)=;;8)9/+,-/>/0/!"?#!$ '! <)=;;8)9/+,-/>/0/!"?'!! <)=;;8)9/+,-/>/0/!"%$!@ <)=;;8)9/+,-/>/0/!"&$?$ # <)=;;8)9/+,-/>/0/!"!!&! <)=;;8)9/+,-/>/0/!/B8C8: $ % :2; "') "'$( "'$ "'#( "'# *+,-./0,/23* ,7 &! /!!"#!!"$!!"%!!"&!!"&!"%!"$!"# ( )!( * 3 "%$& :3;3<3"%"=:3> "%$(? 3<3&"" :3;3<3"%"=:3> 3<3!$""? "%$' :3;3<3"%"=:3> "%$$? 3<3!$"" 3<3!("" "%!& "%!( "%!' "%!$ "%! "%"& 3!"!#!"!$!"!!!" "!!) "'"( " "'$ "'% #!/ "'& "'! # #&"" #%"" #$"" * + #"""!""

26 Perspectives Specificities a spin glass nanowire : dimensional cross-over of dynamics? Effects of short range correlations between spins (T>Tg) new type of material (spins implanted in pure metal) Perspectives : characterization of T-chaos, aging, comparison between successives quenches magnetoconductance at lower fields B dynamics at low T (<Tg/0) and high fields (AT line?) Thank You!

Mesoscopic conductance fluctuations and spin glasses

Mesoscopic conductance fluctuations and spin glasses GdR Meso 2010 G Thibaut CAPRON Track of a potential energy landscape evolving on geological time scales B Mesoscopic conductance fluctuations and spin glasses www.neel.cnrs.fr Team project Quantum coherence

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 5 Beforehand Yesterday Today Anderson Localization, Mesoscopic

More information

Photon-atom scattering

Photon-atom scattering Photon-atom scattering Aussois 005 Part Ohad Assaf and Aharon Gero Technion Photon-atom scattering Complex system: Spin of the photon: dephasing Internal atomic degrees of freedom (Zeeman sublevels): decoherence

More information

Semiclassical formulation

Semiclassical formulation The story so far: Transport coefficients relate current densities and electric fields (currents and voltages). Can define differential transport coefficients + mobility. Drude picture: treat electrons

More information

Quantum transport in nanoscale solids

Quantum transport in nanoscale solids Quantum transport in nanoscale solids The Landauer approach Dietmar Weinmann Institut de Physique et Chimie des Matériaux de Strasbourg Strasbourg, ESC 2012 p. 1 Quantum effects in electron transport R.

More information

Mesoscopic physics: normal metals, ferromagnets, and magnetic semiconductors

Mesoscopic physics: normal metals, ferromagnets, and magnetic semiconductors Mesoscopic physics: normal metals, ferromagnets, and magnetic semiconductors Douglas Natelson Department of Physics and Astronomy Department of Electrical and Computer Engineering Rice Quantum Institute

More information

Today: 5 July 2008 ٢

Today: 5 July 2008 ٢ Anderson localization M. Reza Rahimi Tabar IPM 5 July 2008 ١ Today: 5 July 2008 ٢ Short History of Anderson Localization ٣ Publication 1) F. Shahbazi, etal. Phys. Rev. Lett. 94, 165505 (2005) 2) A. Esmailpour,

More information

Quantum Transport in Disordered Topological Insulators

Quantum Transport in Disordered Topological Insulators Quantum Transport in Disordered Topological Insulators Vincent Sacksteder IV, Royal Holloway, University of London Quansheng Wu, ETH Zurich Liang Du, University of Texas Austin Tomi Ohtsuki and Koji Kobayashi,

More information

Weakly-coupled quasi-1d helical modes in disordered 3D topological insulator quantum wires

Weakly-coupled quasi-1d helical modes in disordered 3D topological insulator quantum wires Weakly-coupled quasi-1d helical modes in disordered 3D topological insulator quantum wires J. Dufouleur, 1 L. Veyrat, 1 B. Dassonneville, 1 E. Xypakis, 2 J. H. Bardarson, 2 C. Nowka, 1 S. Hampel, 1 J.

More information

What is it all about?

What is it all about? Dephasing, decoherence,... What is it all about? Consider a spinor (total phase is irrelevant) Ê Y = y eij ˆ Á Ë y Ø e -ij Average components of the spin can be expressed through the absolute values of

More information

1. For d=3,2 from ε<< ε F it follows that ετ >> e-e h, i.e.,

1. For d=3,2 from ε<< ε F it follows that ετ >> e-e h, i.e., Quasiparticle decay rate at T = 0 in a clean Fermi Liquid. ω +ω Fermi Sea τ e e ( ) F ( ) log( ) Conclusions:. For d=3, from > e-e, i.e., tat te qusiparticles are well determined

More information

Phase Transitions in Spin Glasses

Phase Transitions in Spin Glasses Phase Transitions in Spin Glasses Peter Young Talk available at http://physics.ucsc.edu/ peter/talks/sinica.pdf e-mail:peter@physics.ucsc.edu Supported by the Hierarchical Systems Research Foundation.

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

X-ray Photon Correlation Spectroscopy (XPCS) at Synchrotron and FEL sources

X-ray Photon Correlation Spectroscopy (XPCS) at Synchrotron and FEL sources X-ray Photon Correlation Spectroscopy (XPCS) at Synchrotron and FEL sources Christian Gutt Department of Physics, University ofsiegen, Germany gutt@physik.uni-siegen.de Outline How to measure dynamics

More information

Quantum coherent transport in Meso- and Nanoscopic Systems

Quantum coherent transport in Meso- and Nanoscopic Systems Quantum coherent transport in Meso- and Nanoscopic Systems Philippe Jacquod pjacquod@physics.arizona.edu U of Arizona http://www.physics.arizona.edu/~pjacquod/ Quantum coherent transport Outline Quantum

More information

Conductance of Mesoscopic Systems with Magnetic Impurities

Conductance of Mesoscopic Systems with Magnetic Impurities Conductance of Mesoscopic Systems with Magnetic Impurities M.G. Vavilov and L.I. Glazman Theoretical Physics Institute, University of Minnesota, Minneapolis, MN 55455 (Dated: November 7, 00) We investigate

More information

Localization I: General considerations, one-parameter scaling

Localization I: General considerations, one-parameter scaling PHYS598PTD A.J.Leggett 2013 Lecture 4 Localization I: General considerations 1 Localization I: General considerations, one-parameter scaling Traditionally, two mechanisms for localization of electron states

More information

What is Quantum Transport?

What is Quantum Transport? What is Quantum Transport? Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, U.S.A. http://www.physics.udel.edu/~bnikolic Semiclassical Transport (is boring!) Bloch-Boltzmann

More information

Interacting Electrons in Disordered Quantum Wires: Localization and Dephasing. Alexander D. Mirlin

Interacting Electrons in Disordered Quantum Wires: Localization and Dephasing. Alexander D. Mirlin Interacting Electrons in Disordered Quantum Wires: Localization and Dephasing Alexander D. Mirlin Forschungszentrum Karlsruhe & Universität Karlsruhe, Germany I.V. Gornyi, D.G. Polyakov (Forschungszentrum

More information

Introduction to Wave Scattering, Localization and Mesoscopic Phenomena

Introduction to Wave Scattering, Localization and Mesoscopic Phenomena Springer Series in Materials Science 88 Introduction to Wave Scattering, Localization and Mesoscopic Phenomena Bearbeitet von Ping Sheng Neuausgabe 2006. Buch. xv, 329 S. Hardcover ISBN 978 3 540 29155

More information

Disordered Materials: Glass physics

Disordered Materials: Glass physics Disordered Materials: Glass physics > 2.7. Introduction, liquids, glasses > 4.7. Scattering off disordered matter: static, elastic and dynamics structure factors > 9.7. Static structures: X-ray scattering,

More information

Simulating time dependent thermoelectric transport with the t-kwant software

Simulating time dependent thermoelectric transport with the t-kwant software Simulating time dependent thermoelectric transport with the t-kwant software Adel Kara Slimane, Phillipp Reck, and Geneviève Fleury Service de Physique de l Etat Condensé (SPEC) CEA Saclay CNRS UMR 3680

More information

8.513 Lecture 14. Coherent backscattering Weak localization Aharonov-Bohm effect

8.513 Lecture 14. Coherent backscattering Weak localization Aharonov-Bohm effect 8.513 Lecture 14 Coherent backscattering Weak localization Aharonov-Bohm effect Light diffusion; Speckle patterns; Speckles in coherent backscattering phase-averaged Coherent backscattering Contribution

More information

Recurrent scattering and memory effect at the Anderson transition

Recurrent scattering and memory effect at the Anderson transition Recurrent scattering and memory effect at the Anderson transition Alexandre Aubry Institut Langevin CNRS UMR 7587, ESPCI ParisTech Paris, France Collaborators: John Page, Laura Cobus (University of Manitoba,

More information

Advanced Workshop on Anderson Localization, Nonlinearity and Turbulence: a Cross-Fertilization. 23 August - 3 September, 2010

Advanced Workshop on Anderson Localization, Nonlinearity and Turbulence: a Cross-Fertilization. 23 August - 3 September, 2010 16-5 Advanced Workshop on Anderson Localization, Nonlinearity and Turbulence: a Cross-Fertilization 3 August - 3 September, 010 INTRODUCTORY Anderson Localization - Introduction Boris ALTSHULER Columbia

More information

Failure of the Wiedemann-Franz law in mesoscopic conductors

Failure of the Wiedemann-Franz law in mesoscopic conductors PHYSICAL REVIEW B 7, 05107 005 Failure of the Wiedemann-Franz law in mesoscopic conductors Maxim G. Vavilov and A. Douglas Stone Department of Applied Physics, Yale University, New Haven, Connecticut 0650,

More information

Aging, rejuvenation and memory: the example of spin glasses

Aging, rejuvenation and memory: the example of spin glasses Aging, rejuvenation and memory: the example of spin glasses F. Bert, J.-P. Bouchaud, V. Dupuis, J. Hammann, D. Hérisson, F. Ladieu, M. Ocio, D. Parker, E. Vincent Service de Physique de l Etat Condensé,

More information

Superconducting fluctuations, interactions and disorder : a subtle alchemy

Superconducting fluctuations, interactions and disorder : a subtle alchemy Les défis actuels de la supraconductivité Dautreppe 2011 Superconducting fluctuations, interactions and disorder : a subtle alchemy Claude Chapelier, Benjamin Sacépé, Thomas Dubouchet INAC-SPSMS-LaTEQS,

More information

Effects of magnetic fields and spin

Effects of magnetic fields and spin PHYS598PTD A.J.Leggett 2013 Lecture 6 Effects of magnetic fields and spin 1 Effects of magnetic fields and spin Now we turn to the effects of magnetic fields; we will concentrate on the orbital coupling,

More information

Mesoscopics with Superconductivity. Philippe Jacquod. U of Arizona. R. Whitney (ILL, Grenoble)

Mesoscopics with Superconductivity. Philippe Jacquod. U of Arizona. R. Whitney (ILL, Grenoble) Mesoscopics with Superconductivity Philippe Jacquod U of Arizona R. Whitney (ILL, Grenoble) Mesoscopics without superconductivity Mesoscopic = between «microscopic» and «macroscopic»; N. van Kampen 81

More information

Spin Currents in Mesoscopic Systems

Spin Currents in Mesoscopic Systems Spin Currents in Mesoscopic Systems Philippe Jacquod - U of Arizona I Adagideli (Sabanci) J Bardarson (Berkeley) M Duckheim (Berlin) D Loss (Basel) J Meair (Arizona) K Richter (Regensburg) M Scheid (Regensburg)

More information

WAVE INTERFERENCES IN RANDOM LASERS

WAVE INTERFERENCES IN RANDOM LASERS WAVE INTERFERENCES IN RANDOM LASERS Philippe Jacquod U of Arizona P. Stano and Ph. Jacquod, Nature Photonics (2013) What is a laser? Light Amplification by Stimulated Emission of Radiation Three main components

More information

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego Michigan Quantum Summer School Ann Arbor, June 16-27, 2008. Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego 1. Motivation: Quantum superiority in superposition

More information

Disordered Superconductors

Disordered Superconductors Cargese 2016 Disordered Superconductors Claude Chapelier, INAC-PHELIQS, CEA-Grenoble Superconductivity in pure metals Kamerlingh Onnes, H., "Further experiments with liquid helium. C. On the change of

More information

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Dynamics of fluctuations in high temperature superconductors far from equilibrium L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Superconductors display amazing properties: Dissipation-less

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

SPSRM, Saclay, France in the eighties

SPSRM, Saclay, France in the eighties J.M. Hammann Miguel Ocio C. Pappas SPSRM, Saclay, France in the eighties M. Alba 1/20 Scaling in spin glasses M. ALBA, LLB [CEA-CNRS] Master curves in effective time of the TRM relaxations of CsNiFeF 6

More information

I. PLATEAU TRANSITION AS CRITICAL POINT. A. Scaling flow diagram

I. PLATEAU TRANSITION AS CRITICAL POINT. A. Scaling flow diagram 1 I. PLATEAU TRANSITION AS CRITICAL POINT The IQHE plateau transitions are examples of quantum critical points. What sort of theoretical description should we look for? Recall Anton Andreev s lectures,

More information

Disordered Solids. real crystals spin glass. glasses. Grenoble

Disordered Solids. real crystals spin glass. glasses. Grenoble Disordered Solids real crystals spin glass glasses Grenoble 21.09.11-1 Tunneling of Atoms in Solids Grenoble 21.09.11-2 Tunneln Grenoble 21.09.11-3 KCl:Li Specific Heat specific heat roughly a factor of

More information

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany)

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany) Phase Diagram of interacting Bose gases in one-dimensional disordered optical lattices R. Citro In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L.

More information

Charges and Spins in Quantum Dots

Charges and Spins in Quantum Dots Charges and Spins in Quantum Dots L.I. Glazman Yale University Chernogolovka 2007 Outline Confined (0D) Fermi liquid: Electron-electron interaction and ground state properties of a quantum dot Confined

More information

Numerical study of localization in antidot lattices

Numerical study of localization in antidot lattices PHYSICAL REVIEW B VOLUME 58, NUMBER 16 Numerical study of localization in antidot lattices 15 OCTOBER 1998-II Seiji Uryu and Tsuneya Ando Institute for Solid State Physics, University of Tokyo, 7-22-1

More information

Search for time reversal symmetry effects in disordered conductors and insulators beyond weak localization. Marc Sanquer CEA/DRF/INAC & UGA

Search for time reversal symmetry effects in disordered conductors and insulators beyond weak localization. Marc Sanquer CEA/DRF/INAC & UGA Search for time reversal symmetry effects in disordered conductors and insulators beyond weak localization. Marc Sanquer CEA/DRF/INAC & UGA 40 years of Mesoscopics Physics: Colloquium in memory of Jean-Louis

More information

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 Kondo Effect in Metals and Quantum Dots Jan von Delft

More information

The Role of Spin in Ballistic-Mesoscopic Transport

The Role of Spin in Ballistic-Mesoscopic Transport The Role of Spin in Ballistic-Mesoscopic Transport INT Program Chaos and Interactions: From Nuclei to Quantum Dots Seattle, WA 8/12/2 CM Marcus, Harvard University Supported by ARO-MURI, DARPA, NSF Spin-Orbit

More information

Olivier Bourgeois Institut Néel

Olivier Bourgeois Institut Néel Olivier Bourgeois Institut Néel Outline Introduction: necessary concepts: phonons in low dimension, characteristic length Part 1: Transport and heat storage via phonons Specific heat and kinetic equation

More information

Part III: Impurities in Luttinger liquids

Part III: Impurities in Luttinger liquids Functional RG for interacting fermions... Part III: Impurities in Luttinger liquids 1. Luttinger liquids 2. Impurity effects 3. Microscopic model 4. Flow equations 5. Results S. Andergassen, T. Enss (Stuttgart)

More information

Is there a de Almeida-Thouless line in finite-dimensional spin glasses? (and why you should care)

Is there a de Almeida-Thouless line in finite-dimensional spin glasses? (and why you should care) Is there a de Almeida-Thouless line in finite-dimensional spin glasses? (and why you should care) Peter Young Talk at MPIPKS, September 12, 2013 Available on the web at http://physics.ucsc.edu/~peter/talks/mpipks.pdf

More information

Polarization and spatial coherence of electromagnetic waves in disordered media

Polarization and spatial coherence of electromagnetic waves in disordered media Polarization and spatial coherence of electromagnetic waves in disordered media Kevin Vynck Laboratoire Photonique, Numérique et Nanosciences (LP2N) UMR 5298, CNRS IOGS Univ. Bordeaux Institut d'optique

More information

Charge transport in oxides and metalinsulator

Charge transport in oxides and metalinsulator Charge transport in oxides and metalinsulator transitions M. Gabay School on modern topics in Condensed matter Singapore, 28/01 8/02 2013 Down the rabbit hole Scaling down impacts critical parameters of

More information

Nonequilibrium dynamics in Coulomb glasses near the metal-insulator transition

Nonequilibrium dynamics in Coulomb glasses near the metal-insulator transition Nonequilibrium dynamics in Coulomb glasses near the metal-insulator transition Dragana Popović National High Magnetic Field Laboratory Florida State University, Tallahassee, FL, USA Boulder 2009 Summer

More information

Interfaces with short-range correlated disorder: what we learn from the Directed Polymer

Interfaces with short-range correlated disorder: what we learn from the Directed Polymer Interfaces with short-range correlated disorder: what we learn from the Directed Polymer Elisabeth Agoritsas (1), Thierry Giamarchi (2) Vincent Démery (3), Alberto Rosso (4) Reinaldo García-García (3),

More information

Andreev transport in 2D topological insulators

Andreev transport in 2D topological insulators Andreev transport in 2D topological insulators Jérôme Cayssol Bordeaux University Visiting researcher UC Berkeley (2010-2012) Villard de Lans Workshop 09/07/2011 1 General idea - Topological insulators

More information

Institute Laue-Langevin, Grenoble

Institute Laue-Langevin, Grenoble Institute Laue-Langevin, Grenoble Plan of this presentation 1. Short Introduction: Ultra Cold Neutrons - UCN. First experiment in 1968 in JINR, Dubna: V.I.Luschikov et al (1969). JETP Letters 9: 40-45.

More information

Quantum Mesoscopic Physics: Coherent Backscattering of Light by Cold Atoms

Quantum Mesoscopic Physics: Coherent Backscattering of Light by Cold Atoms J. Phys. IV France 1 (2003) Pr1-1 c EDP Sciences, Les Ulis Quantum Mesoscopic Physics: Coherent Backscattering of Light by Cold Atoms Thierry Chanelière, Guillaume Labeyrie, Christian Miniatura, David

More information

Thermal transport in the disordered electron liquid

Thermal transport in the disordered electron liquid Thermal transport in the disordered electron liquid Georg Schwiete Johannes Gutenberg Universität Mainz Alexander Finkel stein Texas A&M University, Weizmann Institute of Science, and Landau Institute

More information

Valence Bonds in Random Quantum Magnets

Valence Bonds in Random Quantum Magnets Valence Bonds in Random Quantum Magnets theory and application to YbMgGaO 4 Yukawa Institute, Kyoto, November 2017 Itamar Kimchi I.K., Adam Nahum, T. Senthil, arxiv:1710.06860 Valence Bonds in Random Quantum

More information

Nonlinear σ model for disordered systems: an introduction

Nonlinear σ model for disordered systems: an introduction Nonlinear σ model for disordered systems: an introduction Igor Lerner THE UNIVERSITY OF BIRMINGHAM School of Physics & Astronomy OUTLINE What is that & where to take it from? How to use it (1 or 2 simple

More information

Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime

Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime Zhenhua Qiao, Yanxia Xing, and Jian Wang* Department of Physics and the Center of Theoretical and Computational

More information

Superconducting properties of carbon nanotubes

Superconducting properties of carbon nanotubes Superconducting properties of carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf A. De Martino, F. Siano Overview Superconductivity in ropes of nanotubes

More information

Transient grating measurements of spin diffusion. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab

Transient grating measurements of spin diffusion. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab Transient grating measurements of spin diffusion Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab LBNL, UC Berkeley and UCSB collaboration Chris Weber, Nuh Gedik, Joel Moore, JO UC Berkeley

More information

Many-Body Localization. Geoffrey Ji

Many-Body Localization. Geoffrey Ji Many-Body Localization Geoffrey Ji Outline Aside: Quantum thermalization; ETH Single-particle (Anderson) localization Many-body localization Some phenomenology (l-bit model) Numerics & Experiments Thermalization

More information

Fluctuations near a critical point

Fluctuations near a critical point Bari 3-5 September 2008 Fluctuations near a critical point S. Ciliberto, S. Joubaud, B. Persier, A. Petrossyan Laboratoire de Physique, ENS de Lyon - UMR5672 CNRS Fluctuations near a critical point Motivations

More information

Quantum Monte Carlo Simulations in the Valence Bond Basis

Quantum Monte Carlo Simulations in the Valence Bond Basis NUMERICAL APPROACHES TO QUANTUM MANY-BODY SYSTEMS, IPAM, January 29, 2009 Quantum Monte Carlo Simulations in the Valence Bond Basis Anders W. Sandvik, Boston University Collaborators Kevin Beach (U. of

More information

Mesoscopic Physics with Seismic waves «not nano but kilo»

Mesoscopic Physics with Seismic waves «not nano but kilo» Mesoscopic Physics with Seismic waves «not nano but kilo» Bart van Tiggelen Laboratoire de Physique et Modélisation des Milieux Condensés CNRS/University of Grenoble, France Collaborators: Michel Campillo

More information

FIG. 16: A Mach Zehnder interferometer consists of two symmetric beam splitters BS1 and BS2

FIG. 16: A Mach Zehnder interferometer consists of two symmetric beam splitters BS1 and BS2 Lecture 11: Application: The Mach Zehnder interferometer Coherent-state input Squeezed-state input Mach-Zehnder interferometer with coherent-state input: Now we apply our knowledge about quantum-state

More information

Lecture 4. Diffusing photons and superradiance in cold gases

Lecture 4. Diffusing photons and superradiance in cold gases Lecture 4 Diffusing photons and superradiance in cold gases Model of disorder-elastic mean free path and group velocity. Dicke states- Super- and sub-radiance. Scattering properties of Dicke states. Multiple

More information

Quantum dynamics in many body systems

Quantum dynamics in many body systems Quantum dynamics in many body systems Eugene Demler Harvard University Collaborators: David Benjamin (Harvard), Israel Klich (U. Virginia), D. Abanin (Perimeter), K. Agarwal (Harvard), E. Dalla Torre (Harvard)

More information

Carbon Nanotubes part 2 CNT s s as a toy model for basic science. Niels Bohr Institute School 2005

Carbon Nanotubes part 2 CNT s s as a toy model for basic science. Niels Bohr Institute School 2005 Carbon Nanotubes part 2 CNT s s as a toy model for basic science Niels Bohr Institute School 2005 1 Carbon Nanotubes as a model system 2 Christian Schönenberger University of Basel B. Babic W. Belzig M.

More information

The nature of superfluidity in the cold atomic unitary Fermi gas

The nature of superfluidity in the cold atomic unitary Fermi gas The nature of superfluidity in the cold atomic unitary Fermi gas Introduction Yoram Alhassid (Yale University) Finite-temperature auxiliary-field Monte Carlo (AFMC) method The trapped unitary Fermi gas

More information

Purely electronic transport in dirty boson insulators

Purely electronic transport in dirty boson insulators Purely electronic transport in dirty boson insulators Markus Müller Ann. Phys. (Berlin) 18, 849 (2009). Discussions with M. Feigel man, M.P.A. Fisher, L. Ioffe, V. Kravtsov, Abdus Salam International Center

More information

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf Scattering theory of current-induced forces Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf Overview Current-induced forces in mesoscopic systems: In molecule/dot with slow mechanical

More information

How can x-ray intensity fluctuation spectroscopy push the frontiers of Materials Science. Mark Sutton McGill University

How can x-ray intensity fluctuation spectroscopy push the frontiers of Materials Science. Mark Sutton McGill University How can x-ray intensity fluctuation spectroscopy push the frontiers of Materials Science Mark Sutton McGill University Coherent diffraction (001) Cu 3 Au peak Sutton et al., The Observation of Speckle

More information

Anderson localization of ultrasound in three dimensions

Anderson localization of ultrasound in three dimensions International School of Physics Enrico Fermi Course CLXXIII "Nano Optics and Atomics: Transport of Light and Matter Waves Varenna, June 23 rd to July 3 rd, 29 Anderson localization of ultrasound in three

More information

Chapter 2 Superconducting Gap Structure and Magnetic Penetration Depth

Chapter 2 Superconducting Gap Structure and Magnetic Penetration Depth Chapter 2 Superconducting Gap Structure and Magnetic Penetration Depth Abstract The BCS theory proposed by J. Bardeen, L. N. Cooper, and J. R. Schrieffer in 1957 is the first microscopic theory of superconductivity.

More information

Observation of Majorana fermions in superfluid 3 He.

Observation of Majorana fermions in superfluid 3 He. XV-Международная Молодежная Научная Школа "Актуальные проблемы магнитного резонанса Казань 22-26.10.2013 Observation of Majorana fermions in superfluid 3 He. Yury Bunkov Institut Neel, Grenoble, France

More information

Twin Peaks: momentum-space dynamics of ultracold matter waves in random potentials

Twin Peaks: momentum-space dynamics of ultracold matter waves in random potentials Twin Peaks: momentum-space dynamics of ultracold matter waves in random potentials T. Karpiuk N. Cherroret K.L. Lee C. Müller B. Grémaud C. Miniatura IHP, 7 Nov 2012 Experimental and Numerical scenario

More information

Persistent spin current in a spin ring

Persistent spin current in a spin ring Persistent spin current in a spin ring Ming-Che Chang Dept of Physics Taiwan Normal Univ Jing-Nuo Wu (NCTU) Min-Fong Yang (Tunghai U.) A brief history precursor: Hund, Ann. Phys. 1934 spin charge persistent

More information

Anderson Localization from Classical Trajectories

Anderson Localization from Classical Trajectories Anderson Localization from Classical Trajectories Piet Brouwer Laboratory of Atomic and Solid State Physics Cornell University Support: NSF, Packard Foundation With: Alexander Altland (Cologne) Quantum

More information

Recent experimental studies of electron dephasing in metal and semiconductor mesoscopic structures

Recent experimental studies of electron dephasing in metal and semiconductor mesoscopic structures INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 14 (2002) R501 R596 PII: S0953-8984(02)16903-7 TOPICAL REVIEW Recent experimental studies of electron dephasing

More information

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University Quantum Monte Carlo Simulations in the Valence Bond Basis Anders Sandvik, Boston University Outline The valence bond basis for S=1/2 spins Projector QMC in the valence bond basis Heisenberg model with

More information

Quantum (spin) glasses. Leticia F. Cugliandolo LPTHE Jussieu & LPT-ENS Paris France

Quantum (spin) glasses. Leticia F. Cugliandolo LPTHE Jussieu & LPT-ENS Paris France Quantum (spin) glasses Leticia F. Cugliandolo LPTHE Jussieu & LPT-ENS Paris France Giulio Biroli (Saclay) Daniel R. Grempel (Saclay) Gustavo Lozano (Buenos Aires) Homero Lozza (Buenos Aires) Constantino

More information

Diagrammatic Monte Carlo methods for Fermions

Diagrammatic Monte Carlo methods for Fermions Diagrammatic Monte Carlo methods for Fermions Philipp Werner Department of Physics, Columbia University PRL 97, 7645 (26) PRB 74, 15517 (26) PRB 75, 8518 (27) PRB 76, 235123 (27) PRL 99, 12645 (27) PRL

More information

Nonadiabatic dynamics and coherent control of nonequilibrium superconductors

Nonadiabatic dynamics and coherent control of nonequilibrium superconductors Nonadiabatic dynamics and coherent control of nonequilibrium superconductors Andreas Schnyder Workshop on strongly correlated electron systems Schloss Ringberg, November 13 k F 1 t (ps 3 4 in collaboration

More information

Phase Transition in Vector Spin Glasses. Abstract

Phase Transition in Vector Spin Glasses. Abstract Phase Transition in Vector Spin Glasses A. P. Young Department of Physics, University of California, Santa Cruz, California 95064 (Dated: June 3, 2004) Abstract We first give an experimental and theoretical

More information

Interplay of interactions and disorder in two dimensions

Interplay of interactions and disorder in two dimensions Interplay of interactions and disorder in two dimensions Sergey Kravchenko in collaboration with: S. Anissimova, V.T. Dolgopolov, A. M. Finkelstein, T.M. Klapwijk, A. Punnoose, A.A. Shashkin Outline Scaling

More information

.O. Demokritov niversität Münster, Germany

.O. Demokritov niversität Münster, Germany Quantum Thermodynamics of Magnons.O. Demokritov niversität Münster, Germany Magnon Frequency Population BEC-condensates http://www.uni-muenster.de/physik/ap/demokritov/ k z k y Group of NonLinea Magnetic

More information

Electronic Quantum Transport in Mesoscopic Semiconductor Structures

Electronic Quantum Transport in Mesoscopic Semiconductor Structures Thomas Ihn Electronic Quantum Transport in Mesoscopic Semiconductor Structures With 90 Illustrations, S in Full Color Springer Contents Part I Introduction to Electron Transport l Electrical conductance

More information

Thermal conductivity of the disordered Fermi and electron liquids

Thermal conductivity of the disordered Fermi and electron liquids Thermal conductivity of the disordered Fermi and electron liquids Georg Schwiete Johannes Gutenberg Universität Mainz Alexander Finkel stein Texas A&M University, Weizmann Institute of Science, and Landau

More information

Of Decoherent Electrons and Disordered Conductors

Of Decoherent Electrons and Disordered Conductors Lecture Notes for NATO ASI, Norway ( 2001) Published in Complexity from Microscopic to Macroscopic Scales: Coherence and Large Deviations, NATO ASI, Edited by A. T. Skjeltorp and T. Vicsek (Kluwer, Dordrecht,

More information

Strong back-action of a linear circuit on a single electronic quantum channel F. PIERRE

Strong back-action of a linear circuit on a single electronic quantum channel F. PIERRE Strong back-action of a linear circuit on a single electronic quantum channel F. PIERRE F. Parmentier, A. Anthore, S. Jézouin, H. le Sueur, U. Gennser, A. Cavanna, D. Mailly Laboratory for Photonics &

More information

InAs/GaSb A New 2D Topological Insulator

InAs/GaSb A New 2D Topological Insulator InAs/GaSb A New 2D Topological Insulator 1. Old Material for New Physics 2. Quantized Edge Modes 3. Adreev Reflection 4. Summary Rui-Rui Du Rice University Superconductor Hybrids Villard de Lans, France

More information

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat, and R. Deblock Laboratoire de Physique des Solides Orsay (France) Theory : P. Simon (LPS),

More information

Frustrated diamond lattice antiferromagnets

Frustrated diamond lattice antiferromagnets Frustrated diamond lattice antiferromagnets ason Alicea (Caltech) Doron Bergman (Yale) Leon Balents (UCSB) Emanuel Gull (ETH Zurich) Simon Trebst (Station Q) Bergman et al., Nature Physics 3, 487 (007).

More information

Loop current order in optical lattices

Loop current order in optical lattices JQI Summer School June 13, 2014 Loop current order in optical lattices Xiaopeng Li JQI/CMTC Outline Ultracold atoms confined in optical lattices 1. Why we care about lattice? 2. Band structures and Berry

More information

Disordered metals without quasiparticles, and charged black holes

Disordered metals without quasiparticles, and charged black holes HARVARD Disordered metals without quasiparticles, and charged black holes String Theory: Past and Present (SpentaFest) International Center for Theoretical Sciences, Bengaluru January 11-13, 2017 Subir

More information

INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS

INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS Chaire de Physique Mésoscopique Michel Devoret Année 2007, Cours des 7 et 14 juin INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS

More information

Quantum Hall circuits with variable geometry: study of the inter-channel equilibration by Scanning Gate Microscopy

Quantum Hall circuits with variable geometry: study of the inter-channel equilibration by Scanning Gate Microscopy *nicola.paradiso@sns.it Nicola Paradiso Ph. D. Thesis Quantum Hall circuits with variable geometry: study of the inter-channel equilibration by Scanning Gate Microscopy N. Paradiso, Advisors: S. Heun,

More information

Theory of Mesoscopic Systems

Theory of Mesoscopic Systems Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 1 01 June 2006 Meso: : intermediate between micro and macro Main Topics: Disordered

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information