Bogoliubov theory of disordered Bose-Einstein condensates

Size: px
Start display at page:

Download "Bogoliubov theory of disordered Bose-Einstein condensates"

Transcription

1 Bogoliubov theory of disordered Bose-Einstein condensates Christopher Gaul Universidad Complutense de Madrid BENASQUE 2012 DISORDER

2 Bogoliubov theory of disordered Bose-Einstein condensates Abstract The interplay of interaction, disorder, and Bose statistics is a long standing problem of condensed matter physics, known as the dirty boson problem. Here, we present a Bogoliubov theory for disordered Bose-Einstein condensates, i.e., the bosonic field operator is split into the (mean field) condensate and (quantum) fluctuations. The mean-field part consists in solving the Gross-Pitaevskii equation describing the deformed condensate wave function. The condensate, in turn, determines the Hamiltonian for the quantum fluctuations. Diagonalizing this Bogoliubov Hamiltonian is a difficult task. As it is not desirable anyway to solve the problem for a particular realization of disorder, we resort to disorder perturbation theory in terms of Green functions and compute quantities like the disorder-averaged sound velocity or the mean free path of Bogoliubov excitations. Beyond that, the Bogoliubov theory is used to count the number of particles that are excited out of the condensate, even at zero temperature. This depletion of the condensate is shown to remain small in presence of disorder, which validates a posteriori the Bogoliubov ansatz. References: C. Gaul & C.A. Müller, Phys. Rev. A, 83, (2011) C.A. Müller & C. Gaul, New J. Phys (2012)

3 Bogoliubov theory of disordered Bose-Einstein condensates Outline Bose statistics + Interaction + Disorder Dirty Boson Problem Experiments with ultracold quantum gases How is Bose-Einstein condensation affected by disorder? How to define the condensate in presence of inhomogeneity? Fraction of non-condensed particles How are the elementary excitations affected by disorder?

4 Classical: Bose statistics a b a b b a a b Bosons: indistinguishable, symmetric wf.: â 1â 2 0 = â 1â 2 0 Indistinguishable bosons tend to cluster n B (ε) = 1 exp( ε µb k B T ) 1 n µ B 1 2 µ F ε k BT Fermi: n F (ε) = 1 exp( ε µf k B T Boltzmann: n(ε) e ε k B T ) +1 n B diverges for ε µ B Bose-Einstein condensation (BEC) If: thermal de-broglie wavelength average particle distance

5 BEC in experiments How to reach critical phase space density Magneto-optical trapping Doppler cooling Evaporative cooling [wikipedia.org] How to see it Time-of-flight imaging momentum-space density: macroscopic occupation of single-particle orbital Φ(r) [

6 Optical potentials Optical lattices: [Greiner et al., nature (2008)] Speckle disorder Well-known statistics: V k V k = δ kk R(k) [Clément et al., New J. Phys., 8, 165 (2006)]

7 Penrose-Onsager criterion Starting point: bosonic many-body Hamiltonian E[ ˆΨ, ˆΨ ] = [ d d r ˆΨ 2 (r) 2m 2 + V(r) + g ] 2 ˆΨ (r) ˆΨ(r) µ ˆΨ(r) One-body denity matrix (OBDM): ˆΨ (r) ˆΨ(r ) BEC: many particles occupy condensate orbital Penrose & Onsager (1956): d d r ˆΨ (r) ˆΨ(r ) Φ(r ) = N }{{} c Φ(r) OBDM Condensate Φ(r) Number of condensed particles N c 1

8 Mean field and Bogoliubov theory Condensate and quantum fluctuations ˆΨ(r) = Φ(r) + δ ˆψ(r, t) Φ(r) 2 V(r) δˆn(r) Meanfield: Minimize E[Φ] Gross-Pitaevskii equation [ ] 2 2m 2 + g Φ(r) 2 + V(r) µ Φ(r) = 0 } interaction: g Φ(r) 2 = gn c kinetic energy: 2 k 2 /2m = 2 /2mξ 2 ξ 2 = 2 /(2mgn c ) ξ ξ σ σ

9 Effective Hamiltonian for quantum fluctuations E[Φ + δ ˆψ] E[Φ] + 1 d d r d d r ( δ 2 ˆψ (r ), δ ˆψ(r ) ) ( ) H(r δ ˆψ(r), r) δ ˆψ (r) }{{} Ĥ {[ ]( ) ( )} H = δ(r r Φ(r) 2 1 ) 2m 2 + V(r) µ + g 2 Φ(r) Φ (r) 2 Φ(r) 2 In terms of density and phase: Φ(r) + ˆψ(r) = e iδ ˆϕ(r) n c + δˆn(r) Fourier- & Bogoliubov trafo: bogolons ˆγ k = δˆn k /(2a k nc ) + ia k nc δ ˆϕ k a k = ε 0 k /ε k Ĥ = k ε kˆγ kˆγ k + ( ) ˆΓ k V ˆγk kk ˆΓk, ˆΓk = ˆγ k,k k

10 Homogeneous Bogoliubov problem 15 Ĥ (0) = ε kˆγ kˆγ k k Bogoliubov dispersion relation ε k = ε 0 k (2gn c + ε 0 k ), ε0 k = 2 k 2 2m ε 10 k µ [ξ 2 = 2 2mgnc ] Condensate depletion δn (0) = 1 L d k δ ˆψ k δ ˆψ k = 1 L k d v2 (3D) 1 k = 6 2π 2 ξ 3 ξ d kξ δ ˆψ k = u kˆγ k + v kˆγ k Relative depletion δn(0) n c (3D) = 8 3 π na 3 s dilute-gas parameter [Lee, Huang & Yang (1957)]

11 Bogolons in a disordered medium Hamiltonian Bogoliubov-Nambu spinor Ĥ = ε kˆγ kˆγ k + ( ) ˆΓ k V ˆγk kk ˆΓk, ˆΓk = ˆγ k k,k k ( ) W Y Vertex V = Y W W kpˆγ kˆγ p W (1) kp Anomalous scattering Y k, k ˆγ k ˆγ k + Y k,k ˆγ k ˆγ k + = w(1) kp V k p, W (2) kp =... Bogoliubov-Nambu vertex V, V =

12 Disorder-averaged effective medium How do Booliubov quasi-particles travel on average through the disordered medium? Matrix-valued (retarded) Green function G kk (t) = Θ(t) i [ˆΓk (t), ˆΓ k (0) ], Contains dispersion relation: [G 0 (k, ω)] 11 = [ ω ε k + i0 + ] 1 Expansion in terms scattering vertex V = V and G 0 = : G = G 0 + G 0 VG = + V + V V +...

13 Computing the disorder-averaged Green function = + V + V V +... = Disorder average: = 0, q = R(q) = (reducible) Dyson equation: self-energy Σ = + Σ Σ = (irreducible) Renormalized dispersion relation ω = ε k + Σ (2) 11 (k, ω) ImΣ finite mean free path

14 Mean free path E.g. Gaussian disorder V q V q = L d δ qq ( 2πσ) d (vgn c ) 2 e q2 σ 2 2 }{{} R(q) Finite mean free path (kl s ) 1 ImΣ 1 kl s v kσ = kξ d = 1 d = 2 d = 3 Related to localization of Bogoliubov quasiparticles [Lugan et al. PRA (2011)]

15 Disorder-renormalized speed of sound ReΣ renormalizes sound velocity c cv d = 3 d = d = σ/ξ ζ = σ/ξ v 2 δ = R(0)/(gn cξ d ) c/c σ ξ σ ξ d = 1 v 2 / v2 δ d = 2 v 2 /4 0 d = 3 v 2 / π v2 δ * * [Giorgini et al., PRB 1994]

16 Momentum distribution of fluctuations To compute: δn k = δ ˆψ k δ ˆψ k. We have: Hamiltonian for ˆγ k = δˆn k /(2a k nc ) + ia k nc δ ˆϕ k δ ˆψ(r) = δˆn(r)/[2φ(r)] + iφ(r)δ ˆϕ(r) Transformation δ ˆψ k = ( ) p u kpˆγ p v kpˆγ p, with u kp = 1 [ ] 2 N a 1 c p Φ k p + a p ˇΦk p, ˇΦk = [n c /Φ(r)] k v kp = 1 [ ] 2 N a 1 c p Φ k p a p ˇΦk p δn k = { δ pp v kp 2 + ( u kp u kp + v kp v ) } kp ˆγ pˆγ p (u kp v kp ˆγ pˆγ p +c.c.) p,p T = 0: only due to inhomogeneity V(r) homogeneous quantum depletion

17 Momentum distribution of fluctuations Pick second-order terms of δn k = {δ pp v kp 2 + ( u kp u kp + v kp v ) } kp ˆγ pˆγ p (u kp v kp ˆγ pˆγ p +c.c.) p,p ˆγ pˆγ p = ˆγ pˆγ p (0) + ˆγ pˆγ p (1) + ˆγ pˆγ p (2) +... u kp = u (0) kp + u(1) kp + u(2) kp +... δn (2) k = p M (2) kp V k p 2 a monstrous envelope function

18 Momentum distribution in a 2D lattice V(r) = j Vj cos(kj r) Condensate deformation Φ k 2 2 V (r) 1 0 gnc 1 2 yky π 0 0 π 3π 2π xkx nc(r) nc π Quantum fluctuations δn k Quantum depletion δn (0) Potential depletion δn (2) δn (0) k δn (2) k δn k 1 n ck N c 1 1 δn k k y K y k y K y k x /K x k x /K x

19 Condensate depletion due to Gaussian disorder δn (2) = L d k p M (2) kp V k p 2 δn (2) δn (0) σ ξ σ ξ d = v v 2 δ d = v 2 δ d = v v 2 δ 0.3 δn (2) δn (0) v V q 2 = L d ( 2πσ) d (vgn c ) 2 e q 2 σ 2 2 }{{} R(q) v 2 δ = R(0)/(gn cξ d ) σ/ξ σ ξ: depletion correction scales with v 2 δ R(0) ζ σ ξ: depletion coincides with local density approximation δn (2) TF δn d(d 2)v2 = (0) 8 d = 3 d = 1 d = 2

20 Take-home messages Hamiltonian for quantum excitations on top of deformed condensate Diagrammatic disorder perturbation theory Mean free path Renormalized speed of sound Calculation of the potential-induced condensate depletion Depletion remains small validates Bogoliubov ansatz References C. Gaul and C. A. Müller, Phys. Rev. A, 83, (2011) C. A. Müller and C. Gaul, New J. Phys (2012) Thanks! Cord A. Müller Funding: Moncloa Campus of International Excellence (UCM-UPM)

Interaction between atoms

Interaction between atoms Interaction between atoms MICHA SCHILLING HAUPTSEMINAR: PHYSIK DER KALTEN GASE INSTITUT FÜR THEORETISCHE PHYSIK III UNIVERSITÄT STUTTGART 23.04.2013 Outline 2 Scattering theory slow particles / s-wave

More information

Low-dimensional Bose gases Part 1: BEC and interactions

Low-dimensional Bose gases Part 1: BEC and interactions Low-dimensional Bose gases Part 1: BEC and interactions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Photonic, Atomic and Solid State Quantum Systems Vienna, 2009 Introduction

More information

Bogoliubov theory of the weakly interacting Bose gas

Bogoliubov theory of the weakly interacting Bose gas Chapter 4 Bogoliubov theory of the wealy interacting Bose gas In the presence of BEC, the ideal Bose gas has a constant pressure against variation of volume, so that the system features infinite compressibility.

More information

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs i ( ) t Φ (r, t) = 2 2 2m + V ext(r) + g Φ (r, t) 2 Φ (r, t) (Mewes et al., 1996) 26/11/2009 Stefano Carignano 1 Contents 1 Introduction

More information

Breakdown and restoration of integrability in the Lieb-Liniger model

Breakdown and restoration of integrability in the Lieb-Liniger model Breakdown and restoration of integrability in the Lieb-Liniger model Giuseppe Menegoz March 16, 2012 Giuseppe Menegoz () Breakdown and restoration of integrability in the Lieb-Liniger model 1 / 16 Outline

More information

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles October, 011 PROGRESS IN PHYSICS olume 4 Ultracold Fermi Bose Gases Spinless Bose Charged Sound Particles ahan N. Minasyan alentin N. Samoylov Scientific Center of Applied Research, JINR, Dubna, 141980,

More information

1 Fluctuations of the number of particles in a Bose-Einstein condensate

1 Fluctuations of the number of particles in a Bose-Einstein condensate Exam of Quantum Fluids M1 ICFP 217-218 Alice Sinatra and Alexander Evrard The exam consists of two independant exercises. The duration is 3 hours. 1 Fluctuations of the number of particles in a Bose-Einstein

More information

Monte Carlo Simulation of Bose Einstein Condensation in Traps

Monte Carlo Simulation of Bose Einstein Condensation in Traps Monte Carlo Simulation of Bose Einstein Condensation in Traps J. L. DuBois, H. R. Glyde Department of Physics and Astronomy, University of Delaware Newark, Delaware 19716, USA 1. INTRODUCTION In this paper

More information

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs RHI seminar Pascal Büscher i ( t Φ (r, t) = 2 2 ) 2m + V ext(r) + g Φ (r, t) 2 Φ (r, t) 27 Nov 2008 RHI seminar Pascal Büscher 1 (Stamper-Kurn

More information

Roton Mode in Dipolar Bose-Einstein Condensates

Roton Mode in Dipolar Bose-Einstein Condensates Roton Mode in Dipolar Bose-Einstein Condensates Sandeep Indian Institute of Science Department of Physics, Bangalore March 14, 2013 BECs vs Dipolar Bose-Einstein Condensates Although quantum gases are

More information

Workshop on Coherent Phenomena in Disordered Optical Systems May 2014

Workshop on Coherent Phenomena in Disordered Optical Systems May 2014 2583-12 Workshop on Coherent Phenomena in Disordered Optical Systems 26-30 May 2014 Nonlinear Excitations of Bose-Einstein Condensates with Higherorder Interaction Etienne WAMBA University of Yaounde and

More information

Dynamic properties of interacting bosons and magnons

Dynamic properties of interacting bosons and magnons Ultracold Quantum Gases beyond Equilibrium Natal, Brasil, September 27 October 1, 2010 Dynamic properties of interacting bosons and magnons Peter Kopietz, Universität Frankfurt collaboration: A. Kreisel,

More information

Bose-Einstein Condensation

Bose-Einstein Condensation Bose-Einstein Condensation Kim-Louis Simmoteit June 2, 28 Contents Introduction 2 Condensation of Trapped Ideal Bose Gas 2 2. Trapped Bose Gas........................ 2 2.2 Phase Transition.........................

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

Bose-Hubbard Model (BHM) at Finite Temperature

Bose-Hubbard Model (BHM) at Finite Temperature Bose-Hubbard Model (BHM) at Finite Temperature - a Layman s (Sebastian Schmidt) proposal - pick up Diploma work at FU-Berlin with PD Dr. Axel Pelster (Uni Duisburg-Essen) ~ Diagrammatic techniques, high-order,

More information

The Gross-Pitaevskii Equation A Non-Linear Schrödinger Equation

The Gross-Pitaevskii Equation A Non-Linear Schrödinger Equation The Gross-Pitaevskii Equation A Non-Linear Schrödinger Equation Alan Aversa December 29, 2011 Abstract Summary: The Gross-Pitaevskii equation, also called the non-linear Schrödinger equation, describes

More information

We can then linearize the Heisenberg equation for in the small quantity obtaining a set of linear coupled equations for and :

We can then linearize the Heisenberg equation for in the small quantity obtaining a set of linear coupled equations for and : Wednesday, April 23, 2014 9:37 PM Excitations in a Bose condensate So far: basic understanding of the ground state wavefunction for a Bose-Einstein condensate; We need to know: elementary excitations in

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University January 25, 2011 2 Chapter 12 Collective modes in interacting Fermi

More information

Supplementary Figure 3: Interaction effects in the proposed state preparation with Bloch oscillations. The numerical results are obtained by

Supplementary Figure 3: Interaction effects in the proposed state preparation with Bloch oscillations. The numerical results are obtained by Supplementary Figure : Bandstructure of the spin-dependent hexagonal lattice. The lattice depth used here is V 0 = E rec, E rec the single photon recoil energy. In a and b, we choose the spin dependence

More information

Many-Body Anderson Localization in Disordered Bose Gases

Many-Body Anderson Localization in Disordered Bose Gases Many-Body Anderson Localization in Disordered Bose Gases Laurent Sanchez-Palencia Laboratoire Charles Fabry - UMR8501 Institut d'optique, CNRS, Univ. Paris-sud 11 2 av. Augustin Fresnel, Palaiseau, France

More information

INTERACTING BOSE GAS AND QUANTUM DEPLETION

INTERACTING BOSE GAS AND QUANTUM DEPLETION 922 INTERACTING BOSE GAS AND QUANTUM DEPLETION Chelagat, I., *Tanui, P.K., Khanna, K.M.,Tonui, J.K., Murunga G.S.W., Chelimo L.S.,Sirma K. K., Cheruiyot W.K. &Masinde F. W. Department of Physics, University

More information

On the Dirty Boson Problem

On the Dirty Boson Problem On the Dirty Boson Problem Axel Pelster 1. Experimental Realizations of Dirty Bosons 2. Theoretical Description of Dirty Bosons 3. Huang-Meng Theory (T=0) 4. Shift of Condensation Temperature 5. Hartree-Fock

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 2 Aug 2004

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 2 Aug 2004 Ground state energy of a homogeneous Bose-Einstein condensate beyond Bogoliubov Christoph Weiss and André Eckardt Institut für Physik, Carl von Ossietzky Universität, D-6 Oldenburg, Germany (Dated: November

More information

Theory Seminar Uni Marburg. Bose-Einstein Condensation and correlations in magnon systems

Theory Seminar Uni Marburg. Bose-Einstein Condensation and correlations in magnon systems Theory Seminar Uni Marburg 11 November, 2010 Bose-Einstein Condensation and correlations in magnon systems Peter Kopietz, Universität Frankfurt 1.) Bose-Einstein condensation 2.) Interacting magnons in

More information

Landau Theory of Fermi Liquids : Equilibrium Properties

Landau Theory of Fermi Liquids : Equilibrium Properties Quantum Liquids LECTURE I-II Landau Theory of Fermi Liquids : Phenomenology and Microscopic Foundations LECTURE III Superfluidity. Bogoliubov theory. Bose-Einstein condensation. LECTURE IV Luttinger Liquids.

More information

Inauguration Meeting & Celebration of Lev Pitaevskii s 70 th Birthday. Bogoliubov excitations. with and without an optical lattice.

Inauguration Meeting & Celebration of Lev Pitaevskii s 70 th Birthday. Bogoliubov excitations. with and without an optical lattice. Inauguration Meeting & Celebration of Lev Pitaevskii s 7 th Birthday Bogoliubov excitations with and without an optical lattice Chiara Menotti OUTLINE OF THE TALK Bogoliubov theory: uniform system harmonic

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon INT workshop Frontiers in quantum simulation with cold atoms University of Washington, April 2, 2015 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner,

More information

5. Gross-Pitaevskii theory

5. Gross-Pitaevskii theory 5. Gross-Pitaevskii theory Outline N noninteracting bosons N interacting bosons, many-body Hamiltonien Mean-field approximation, order parameter Gross-Pitaevskii equation Collapse for attractive interaction

More information

The non-interacting Bose gas

The non-interacting Bose gas Chapter The non-interacting Bose gas Learning goals What is a Bose-Einstein condensate and why does it form? What determines the critical temperature and the condensate fraction? What changes for trapped

More information

Speed of sound in disordered Bose-Einstein condensates

Speed of sound in disordered Bose-Einstein condensates Speed of sound in disordered Bose-Einstein condensates Christopher Gaul, Nina Renner, and Cord Axel Müller Physikalisches Institut, Universität Bayreuth, D-9544 Bayreuth, Germany Received 13 August 29;

More information

Fundamentals and New Frontiers of Bose Einstein Condensation

Fundamentals and New Frontiers of Bose Einstein Condensation Contents Preface v 1. Fundamentals of Bose Einstein Condensation 1 1.1 Indistinguishability of Identical Particles.......... 1 1.2 Ideal Bose Gas in a Uniform System............ 3 1.3 Off-Diagonal Long-Range

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

Introduction to cold atoms and Bose-Einstein condensation (II)

Introduction to cold atoms and Bose-Einstein condensation (II) Introduction to cold atoms and Bose-Einstein condensation (II) Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 7/7/04 Boulder Summer School * 1925 History

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Non-equilibrium time evolution of bosons from the functional renormalization group

Non-equilibrium time evolution of bosons from the functional renormalization group March 14, 2013, Condensed Matter Journal Club University of Florida at Gainesville Non-equilibrium time evolution of bosons from the functional renormalization group Peter Kopietz, Universität Frankfurt

More information

Bose-Einstein condensation: static and dynamical aspects

Bose-Einstein condensation: static and dynamical aspects UNIVERSITÀ DEGLI STUDI DI BARI ALDO MORO DIPARTIMENTO INTERATENEO DI FISICA M. MERLIN Dottorato di ricerca in FISICA Ciclo XXV Settore Scientifico Disciplinare FIS/02 Bose-Einstein condensation: static

More information

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany)

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany) Phase Diagram of interacting Bose gases in one-dimensional disordered optical lattices R. Citro In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L.

More information

Squeezing and superposing many-body states of Bose gases in confining potentials

Squeezing and superposing many-body states of Bose gases in confining potentials Squeezing and superposing many-body states of Bose gases in confining potentials K. B. Whaley Department of Chemistry, Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley Quantum Information and

More information

Quantum Theory of Matter

Quantum Theory of Matter Quantum Theory of Matter Revision Lecture Derek Lee Imperial College London May 2006 Outline 1 Exam and Revision 2 Quantum Theory of Matter Microscopic theory 3 Summary Outline 1 Exam and Revision 2 Quantum

More information

Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets

Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets Talk at Rutherford Appleton Lab, March 13, 2007 Peter Kopietz, Universität Frankfurt collaborators: Nils Hasselmann,

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Week 13. PHY 402 Atomic and Molecular Physics Instructor: Sebastian Wüster, IISERBhopal, Frontiers of Modern AMO physics. 5.

Week 13. PHY 402 Atomic and Molecular Physics Instructor: Sebastian Wüster, IISERBhopal, Frontiers of Modern AMO physics. 5. Week 13 PHY 402 Atomic and Molecular Physics Instructor: Sebastian Wüster, IISERBhopal,2018 These notes are provided for the students of the class above only. There is no warranty for correctness, please

More information

BEC in one dimension

BEC in one dimension BEC in one dimension Tilmann John 11. Juni 2013 Outline 1 one-dimensional BEC 2 theoretical description Tonks-Girardeau gas Interaction exact solution (Lieb and Liniger) 3 experimental realization 4 conclusion

More information

Condensate fraction for a polarized three-dimensional Fermi gas

Condensate fraction for a polarized three-dimensional Fermi gas Condensate fraction for a polarized three-dimensional Fermi gas Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, Italy Camerino, June 26, 2014 Collaboration with:

More information

Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover

Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei and CNISM, Università di Padova INO-CNR, Research

More information

Low- and High-Energy Excitations in the Unitary Fermi Gas

Low- and High-Energy Excitations in the Unitary Fermi Gas Low- and High-Energy Excitations in the Unitary Fermi Gas Introduction / Motivation Homogeneous Gas Momentum Distribution Quasi-Particle Spectrum Low Energy Excitations and Static Structure Function Inhomogeneous

More information

New theoretical approaches to Bose polarons

New theoretical approaches to Bose polarons New theoretical approaches to Bose polarons 1,2,3 Fabian Grusdt and 3 Eugene Demler arxiv:1510.04934v1 [cond-mat.quant-gas] 16 Oct 2015 1 Department of Physics and Research Center OPTIMAS, TU Kaiserslautern,

More information

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9 Preface v Chapter 1 Introduction 1 1.1 Prerequisites and textbooks......................... 1 1.2 Physical phenomena and theoretical tools................. 5 1.3 The path integrals..............................

More information

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas / 6 Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas Giovanni Italo Martone with G. V. Shlyapnikov Worhshop on Exploring Nuclear Physics with Ultracold Atoms

More information

in BECs Fabian Grusdt Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Germany

in BECs Fabian Grusdt Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Germany 1 Polaron Seminar, AG Widera AG Fleischhauer, 05/06/14 Introduction to polaron physics in BECs Fabian Grusdt Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Germany Graduate

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

Many-body physics 2: Homework 8

Many-body physics 2: Homework 8 Last update: 215.1.31 Many-body physics 2: Homework 8 1. (1 pts) Ideal quantum gases (a)foranidealquantumgas,showthatthegrandpartitionfunctionz G = Tre β(ĥ µ ˆN) is given by { [ ] 1 Z G = i=1 for bosons,

More information

arxiv: v1 [cond-mat.other] 23 Feb 2008

arxiv: v1 [cond-mat.other] 23 Feb 2008 Reduced density matrices and coherence of trapped interacting bosons Kaspar Sakmann, Alexej I. Streltsov, Ofir E. Alon, and Lorenz S. Cederbaum Theoretische Chemie, Universität Heidelberg, D-69120 Heidelberg,

More information

Influence of Disorder on the Fidelity Susceptibility in the BCS-BEC Crossover

Influence of Disorder on the Fidelity Susceptibility in the BCS-BEC Crossover Influence of Disorder on the Fidelity Susceptibility in the BCS-BEC Crossover 6th APCWQIS, December 2012 Bilal Tanatar December 6, 2012 Prologue 1 Introduction Prologue Cooling Techniques 2 BCS-BEC Crossover

More information

arxiv: v1 [cond-mat.quant-gas] 12 Feb 2018 Dilute Bose gas in classical environment at low temperatures

arxiv: v1 [cond-mat.quant-gas] 12 Feb 2018 Dilute Bose gas in classical environment at low temperatures arxiv:80.0403v [cond-mat.quant-gas] Feb 08 Dilute Bose gas in classical environment at low temperatures Volodymyr Pastukhov Ivan Franko National University of Lviv, Department for Theoretical Physics Drahomanov

More information

Bose Gases, Bose Einstein Condensation, and the Bogoliubov Approximation

Bose Gases, Bose Einstein Condensation, and the Bogoliubov Approximation Bose Gases, Bose Einstein Condensation, and the Bogoliubov Approximation Robert Seiringer IST Austria Mathematical Horizons for Quantum Physics IMS Singapore, September 18, 2013 R. Seiringer Bose Gases,

More information

Dipolar Interactions and Rotons in Atomic Quantum Gases. Falk Wächtler. Workshop of the RTG March 13., 2014

Dipolar Interactions and Rotons in Atomic Quantum Gases. Falk Wächtler. Workshop of the RTG March 13., 2014 Dipolar Interactions and Rotons in Ultracold Atomic Quantum Gases Workshop of the RTG 1729 Lüneburg March 13., 2014 Table of contents Realization of dipolar Systems Erbium 1 Realization of dipolar Systems

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Fluids with dipolar coupling

Fluids with dipolar coupling Fluids with dipolar coupling Rosensweig instability M. D. Cowley and R. E. Rosensweig, J. Fluid Mech. 30, 671 (1967) CO.CO.MAT SFB/TRR21 STUTTGART, ULM, TÜBINGEN FerMix 2009 Meeting, Trento A Quantum Ferrofluid

More information

Ultracold Bose gases in random potentials: elementary excitations and localization effects

Ultracold Bose gases in random potentials: elementary excitations and localization effects Ultracold Bose gases in random potentials: elementary excitations and localization effects Pierre Lugan PhD defense January 25th, 2010 Supervision: Philippe Bouyer & Laurent Sanchez-Palencia Groupe d Optique

More information

QSim Quantum simulation with ultracold atoms

QSim Quantum simulation with ultracold atoms APS Tutorial 7 QSim Quantum simulation with ultracold atoms Lecture 1: Lecture 2: Lecture 3: Lecture 4: Introduction to quantum simulation with ultracold atoms Hubbard physics with optical lattices Ultracold

More information

le LPTMS en Bretagne... photo extraite du site

le LPTMS en Bretagne... photo extraite du site le LPTMS en Bretagne... 1 photo extraite du site http://www.chateau-du-val.com le LPTMS en Bretagne... 1 2 Quantum signature of analog Hawking radiation in momentum space Nicolas Pavloff LPTMS, CNRS, Univ.

More information

Reference for most of this talk:

Reference for most of this talk: Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding ultracold Fermi gases. in Ultracold Fermi Gases, Proceedings of the International School

More information

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics 1 Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics Instructor Eugene Demler Office: Lyman 322 Email: demler@physics.harvard.edu Teaching Fellow

More information

F. Chevy Seattle May 2011

F. Chevy Seattle May 2011 THERMODYNAMICS OF ULTRACOLD GASES F. Chevy Seattle May 2011 ENS FERMION GROUPS Li S. Nascimbène Li/K N. Navon L. Tarruell K. Magalhaes FC C. Salomon S. Chaudhuri A. Ridinger T. Salez D. Wilkowski U. Eismann

More information

Transport and Coherent Backscattering of Bose-Einstein Condensates in Mesoscopic Systems

Transport and Coherent Backscattering of Bose-Einstein Condensates in Mesoscopic Systems Transport and Coherent Backscattering of Bose-Einstein Condensates in Mesoscopic Systems Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Naturwissenschaftlichen

More information

1 Equal-time and Time-ordered Green Functions

1 Equal-time and Time-ordered Green Functions 1 Equal-time and Time-ordered Green Functions Predictions for observables in quantum field theories are made by computing expectation values of products of field operators, which are called Green functions

More information

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA Lianyi He ( 何联毅 ) Department of Physics, Tsinghua University 2016 Hangzhou Workshop on Quantum Degenerate Fermi Gases,

More information

Superfluidity and superconductivity. IHP, Paris, May 7 and 9, 2007

Superfluidity and superconductivity. IHP, Paris, May 7 and 9, 2007 Superfluidity and superconductivity. IHP, Paris, May 7 and 9, 2007 L.P. Pitaevskii Dipartimento di Fisica, Universita di Trento, INFM BEC CNR,Trento, Italy; Kapitza Institute for Physical Problems, ul.

More information

Probing the Optical Conductivity of Harmonically-confined Quantum Gases!

Probing the Optical Conductivity of Harmonically-confined Quantum Gases! Probing the Optical Conductivity of Harmonically-confined Quantum Gases! Eugene Zaremba Queen s University, Kingston, Ontario, Canada Financial support from NSERC Work done in collaboration with Ed Taylor

More information

Superfluidity and Condensation

Superfluidity and Condensation Christian Veit 4th of June, 2013 2 / 29 The discovery of superfluidity Early 1930 s: Peculiar things happen in 4 He below the λ-temperature T λ = 2.17 K 1938: Kapitza, Allen & Misener measure resistance

More information

Chapter 14. Ideal Bose gas Equation of state

Chapter 14. Ideal Bose gas Equation of state Chapter 14 Ideal Bose gas In this chapter, we shall study the thermodynamic properties of a gas of non-interacting bosons. We will show that the symmetrization of the wavefunction due to the indistinguishability

More information

Basic concepts of cold atomic gases

Basic concepts of cold atomic gases ECT* Workshop January 2015 Basic concepts of cold atomic gases Franco Dalfovo INO-CNR BEC Center Dipartimento di Fisica, Università di Trento Plan for the lectures: v Cold gases and BEC v Order parameter

More information

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES College de France, May 14, 2013 SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INFM PLAN OF THE LECTURES Lecture 1. Superfluidity in ultra cold atomic gases: examples

More information

Examples of Lifshitz topological transition in interacting fermionic systems

Examples of Lifshitz topological transition in interacting fermionic systems Examples of Lifshitz topological transition in interacting fermionic systems Joseph Betouras (Loughborough U. Work in collaboration with: Sergey Slizovskiy (Loughborough, Sam Carr (Karlsruhe/Kent and Jorge

More information

Quantum gases in the unitary limit and...

Quantum gases in the unitary limit and... Quantum gases in the unitary limit and... Andre LeClair Cornell university Benasque July 2 2010 Outline The unitary limit of quantum gases S-matrix based approach to thermodynamics Application to the unitary

More information

Bose-Einstein condensates in optical lattices: mathematical analysis and analytical approximate formulas

Bose-Einstein condensates in optical lattices: mathematical analysis and analytical approximate formulas 0.5 setgray0 0.5 setgray1 Bose-Einstein condensates in optical lattices: mathematical analysis and analytical approximate formulas IV EBED João Pessoa - 2011 Rolci Cipolatti Instituto de Matemática - UFRJ

More information

Collective excitations of ultracold molecules on an optical lattice. Roman Krems University of British Columbia

Collective excitations of ultracold molecules on an optical lattice. Roman Krems University of British Columbia Collective excitations of ultracold molecules on an optical lattice Roman Krems University of British Columbia Collective excitations of ultracold molecules trapped on an optical lattice Sergey Alyabyshev

More information

Bose-Einstein condensates in optical lattices

Bose-Einstein condensates in optical lattices Bose-Einstein condensates in optical lattices Creating number squeezed states of atoms Matthew Davis University of Queensland p.1 Overview What is a BEC? What is an optical lattice? What happens to a BEC

More information

The running of couplings and anomalous thermodynamics in Bose gases near resonance

The running of couplings and anomalous thermodynamics in Bose gases near resonance The running of couplings and anomalous thermodynamics in Bose gases near resonance Fei Zhou University of British Columbia, Vancouver At INT, University of Washington, Seattle, May 7, 2014 Supported by:

More information

1 Bose condensation and Phase Rigidity

1 Bose condensation and Phase Rigidity 1 Bose condensation and Phase Rigidity 1.1 Overview and reference literature In this part of the course will explore various ways of describing the phenomenon of Bose-Einstein Condensation (BEC), and also

More information

Dynamical Condensation of ExcitonPolaritons

Dynamical Condensation of ExcitonPolaritons ICSCE 2008 Dynamical Condensation of ExcitonPolaritons Y. Yamamoto, H. Deng, G. Weihs, C.W. Lai, G. Roumpos and S. Utsunomiya Stanford University and National Institute of Informatics Loeffler, S. Hoefling,

More information

Bose-Einstein Condensates with Strong Disorder: Replica Method

Bose-Einstein Condensates with Strong Disorder: Replica Method Bose-Einstein Condensates with Strong Disorder: Replica Method January 6, 2014 New Year Seminar Outline Introduction 1 Introduction 2 Model Replica Trick 3 Self-Consistency equations Cardan Method 4 Model

More information

Loop current order in optical lattices

Loop current order in optical lattices JQI Summer School June 13, 2014 Loop current order in optical lattices Xiaopeng Li JQI/CMTC Outline Ultracold atoms confined in optical lattices 1. Why we care about lattice? 2. Band structures and Berry

More information

Durham E-Theses. Semi-Analytic Ground State Solutions of Two-Component Bose-Einstein Condensate in Two Dimensions SRIDHAR, SWATI

Durham E-Theses. Semi-Analytic Ground State Solutions of Two-Component Bose-Einstein Condensate in Two Dimensions SRIDHAR, SWATI Durham E-Theses Semi-Analytic Ground State Solutions of Two-Component Bose-Einstein Condensate in Two Dimensions SRIDHAR, SWATI How to cite: SRIDHAR, SWATI (2014) Semi-Analytic Ground State Solutions of

More information

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases Laboratoire Charles Fabry, Palaiseau, France Atom Optics Group (Prof. A. Aspect) Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases Julien Armijo* * Now at Facultad de ciencias,

More information

Lecture 4. Diffusing photons and superradiance in cold gases

Lecture 4. Diffusing photons and superradiance in cold gases Lecture 4 Diffusing photons and superradiance in cold gases Model of disorder-elastic mean free path and group velocity. Dicke states- Super- and sub-radiance. Scattering properties of Dicke states. Multiple

More information

Lecture 3. Bose-Einstein condensation Ultracold molecules

Lecture 3. Bose-Einstein condensation Ultracold molecules Lecture 3 Bose-Einstein condensation Ultracold molecules 66 Bose-Einstein condensation Bose 1924, Einstein 1925: macroscopic occupation of the lowest energy level db h 2 mk De Broglie wavelength d 1/3

More information

Spacetime analogue of Bose-Einstein condensates

Spacetime analogue of Bose-Einstein condensates Spacetime analogue of Bose-Einstein condensates Bogoliubov-de Gennes formulation Hideki ISHIHARA Osaka City Univ., JAPAN Y.Kurita, M.Kobayashi, T.Morinari, M.Tsubota, and H.I., Phys. Rev. A79, 043616 (2009)

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon Enrico Fermi School Quantum Matter at Ultralow Temperatures Varenna, July 8, 2014 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner, C.S. Lithium

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Cold atoms in the presence of disorder and interactions

Cold atoms in the presence of disorder and interactions Cold atoms in the presence of disorder and interactions Collaboration: A. Minguzzi, S. Skipetrov, B. van-tiggelen (Grenoble), P. Henseler (Bonn), J. Chalker (Oxford), L. Beilin, E. Gurevich (Technion).

More information

The XY model, the Bose Einstein Condensation and Superfluidity in 2d (I)

The XY model, the Bose Einstein Condensation and Superfluidity in 2d (I) The XY model, the Bose Einstein Condensation and Superfluidity in 2d (I) B.V. COSTA UFMG BRAZIL LABORATORY FOR SIMULATION IN PHYSICS A Guide to Monte Carlo Simulations in Statistical Physics by Landau

More information

When superfluids are a drag

When superfluids are a drag When superfluids are a drag KITP October 2008 David Roberts Los Alamos National Laboratory In collaboration with Yves Pomeau (ENS), Andrew Sykes (Queensland), Matt Davis (Queensland), What makes superfluids

More information

Ground-state properties, excitations, and response of the 2D Fermi gas

Ground-state properties, excitations, and response of the 2D Fermi gas Ground-state properties, excitations, and response of the 2D Fermi gas Introduction: 2D FG and a condensed matter perspective Auxiliary-field quantum Monte Carlo calculations - exact* here Results on spin-balanced

More information

Spinor Bose gases lecture outline

Spinor Bose gases lecture outline Spinor Bose gases lecture outline 1. Basic properties 2. Magnetic order of spinor Bose-Einstein condensates 3. Imaging spin textures 4. Spin-mixing dynamics 5. Magnetic excitations We re here Coupling

More information

BEC Vortex Matter. Aaron Sup October 6, Advisor: Dr. Charles Hanna, Department of Physics, Boise State University

BEC Vortex Matter. Aaron Sup October 6, Advisor: Dr. Charles Hanna, Department of Physics, Boise State University BEC Vortex Matter Aaron Sup October 6, 006 Advisor: Dr. Charles Hanna, Department of Physics, Boise State University 1 Outline 1. Bosons: what are they?. Bose-Einstein Condensation (BEC) 3. Vortex Formation:

More information

Quantum Properties of Two-dimensional Helium Systems

Quantum Properties of Two-dimensional Helium Systems Quantum Properties of Two-dimensional Helium Systems Hiroshi Fukuyama Department of Physics, Univ. of Tokyo 1. Quantum Gases and Liquids 2. Bose-Einstein Condensation 3. Superfluidity of Liquid 4 He 4.

More information

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Bose gas in atom-chip experiment: from ideal gas to quasi-condensate

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Bose gas in atom-chip experiment: from ideal gas to quasi-condensate 2030-25 Conference on Research Frontiers in Ultra-Cold Atoms 4-8 May 2009 Bose gas in atom-chip experiment: from ideal gas to quasi-condensate BOUCHOULE Isabelle Chargee de Recherche au CNRS Laboratoire

More information