Twin Peaks: momentum-space dynamics of ultracold matter waves in random potentials

Size: px
Start display at page:

Download "Twin Peaks: momentum-space dynamics of ultracold matter waves in random potentials"

Transcription

1 Twin Peaks: momentum-space dynamics of ultracold matter waves in random potentials T. Karpiuk N. Cherroret K.L. Lee C. Müller B. Grémaud C. Miniatura IHP, 7 Nov 2012

2 Experimental and Numerical scenario (1) An ultracold-atom wave packet is launched at t=0 inside a random potential with initial momentum k0. k0 (2) The wave packet evolves during a time t in the speckle potential. Then all fields are switched off. (3) The momentum distribution at time t is extracted and averaged over many disorder realizations. In experiments, it is measured by the time of flight technique.

3 Theoretical Framework (1) 1-particle Schrödinger equation: apple ~ 2 2m r2 + V (r) V (r )V (r + r) = V 2 C(r/ (k,t)= (k,t) 2 (k,t)= F kk 0(t) = Z Initial momentum distribution dk 0 (2 ) Z 2 F kk 0 (t) 0 (k 0 ) Z d! de 2 e i!t kk 2 0 E(!) Disorder strength k 0 Correlation length 2-point correlator Width k k 0 Intensity propagation kernel from k to k via energy shell E L = 1 k Coherence length

4 Theoretical Framework (2) kk 0 E(!) =G E+!/2 (k, k 0 )G E!/2 (k, k0 ) Green s function of Schrödinger equation in Fourier space obeys Bethe-Salpeter equation Diagrammatics... Time evolution of the disorder-averaged momentum distribution? Time scales Ballistic Isotropization Diffusion Localization 0 s loc scattering time transport time localization time coherence time

5 2D Numerical experiment: Early-time dynamics t 0 s k 0 =(2/, 0) Depletion of the initial mode (k,t) ' e t/ s(k 0 ) (k,t= 0) Progressive isotropization of the momentum distribution See Cord Müller s talk CBS peak emerges around k = k 0

6 Intermediate-time dynamics: emblematic CBS peak 0 s loc = 2 loc/d t t loc Isotropic background Fast (diffusive) randomization of the direction of propagation Disorder-broadened ring-shaped structure of mean radius k0 k 0 k CBS Peak at k = k 0 Coherent Enhancement of the backscattering probability

7 Intermediate-time dynamics: CBS theory (k,t)= D (k)+ CBS (k,t) CBS kk 0 E (!) = Max-Crossed D kk 0 E (!) = Ladder [Langer & Neal (1966)] [Gorkov, Larkin, Khmelnitskii (1979)] Diffusive isotropic background D (k)=a(e k E k0 )/2 0 CBS peak CBS (k,t)= D (k)exp Dt (k + k 0 ) 2 See also Acoustics [Tourin, Derode, Roux, van Tiggelen, Fink, PRL 1997] 7

8 CBS Theory: Comparison numerics/analytics Incorporating 0 (k) ) CBS (k,t ) = D (k) exp[ (k + k 0) 2 /(2 q(t) 2 )] (1 + t/ ) Properties of the peak: Angular width Contrast (t) = 0 q1+ /t Initial angular width 0 = k/k 0 C(t) =(1+t/ ) 1 =(2D k 2 ) 1 Coherence time OK with numerics

9 With real experiments too! Jendrzejewski et al. (2012) Labeyrie et al. (2012) See Vincent Josse s poster

10

11 Long-time dynamics: Localization and CFS 0 s t = 10 t loc H t' =2 (E) 2 loc Heisenberg time k loc loc Localization triggers a second coherent peak at k = k0 t t = 90 H This coherent forward scattering (CFS) peak twins the CBS peak t = configurations

12 Diagrammatic description of CFS Twin-like structure suggests «Double» CBS effect k 0! k 0! k 0 CFS kk 0 E (!) = = At «lowest order» Diffusive regime Enhancement 1 k 0` 1 Localized regime CFS (k,t)= D (k) t H F ( k k 0 loc ) + Hikami boxes corrections... (Linear) growth of the peak for loc t H «OK at the precision of numerics»...

13 CBS and CFS long-time limit? 0 s loc H t Contrast = Peak maximum Background CONTRAST 0.8 CBS? CFS CBS and CFS peaks look like mirror images TIME Τ Ζ Twin peaks structure for t Simple explanation? H

14 A hand-waving argument (1) Our setup: Infinite system, but wave packet expansion bounded by localization. Effective system size L! loc Associated Heisenberg time H =2 ~ L 2! 2 ~ loc 2 t H Use modal approach (t)i = X n L c n ni e i nt/~ Peaked initial distribution: c n = n (t = 0) n(k 0 )

15 (k,t) 2 = X n,m n(k 0 ) m (k 0 ) n (k) m(k)e i( n m)t/~ = X n n 2 (k 0 ) n 2 (k)+ X n6=m( ) t H n(r) real ) n(k) = n ( k) ) (k,t H )= ( k,t H ) Time-reversal invariance (k = ±k 0,t H ) 2 X n n (k 0 ) 2 n (k) 2 A Constant background ( k 0,t H ) 2 = (k 0,t H ) 2 = X n n(k 0 ) 4 = A Enhancement Factor = n 4 /( n 2 ) 2 1 =2 ( for Gaussian statistics )

16 hvi = ~ m Z A hand-waving argument (2) dkk (k,t) If = D + CBS D (k,t) )hvi =0 D Then ( isotropic) However CBS (k,t) )hvi 6=0 CBS ( peaked at -k0) But localization imposes hvi =0 Hence, either CBS! 0 as time increases... or a forward peak compensates. That s CFS.

17 Remarks, conclusions, outlook (1) Short-time dynamics of the momentum distribution of the wave packet gives access to scattering and transport times High visibility CBS interference effect proves phase coherence. Localization triggers a twin peak. Positive characterisation of Anderson localization in 1D, 2D and 3D. Access to localization length and to localization and Heisenberg times. Related Past Works: Diffusive Recurrent Coherent Forward Peak B. van Tiggelen et al., J. Phys: Condens. Matter 2, 7653 (1990) Dynamical echo and CBS factor 3 Prigodin et al., PRL 72, 546 (1994) Weaver and Lobkis, PRL 84, 4942 (2000)

18 Remarks, conclusions, outlook (2) More hard work awaits! Theoretical description of the full dynamics beyond diagrammatics? Is CFS visible in open geometries? (classical waves setups) Behavior of CFS in 3D media when crossing the mobility edge? 18

19 CBS and CFS Theory: N. Cherroret, T. Karpiuk, C.A. Müller, B. Grémaud, C. Miniatura PRA 85, (2012) T. Karpiuk, N. Cherroret, K. L. Lee, B. Grémaud, C.A. Müller, C. Miniatura arxiv , Accepted to PRL (2012) CBS Experiments: F. Jendrzejewski, K. Müller, J. Richard, A. Date, T. Plisson, P. Bouyer, A. Aspect, V. Josse, PRL 109, (2012) Viewpoint by S. Skipetrov, Physics 5, 123 (2012) G. Labeyrie, T. Karpiuk, J.-F. Schaff, B. Grémaud, Ch. Miniatura, D. Delande, arxiv: Thank You!

Anderson localization and enhanced backscattering in correlated potentials

Anderson localization and enhanced backscattering in correlated potentials Anderson localization and enhanced backscattering in correlated potentials Dominique Delande Laboratoire Kastler-Brossel Ecole Normale Supérieure et Université Pierre et Marie Curie (Paris) in collaboration

More information

Suppression and revival of weak localization by manipulation of time reversal symmetry

Suppression and revival of weak localization by manipulation of time reversal symmetry Suppression and revival of weak localization by manipulation of time reversal symmetry Varenna school on Quantum matter at ultralow temperature JULY 11, 2014 Alain Aspect Institut d Optique Palaiseau http://www.lcf.institutoptique.fr/alain-aspect-homepage

More information

Momentum isotropisation in random potentials

Momentum isotropisation in random potentials Eur. Phys. J. Special Topics 217, 79 84 (2013) EDP Sciences, Springer-Verlag 2013 DOI: 10.1140/epjst/e2013-01756-8 THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS Regular Article Momentum isotropisation in

More information

Recurrent scattering and memory effect at the Anderson transition

Recurrent scattering and memory effect at the Anderson transition Recurrent scattering and memory effect at the Anderson transition Alexandre Aubry Institut Langevin CNRS UMR 7587, ESPCI ParisTech Paris, France Collaborators: John Page, Laura Cobus (University of Manitoba,

More information

Echo spectroscopy of Anderson localization

Echo spectroscopy of Anderson localization Source: arxiv:1406.6915v1 Echo spectroscopy of Anderson localization T. Micklitz 1, C. A. Müller 2,3, and A. Altland 4 1 Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150, 22290-180, Rio de

More information

COLD ATOMS AND OPTICAL DISORDER : A NEW TOOL TO STUDY QUANTUM TRANSPORT P. BOUYER

COLD ATOMS AND OPTICAL DISORDER : A NEW TOOL TO STUDY QUANTUM TRANSPORT P. BOUYER COLD ATOMS AND OPTICAL DISORDER : A NEW TOOL TO STUDY QUANTUM TRANSPORT P. BOUYER Laboratoire Charles Fabry de l Institut d Optique Palaiseau, France web site : www.atomoptic.fr TITRE S. Bernon (Talk and

More information

arxiv: v1 [quant-ph] 8 Sep 2017

arxiv: v1 [quant-ph] 8 Sep 2017 Controlling symmetry and localization with an artificial gauge field in a disordered quantum system Clément Hainaut, 1 Isam Manai, 1 Jean-François Clément, 1 Jean Claude Garreau, 1 Pascal Szriftgiser,

More information

Cold atoms in the presence of disorder and interactions

Cold atoms in the presence of disorder and interactions Cold atoms in the presence of disorder and interactions Collaboration: A. Minguzzi, S. Skipetrov, B. van-tiggelen (Grenoble), P. Henseler (Bonn), J. Chalker (Oxford), L. Beilin, E. Gurevich (Technion).

More information

Polarization and spatial coherence of electromagnetic waves in disordered media

Polarization and spatial coherence of electromagnetic waves in disordered media Polarization and spatial coherence of electromagnetic waves in disordered media Kevin Vynck Laboratoire Photonique, Numérique et Nanosciences (LP2N) UMR 5298, CNRS IOGS Univ. Bordeaux Institut d'optique

More information

Disordered Ultracold Gases

Disordered Ultracold Gases Disordered Ultracold Gases 1. Ultracold Gases: basic physics 2. Methods: disorder 3. Localization and Related Measurements Brian DeMarco, University of Illinois bdemarco@illinois.edu Localization & Related

More information

Today: 5 July 2008 ٢

Today: 5 July 2008 ٢ Anderson localization M. Reza Rahimi Tabar IPM 5 July 2008 ١ Today: 5 July 2008 ٢ Short History of Anderson Localization ٣ Publication 1) F. Shahbazi, etal. Phys. Rev. Lett. 94, 165505 (2005) 2) A. Esmailpour,

More information

arxiv: v1 [cond-mat.quant-gas] 7 Dec 2016

arxiv: v1 [cond-mat.quant-gas] 7 Dec 2016 arxiv:62.29v [cond-mat.quant-gas] 7 Dec 26 Coherent back and forward scattering peaks in the quantum kicked rotor G. Lemarié, C. A. Müller,2, D. Guéry-Odelin 3, and C. Miniatura 4,5,6,7,8 Laboratoire de

More information

8.513 Lecture 14. Coherent backscattering Weak localization Aharonov-Bohm effect

8.513 Lecture 14. Coherent backscattering Weak localization Aharonov-Bohm effect 8.513 Lecture 14 Coherent backscattering Weak localization Aharonov-Bohm effect Light diffusion; Speckle patterns; Speckles in coherent backscattering phase-averaged Coherent backscattering Contribution

More information

Coherent backscattering in Fock space. ultracold bosonic atoms

Coherent backscattering in Fock space. ultracold bosonic atoms Coherent backscattering in the Fock space of ultracold bosonic atoms Peter Schlagheck 16.2.27 Phys. Rev. Lett. 112, 1443 (24); arxiv:161.435 Coworkers Thomas Engl (Auckland) Juan Diego Urbina (Regensburg)

More information

Introduction to Wave Scattering, Localization and Mesoscopic Phenomena

Introduction to Wave Scattering, Localization and Mesoscopic Phenomena Springer Series in Materials Science 88 Introduction to Wave Scattering, Localization and Mesoscopic Phenomena Bearbeitet von Ping Sheng Neuausgabe 2006. Buch. xv, 329 S. Hardcover ISBN 978 3 540 29155

More information

Anderson localization of ultrasound in three dimensions

Anderson localization of ultrasound in three dimensions International School of Physics Enrico Fermi Course CLXXIII "Nano Optics and Atomics: Transport of Light and Matter Waves Varenna, June 23 rd to July 3 rd, 29 Anderson localization of ultrasound in three

More information

Beam Shape Effects in Non Linear Compton Scattering

Beam Shape Effects in Non Linear Compton Scattering Beam Shape Effects in Non Linear Compton Scattering Signatures of High Intensity QED Daniel Seipt with T. Heinzl and B. Kämpfer Introduction QED vs. classical calculations, Multi Photon radiation Temporal

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Physical Acoustics Session 2pPA: Material Characterization 2pPA10. Frequency-resolved

More information

Coherent matter wave transport in speckle potentials

Coherent matter wave transport in speckle potentials DEUTSCHE PHYSIKALISCHE GESELLSCHAFT Contents Coherent matter wave transport in speckle potentials R C Kuhn,, O Sigwarth, C Miniatura,3, D Delande 4 and C A Müller,5 Physikalisches Institut, Universität

More information

Quantum Mesoscopic Physics: Coherent Backscattering of Light by Cold Atoms

Quantum Mesoscopic Physics: Coherent Backscattering of Light by Cold Atoms J. Phys. IV France 1 (2003) Pr1-1 c EDP Sciences, Les Ulis Quantum Mesoscopic Physics: Coherent Backscattering of Light by Cold Atoms Thierry Chanelière, Guillaume Labeyrie, Christian Miniatura, David

More information

Kicked rotor and Anderson localization

Kicked rotor and Anderson localization Kicked rotor and Anderson localization Dominique Delande Laboratoire Kastler-Brossel Ecole Normale Supérieure et Université Pierre et Marie Curie (Paris, European Union) Boulder July 2013 Classical dynamics

More information

TERRESTRIAL REDSHIFTS FROM A DIFFUSE LIGHT SOURCE. FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

TERRESTRIAL REDSHIFTS FROM A DIFFUSE LIGHT SOURCE. FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands March 25, 1999 TERRESTRIAL REDSHIFTS FROM A DIFFUSE LIGHT SOURCE Ad Lagendijk a FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands (Received ) Abstract Enhanced

More information

Low- and High-Energy Excitations in the Unitary Fermi Gas

Low- and High-Energy Excitations in the Unitary Fermi Gas Low- and High-Energy Excitations in the Unitary Fermi Gas Introduction / Motivation Homogeneous Gas Momentum Distribution Quasi-Particle Spectrum Low Energy Excitations and Static Structure Function Inhomogeneous

More information

Random matrix theory applied to acoustic backscattering and imaging in complex media

Random matrix theory applied to acoustic backscattering and imaging in complex media Random matrix theory applied to acoustic backscattering and imaging in complex media Alexandre Aubry(1,2), Arnaud Derode(2) (1) John Pendry's group, Imperial College London, United Kingdom (2) Mathias

More information

Thermoelectric transport of ultracold fermions : theory

Thermoelectric transport of ultracold fermions : theory Thermoelectric transport of ultracold fermions : theory Collège de France, December 2013 Theory : Ch. Grenier C. Kollath A. Georges Experiments : J.-P. Brantut J. Meineke D. Stadler S. Krinner T. Esslinger

More information

Bogoliubov theory of disordered Bose-Einstein condensates

Bogoliubov theory of disordered Bose-Einstein condensates Bogoliubov theory of disordered Bose-Einstein condensates Christopher Gaul Universidad Complutense de Madrid BENASQUE 2012 DISORDER Bogoliubov theory of disordered Bose-Einstein condensates Abstract The

More information

Thermoelectricity with cold atoms?

Thermoelectricity with cold atoms? Thermoelectricity with cold atoms? Ch. Grenier, C. Kollath & A. Georges Centre de physique Théorique - Université de Genève - Collège de France Université de Lorraine Séminaire du groupe de physique statistique

More information

Single-Particle Interference Can Witness Bipartite Entanglement

Single-Particle Interference Can Witness Bipartite Entanglement Single-Particle Interference Can Witness ipartite Entanglement Torsten Scholak 1 3 Florian Mintert 2 3 Cord. Müller 1 1 2 3 March 13, 2008 Introduction Proposal Quantum Optics Scenario Motivation Definitions

More information

General quantum quenches in the transverse field Ising chain

General quantum quenches in the transverse field Ising chain General quantum quenches in the transverse field Ising chain Tatjana Puškarov and Dirk Schuricht Institute for Theoretical Physics Utrecht University Novi Sad, 23.12.2015 Non-equilibrium dynamics of isolated

More information

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 6 Scattering theory Partial Wave Analysis SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 The Born approximation for the differential cross section is valid if the interaction

More information

WAVE INTERFERENCES IN RANDOM LASERS

WAVE INTERFERENCES IN RANDOM LASERS WAVE INTERFERENCES IN RANDOM LASERS Philippe Jacquod U of Arizona P. Stano and Ph. Jacquod, Nature Photonics (2013) What is a laser? Light Amplification by Stimulated Emission of Radiation Three main components

More information

Richard Williams. Hèlios Sanchis-Alepuz

Richard Williams. Hèlios Sanchis-Alepuz Richard Williams Hèlios Sanchis-Alepuz Introduction 2 Idea: Information on hadron properties encoded in Green s functions EM form-factors Dyson-Schwinger Approach Nonpert. Covariant Multi-scale Symmetries

More information

One-dimensional Anderson localization in certain correlated random potentials

One-dimensional Anderson localization in certain correlated random potentials One-dimensional Anderson localization in certain correlated random potentials P. Lugan, A. Aspect, and L. Sanchez-Palencia Laboratoire Charles Fabry de l Institut d Optique, CNRS and Univ. Paris-Sud, Campus

More information

arxiv: v3 [cond-mat.quant-gas] 5 May 2015

arxiv: v3 [cond-mat.quant-gas] 5 May 2015 Quantum walk and Anderson localization of rotational excitations in disordered ensembles of polar molecules T. Xu and R. V. Krems 1 arxiv:151.563v3 [cond-mat.quant-gas] 5 May 215 1 Department of Chemistry,

More information

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model Oliver Fochler Z. Xu C. Greiner Institut für Theoretische Physik Goethe Universität Frankfurt Strongly Interacting

More information

SOLUTIONS for Homework #2. 1. The given wave function can be normalized to the total probability equal to 1, ψ(x) = Ne λ x.

SOLUTIONS for Homework #2. 1. The given wave function can be normalized to the total probability equal to 1, ψ(x) = Ne λ x. SOLUTIONS for Homework #. The given wave function can be normalized to the total probability equal to, ψ(x) = Ne λ x. () To get we choose dx ψ(x) = N dx e λx =, () 0 N = λ. (3) This state corresponds to

More information

Ultracold Bose gases in random potentials: elementary excitations and localization effects

Ultracold Bose gases in random potentials: elementary excitations and localization effects Ultracold Bose gases in random potentials: elementary excitations and localization effects Pierre Lugan PhD defense January 25th, 2010 Supervision: Philippe Bouyer & Laurent Sanchez-Palencia Groupe d Optique

More information

Localisation d'anderson et transition métal-isolant d'anderson dans les gaz atomiques froids

Localisation d'anderson et transition métal-isolant d'anderson dans les gaz atomiques froids Localisation d'anderson et transition métal-isolant d'anderson dans les gaz atomiques froids Dominique Delande Laboratoire Kastler-Brossel Ecole Normale Supérieure et Université Pierre et Marie Curie (Paris)

More information

Diffusion of wave packets in a Markov random potential

Diffusion of wave packets in a Markov random potential Diffusion of wave packets in a Markov random potential Jeffrey Schenker Michigan State University Joint work with Yang Kang (JSP 134 (2009)) WIP with Eman Hamza & Yang Kang ETH Zürich 9 June 2009 Jeffrey

More information

Purely electronic transport in dirty boson insulators

Purely electronic transport in dirty boson insulators Purely electronic transport in dirty boson insulators Markus Müller Ann. Phys. (Berlin) 18, 849 (2009). Discussions with M. Feigel man, M.P.A. Fisher, L. Ioffe, V. Kravtsov, Abdus Salam International Center

More information

1. SYSTEM GEOMETRY AND PREPARATION FIG. S1.

1. SYSTEM GEOMETRY AND PREPARATION FIG. S1. Measurement of the mobility edge for 3D Anderson localization G. Semeghini, 1 M. Landini, 1, 2 P. Castilho, 1 S. Roy, 1 G. Spagnolli, 1, 2 A. Trenkwalder, 1, 2 M. Fattori, 1, 2 M. Inguscio, 1, 3 and G.

More information

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model Oliver Fochler Z. Xu C. Greiner Institut für Theoretische Physik Goethe Universität Frankfurt Winter Workshop

More information

Kicked rotor and Anderson localization with cold atoms

Kicked rotor and Anderson localization with cold atoms Kicked rotor and Anderson localization with cold atoms Dominique Delande Laboratoire Kastler-Brossel Ecole Normale Supérieure et Université Pierre et Marie Curie (Paris, European Union) Cargèse July 2014

More information

Coherent Backscattering, Photon Localization and Random Laser with Cold Atoms

Coherent Backscattering, Photon Localization and Random Laser with Cold Atoms Coherent Backscattering, Photon Localization and Random Laser with Cold Atoms Robin Kaiser CLXXIII International School of Physics "Enrico Fermi" "Nano optics and atomics: transport of light and matter

More information

Quantum transport in nanoscale solids

Quantum transport in nanoscale solids Quantum transport in nanoscale solids The Landauer approach Dietmar Weinmann Institut de Physique et Chimie des Matériaux de Strasbourg Strasbourg, ESC 2012 p. 1 Quantum effects in electron transport R.

More information

Dynamical Localization and Delocalization in a Quasiperiodic Driven System

Dynamical Localization and Delocalization in a Quasiperiodic Driven System Dynamical Localization and Delocalization in a Quasiperiodic Driven System Hans Lignier, Jean Claude Garreau, Pascal Szriftgiser Laboratoire de Physique des Lasers, Atomes et Molécules, PHLAM, Lille, France

More information

Lesson 8: Slowing Down Spectra, p, Fermi Age

Lesson 8: Slowing Down Spectra, p, Fermi Age Lesson 8: Slowing Down Spectra, p, Fermi Age Slowing Down Spectra in Infinite Homogeneous Media Resonance Escape Probability ( p ) Resonance Integral ( I, I eff ) p, for a Reactor Lattice Semi-empirical

More information

Anderson localization of ultracold atoms in a (laser speckle) disordered potential: a quantum simulator

Anderson localization of ultracold atoms in a (laser speckle) disordered potential: a quantum simulator Anderson localization of ultracold atoms in a (laser speckle) disordered potential: a quantum simulator Frisno 2011 Aussois, April 1rst 2011 Alain Aspect Groupe d Optique Atomique Institut d Optique -

More information

Time-lapse travel time change of multiply scattered acoustic waves

Time-lapse travel time change of multiply scattered acoustic waves Time-lapse travel time change of multiply scattered acoustic waves Carlos Pacheco Center for Wave Phenomena, Department of Geophysics, Colorado School of Mines, Golden, Colorado 8040 Roel Snieder Center

More information

Thermal transport in the disordered electron liquid

Thermal transport in the disordered electron liquid Thermal transport in the disordered electron liquid Georg Schwiete Johannes Gutenberg Universität Mainz Alexander Finkel stein Texas A&M University, Weizmann Institute of Science, and Landau Institute

More information

arxiv: v2 [cond-mat.quant-gas] 6 Mar 2017

arxiv: v2 [cond-mat.quant-gas] 6 Mar 2017 Vortex stability in Bose-Einstein Condensates in the presence of disorder Marisa Pons 1 and Anna Sanpera 2,3 1 Departmento de Física Aplicada I, Universidad del País Vasco, UPV-EHU, Bilbao, Spain. 2 ICREA,

More information

Probing Primordial Magnetic Fields with Cosmic Microwave Background Radiation

Probing Primordial Magnetic Fields with Cosmic Microwave Background Radiation Probing Primordial Magnetic Fields with Cosmic Microwave Background Radiation Department of Physics and Astrophysics University of Delhi IIT Madras, May 17, 2012 Collaborators: K. Subramanian, Pranjal

More information

Mesoscopic Physics with Seismic waves «not nano but kilo»

Mesoscopic Physics with Seismic waves «not nano but kilo» Mesoscopic Physics with Seismic waves «not nano but kilo» Bart van Tiggelen Laboratoire de Physique et Modélisation des Milieux Condensés CNRS/University of Grenoble, France Collaborators: Michel Campillo

More information

Bart van Tiggelen Laboratoire de Physique et Modélisation des Milieux Condensés CNRS/University

Bart van Tiggelen Laboratoire de Physique et Modélisation des Milieux Condensés CNRS/University Dynamic correlations, interference and time-dependent speckles Bart van Tiggelen Laboratoire de hysique et Modélisation des Milieux Condensés CNRS/University of Grenoble, France Collaborators: Michel Campillo

More information

5. Gross-Pitaevskii theory

5. Gross-Pitaevskii theory 5. Gross-Pitaevskii theory Outline N noninteracting bosons N interacting bosons, many-body Hamiltonien Mean-field approximation, order parameter Gross-Pitaevskii equation Collapse for attractive interaction

More information

Disordered Materials: Glass physics

Disordered Materials: Glass physics Disordered Materials: Glass physics > 2.7. Introduction, liquids, glasses > 4.7. Scattering off disordered matter: static, elastic and dynamics structure factors > 9.7. Static structures: X-ray scattering,

More information

Kicked rotor and Anderson localization

Kicked rotor and Anderson localization Kicked rotor and Anderson localization Dominique Delande Laboratoire Kastler-Brossel Ecole Normale Supérieure et Université Pierre et Marie Curie (Paris, European Union) Boulder July 2013 Classical anisotropic

More information

Many-Body Anderson Localization in Disordered Bose Gases

Many-Body Anderson Localization in Disordered Bose Gases Many-Body Anderson Localization in Disordered Bose Gases Laurent Sanchez-Palencia Laboratoire Charles Fabry - UMR8501 Institut d'optique, CNRS, Univ. Paris-sud 11 2 av. Augustin Fresnel, Palaiseau, France

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. p. 10-0 10..

More information

Giuseppe Morandi and me. PhD In Bologna years : very fruitful and formative period. Collaboration continued for some years after.

Giuseppe Morandi and me. PhD In Bologna years : very fruitful and formative period. Collaboration continued for some years after. Giuseppe Morandi and me PhD In Bologna years 1994-96: very fruitful and formative period. Collaboration continued for some years after. What I have learned from him Follow the beauty (and don t care too

More information

Ghost Imaging. Josselin Garnier (Université Paris Diderot)

Ghost Imaging. Josselin Garnier (Université Paris Diderot) Grenoble December, 014 Ghost Imaging Josselin Garnier Université Paris Diderot http:/www.josselin-garnier.org General topic: correlation-based imaging with noise sources. Particular application: Ghost

More information

The Generation of Ultrashort Laser Pulses II

The Generation of Ultrashort Laser Pulses II The Generation of Ultrashort Laser Pulses II The phase condition Trains of pulses the Shah function Laser modes and mode locking 1 There are 3 conditions for steady-state laser operation. Amplitude condition

More information

Physics 218. Quantum Field Theory. Professor Dine. Green s Functions and S Matrices from the Operator (Hamiltonian) Viewpoint

Physics 218. Quantum Field Theory. Professor Dine. Green s Functions and S Matrices from the Operator (Hamiltonian) Viewpoint Physics 28. Quantum Field Theory. Professor Dine Green s Functions and S Matrices from the Operator (Hamiltonian) Viewpoint Field Theory in a Box Consider a real scalar field, with lagrangian L = 2 ( µφ)

More information

Semiclassical formulation

Semiclassical formulation The story so far: Transport coefficients relate current densities and electric fields (currents and voltages). Can define differential transport coefficients + mobility. Drude picture: treat electrons

More information

The atomic quasi-periodic kicked rotor: Experimental test of the universality of the Anderson transition, Critical behavior and Large fluctuations

The atomic quasi-periodic kicked rotor: Experimental test of the universality of the Anderson transition, Critical behavior and Large fluctuations The atomic quasi-periodic kicked rotor: Experimental test of the universality of the Anderson transition, Critical behavior and Large fluctuations Dominique Delande Laboratoire Kastler-Brossel Ecole Normale

More information

Phononic Crystals. J.H. Page

Phononic Crystals. J.H. Page Phononic Crystals J.H. Page University of Manitoba with Suxia Yang and M.L. Cowan at U of M, Ping Sheng and C.T. Chan at HKUST, & Zhengyou Liu at Wuhan University. We study ultrasonic waves in complex

More information

Stationary phase approximation in the ambient noise method revisited

Stationary phase approximation in the ambient noise method revisited Earthq Sci (010)3: 45 431 45 Doi: 10.1007/s11589-010-0741-7 Stationary phase approximation in the ambient noise method revisited Zhongwen Zhan 1 and Sidao Ni, 1 Mengcheng National Geophysical Observatory,

More information

Disorder and interference: localization phenomena

Disorder and interference: localization phenomena Disorder and interference: localization phenomena Cord A. Müller and Dominique Delande Chapter 9 in: Les Houches 2009 - Session XCI: Ultracold Gases and Quantum Information, C. Miniatura, L.-C. Kwek, M.

More information

Origin of Coda Waves: Earthquake Source Resonance

Origin of Coda Waves: Earthquake Source Resonance Origin of Coda Waves: Earthquake Source Resonance Yinbin Liu Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada Email: yliu@eoas.ubc.ca Abstract

More information

High-energy collision processes involving intense laser fields

High-energy collision processes involving intense laser fields High-energy collision processes involving intense laser fields Carsten Müller Max Planck Institute for Nuclear Physics, Theory Division (Christoph H. Keitel), Heidelberg, Germany EMMI Workshop: Particle

More information

Workshop on Coherent Phenomena in Disordered Optical Systems May 2014

Workshop on Coherent Phenomena in Disordered Optical Systems May 2014 2583-12 Workshop on Coherent Phenomena in Disordered Optical Systems 26-30 May 2014 Nonlinear Excitations of Bose-Einstein Condensates with Higherorder Interaction Etienne WAMBA University of Yaounde and

More information

Probing the orbital angular momentum of light with a multipoint interferometer

Probing the orbital angular momentum of light with a multipoint interferometer CHAPTER 2 Probing the orbital angular momentum of light with a multipoint interferometer We present an efficient method for probing the orbital angular momentum of optical vortices of arbitrary sizes.

More information

Speed of sound in disordered Bose-Einstein condensates

Speed of sound in disordered Bose-Einstein condensates Speed of sound in disordered Bose-Einstein condensates Christopher Gaul, Nina Renner, and Cord Axel Müller Physikalisches Institut, Universität Bayreuth, D-9544 Bayreuth, Germany Received 13 August 29;

More information

Fluorescence Spectroscopy

Fluorescence Spectroscopy Fluorescence Spectroscopy Raleigh light scattering light all freqs Fluorescence emission Raleigh Scattering 10 nm Raleigh light scattering Fluorescence emission 400 nm Scattering - TWO particle 10 nm Particle

More information

Disorder and interference: localization phenomena

Disorder and interference: localization phenomena Disorder and interference: localization phenomena Cord A. Müller and Dominique Delande arxiv:1005.0915v2 [cond-mat.dis-nn] 28 Feb 2012 Chapter 9 in: Les Houches 2009 - Session XCI: Ultracold Gases and

More information

Probing a Metallic Spin Glass Nanowire via Coherent Electronic Waves Diffusion

Probing a Metallic Spin Glass Nanowire via Coherent Electronic Waves Diffusion Probing a Metallic Spin Glass Nanowire via Coherent Electronic Waves Diffusion D. Carpentier, (Ecole Normale Supérieure de Lyon) Theory : A. Fedorenko, E. Orignac, G. Paulin (PhD) (Ecole Normale Supérieure

More information

Diffusing acoustic wave spectroscopy

Diffusing acoustic wave spectroscopy PHYSICAL REVIEW E, VOLUME 65, 066605 Diffusing acoustic wave spectroscopy M. L. Cowan, 1 I. P. Jones, 1, * J. H. Page, 1,2, and D. A. Weitz 2 1 Department of Physics and Astronomy, University of Manitoba,

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University September 18, 2014 2 Chapter 5 Atoms in optical lattices Optical lattices

More information

Phonons II: Thermal properties

Phonons II: Thermal properties Phonons II: Thermal properties specific heat of a crystal density of state Einstein mode Debye model anharmonic effect thermal conduction A technician holding a silica fibre thermal insulation tile at

More information

Reaction/Aggregation Processes. Clément Sire

Reaction/Aggregation Processes. Clément Sire Reaction/Aggregation Processes Clément Sire Laboratoire de Physique Théorique CNRS & Université Paul Sabatier Toulouse, France www.lpt.ups-tlse.fr A Few Classical Examples Ubiquitous in physics and chemistry

More information

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany)

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany) Phase Diagram of interacting Bose gases in one-dimensional disordered optical lattices R. Citro In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L.

More information

Extensions of the TEP Neutral Transport Methodology. Dingkang Zhang, John Mandrekas, Weston M. Stacey

Extensions of the TEP Neutral Transport Methodology. Dingkang Zhang, John Mandrekas, Weston M. Stacey Extensions of the TEP Neutral Transport Methodology Dingkang Zhang, John Mandrekas, Weston M. Stacey Fusion Research Center, Georgia Institute of Technology, Atlanta, GA 30332-0425, USA Abstract Recent

More information

can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces

can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces nodes protected against gapping can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces physical realization: stacked 2d topological insulators C=1 3d top

More information

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization:

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization: The LSZ reduction formula based on S-5 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate scattering amplitude. Summary of free theory:

More information

Multiple scattering of light by cold atoms

Multiple scattering of light by cold atoms Multiple scattering of light by cold atoms Robin KAISER INLN, Nice, France Waves and disorder, Cargèse, France, July 1 11, 2014 Lecture 1: 1.1 Two level atoms 1.2 Diffusion Lecture 2: 2.1 The case for

More information

Adiabatic particle pumping and anomalous velocity

Adiabatic particle pumping and anomalous velocity Adiabatic particle pumping and anomalous velocity November 17, 2015 November 17, 2015 1 / 31 Literature: 1 J. K. Asbóth, L. Oroszlány, and A. Pályi, arxiv:1509.02295 2 D. Xiao, M-Ch Chang, and Q. Niu,

More information

Representation of the quantum and classical states of light carrying orbital angular momentum

Representation of the quantum and classical states of light carrying orbital angular momentum Representation of the quantum and classical states of light carrying orbital angular momentum Humairah Bassa and Thomas Konrad Quantum Research Group, University of KwaZulu-Natal, Durban 4001, South Africa

More information

Compound Perpendicular Diffusion of Cosmic Rays and Field Line Random Walk, with Drift

Compound Perpendicular Diffusion of Cosmic Rays and Field Line Random Walk, with Drift Compound Perpendicular Diffusion of Cosmic Rays and Field Line Random Walk, with Drift G.M. Webb, J. A. le Roux, G. P. Zank, E. Kh. Kaghashvili and G. Li Institute of Geophysics and Planetary Physics,

More information

The Scattering of Electromagnetic Waves. By Noboru HOKKYO Department of Physics, Osaka City University (Read. May. 15, 1956; Received June 23, 1956)

The Scattering of Electromagnetic Waves. By Noboru HOKKYO Department of Physics, Osaka City University (Read. May. 15, 1956; Received June 23, 1956) The Scattering of Electromagnetic Waves by Plasma Oscillations By Noboru HOKKYO Department of Physics, Osaka City University (Read. May. 15, 1956; Received June 23, 1956) Abstract Theory of plasma oscillation

More information

Disordered metals without quasiparticles, and charged black holes

Disordered metals without quasiparticles, and charged black holes HARVARD Disordered metals without quasiparticles, and charged black holes String Theory: Past and Present (SpentaFest) International Center for Theoretical Sciences, Bengaluru January 11-13, 2017 Subir

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 6.2 6.3 6.4 6.5 6.6 6.7 The Schrödinger Wave Equation Expectation Values Infinite Square-Well Potential Finite Square-Well Potential Three-Dimensional Infinite-Potential

More information

Path Integral for Spin

Path Integral for Spin Path Integral for Spin Altland-Simons have a good discussion in 3.3 Applications of the Feynman Path Integral to the quantization of spin, which is defined by the commutation relations [Ŝj, Ŝk = iɛ jk

More information

Lecture 7. 1 Wavepackets and Uncertainty 1. 2 Wavepacket Shape Changes 4. 3 Time evolution of a free wave packet 6. 1 Φ(k)e ikx dk. (1.

Lecture 7. 1 Wavepackets and Uncertainty 1. 2 Wavepacket Shape Changes 4. 3 Time evolution of a free wave packet 6. 1 Φ(k)e ikx dk. (1. Lecture 7 B. Zwiebach February 8, 06 Contents Wavepackets and Uncertainty Wavepacket Shape Changes 4 3 Time evolution of a free wave packet 6 Wavepackets and Uncertainty A wavepacket is a superposition

More information

A Pure Confinement Induced Trimer in quasi-1d Atomic Waveguides

A Pure Confinement Induced Trimer in quasi-1d Atomic Waveguides A Pure Confinement Induced Trimer in quasi-1d Atomic Waveguides Ludovic Pricoupenko Laboratoire de Physique Théorique de la Matière Condensée Sorbonne Université Paris IHP - 01 February 2018 Outline Context

More information

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Anatoli Polkovnikov Boston University Ehud Altman Weizmann Vladimir Gritsev Harvard Mikhail

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 5 Beforehand Yesterday Today Anderson Localization, Mesoscopic

More information

Let us consider a typical Michelson interferometer, where a broadband source is used for illumination (Fig. 1a).

Let us consider a typical Michelson interferometer, where a broadband source is used for illumination (Fig. 1a). 7.1. Low-Coherence Interferometry (LCI) Let us consider a typical Michelson interferometer, where a broadband source is used for illumination (Fig. 1a). The light is split by the beam splitter (BS) and

More information

Spreading mechanism of wave packets in one dimensional disordered Klein-Gordon chains

Spreading mechanism of wave packets in one dimensional disordered Klein-Gordon chains Spreading mechanism of wave packets in one dimensional disordered Klein-Gordon chains Haris Skokos Max Planck Institute for the Physics of Complex Systems Dresden, Germany E-mail: hskokos@pks.mpg.de URL:

More information

Aditi Mitra New York University

Aditi Mitra New York University Entanglement dynamics following quantum quenches: pplications to d Floquet chern Insulator and 3d critical system diti Mitra New York University Supported by DOE-BES and NSF- DMR Daniel Yates, PhD student

More information

Exploring new aspects of

Exploring new aspects of Exploring new aspects of orthogonality catastrophe Eugene Demler Harvard University Harvard-MIT $$ NSF, AFOSR MURI, DARPA OLE, MURI ATOMTRONICS, MURI POLAR MOLECULES Outline Introduction: Orthogonality

More information