for Performance Potsdam, NY Urbana, IL can be connected to the inputs and outputs of the LUT to

Size: px
Start display at page:

Download "for Performance Potsdam, NY Urbana, IL can be connected to the inputs and outputs of the LUT to"

Transcription

1 Thnoloy Mppin o Squntil Ciruits or LUT-s FPGAs or Prormn Pihn Pn C. L. Liu Dpt. o Eltril & Computr En. Dpt. o Computr Sin Clrkson Univrsity Univrsity o Illinois t Urn-Chmpin Potsm, NY Urn, IL Astrt In this ppr, w stuy th thnoloy mppin prolm or squntil iruits or LUT-s FPGAs. Th onvntionl pproh or this prolm is s on thnoloy mppin lorithm or omintionl iruits whil ssumin th positions o th ip-ops r x. W propos nw pproh in whih FFs n ritrrily rposition y rtimin. W prsnt n int thnoloy mppin lorithm tht prous mppin solution with th minimum lok prio or iruit without loops unr th unit ly mol. Th lorithm is lso xtn to th nrl ly mol, in whih s it prous mppin solution with lok prio t most n intronnt or LUT ly wy rom th minimum on. Not tht th lorithm n lso us or iruits with loops y rmovin som o th FFs to rk th loops or th pplition o th lorithm. Th supriority o our pproh is urthr monstrt xprimntlly. Kywors: FPGAs, thnoloy mppin, rtimin, loi rplition, look-up tl, squntil iruits, lok prio 1 Introution Fil prormml t rrys (FPGAs) hv volv rpily to om n importnt ASIC thnoloy. Most onspiuous turs o FPGAs r low mnuturin ost or low volum sins, short sin yl, n rprormmility. Ths turs mk FPGAs prtiulrly ttrtiv or suh pplitions s sin prototypin n hrwr multion. In this ppr w onn ourslvs to look-up tl s FPGA rhitturs [19]. A LUT-s FPGA onsists o n rry o prormml loi loks (PLBs) tothr with prormml intronntions. Th or o PLB is k-input LUT (k-lut) whih n implmnt ny omintionl loi with up to k inputs n sinl output, Th work ws prtilly support y th Ntionl Sin Fountion unr rnt MIP whr k is positiv intr rnin usully rom 3 to 9. Thr r lso w ip-ops (FFs) in h PLB whih n onnt to th inputs n outputs o th LUT to rliz squntil hvior. Th thnoloy mppin prolm or LUT-s FPGAs is to prou, or ivn iruit, n quivlnt iruit omprisin o k-luts. This prolm hs n stui xtnsivly. Howvr, lmost ll mppin lorithms wr sin or omintionl iruits. Mppin lorithms or omintionl iruits hv n propos or vrious optimiztion ritri: prormn [3, 2, 7, 11, 15, 20], r [4, 5, 6, 8, 13, 14, 18], routility [1, 16]. W mntion hr prtiulrly FlowMp [3]. For k-oun omintionl iruit, FlowMp is l to prou mppin solution with th minimum ly unr th unit ly mol. Th onvntionl pproh to thnoloy mppin o squntil iruits is to us mppin lorithm or omintionl iruits to mp th omintionl loi twn FFs. Spilly, th FFs in iruit r rmov to otin omintionl ntwork. Thn th omintionl ntwork is mpp. Finlly, th FFs r pl k. This pproh hs two ovious shortomins: (i) it ils to onsir sinl pnnis ross FF ounris, n (ii) it os not onsir th possiility o xposin th omintionl loi twn th FFs in irnt wys. Not tht th FFs in iruit n rposition y thniqu ll rtimin [10]. Rntly, oupl o irt thnoloy mppin mthos or squntil iruits wr propos [12, 17]. Howvr, thy lso ssum tht th initil positions o th FFs r x, thouh th huristi lorithm in [17] uss rtimin s post-prossin stp. 1.1 Motivtions W noti tht vn with n optiml mppin lorithm or omintionl iruits, th onvntionl pproh my not prou n optiml mppin solution or squntil iruit. As n xmpl, onsir th iruit in Fiur 1(). Suppos k = 4. I th FFs r not rposition, it n vri tht ithr or must n input to ny 4-LUT or t. As rsult, ny mppin solution hs lok prio t lst two n uss t lst our LUTs. On possil mppin solution is init y th sh polyons in Fiur 1(). On th othr hn, i w mov oth 1 n 2 kwr (y rtimin) s shown in Fiur 1(), whv th mppin solution with on LUT shown in Fiur 1(),

2 i1 1 2 () () () Fiur 1: Avnt o rtimin. 1 y x () () () Fiur 2: Avnt o loi rplition. whr th LUT is orm y ll ts in Fiur 1(). Noti tht this mppin solution hs lok prio on. W urthr noti tht to ully xploit th potntil o rtimin, loi rplition is lso nssry. Rplition n hlp prou mppin solutions whih r othrwis impossil. Consir th iruit in Fiur 2(). Assum k = 4. First, w noti tht on th two input s to h o th ts, n, i FF is rmov (y rtimin) rom on, ntiv FF will introu on th othr. For instn, i w movff 1out o x, ntiv FF will introu on y. Hn, th rsultnt iruit is symmtril. As rsult, w n ssum tht th FF positions r ll x. In this s, it n vri tht t lst two o th outputs o,, n must inputs to ny 4-LUT or t. Consquntly, ny mppin solution must us t lst six LUTs n hv lok prio t lst two. Howvr, i w uplit (to om n 0 ), (to om n 0 ), n (to om n 0 ), thn rtim th FFs ross ts 0, 0, n 0 s shown in Fiur 2(), w n mp ll th ts (inluin th uplit ons) to sinl 4-LUT s shown in Fiur 2(). Not tht this mppin solution hs lok prio on. 1.2 Contriutions In this ppr w xmin th thnoloy mppin prolm or squntil iruits or LUT-s FPGAs in th most nrl sttin. Conptully, our prolm ormultion n sri y th irm in Fiur 3. Tht is, th sp o mppin solutions onsists o ll th iruits tht n otin y rtimin n rplitin th ivn initil iruit, thn mppin th omintionl loi twn th FFs, ollow y nothr rtimin n rplition. Not tht in th onvntionl pproh, Stp 1 n Stp 3 in Fiur 3 r missin. Th ojtiv o th thnoloy mppin prolm rss in this ppr is to otin mppin solution with smll lok prio, whih is th mximum ly twn ny two sussiv FFs in iruit. W will prsnt n int lorithm tht prous mppin solution with th minimum lok prio or looplss squntil iruit, unr th unit ly mol. Furthrmor, th lorithm is xtn to th nrl ly mol. In tht s, it prous mppin solution with lok prio provly los to th minimum on. ivn squntil iruit rplition & rtimin mppin th omintionl loi rplition & rtimin solutions in solution sp Fiur 3: Solution sp tr intrtin rtimin n rplition. W shoul mphsiz tht wht Fiur 3 shows is th nition o th solution sp, not th stps tht our lorithm tks to solv th prolm. In t, to try to otin mppin solution y rryin out th stps in th ur squntilly is wht n lorithm s on th onvntionl pproh os, n it invitly rrivs t su-optiml solution sin thr is no wy to know wht rtimin n rplition to us or mppin th omintionl loi twn FFs. Anothr wy to unrstn our pproh is

3 tht it intrts rtimin, rplition, n mppin loi lolly to otin th st mppin solutions. It is ovious tht th solution sp in our ormultion is normous sin thr r too mny wys to rtim n rplit iruit. On ontriution o this work is intiyin muh smllr sust o th solution sp tht is suint or otinin minimum lok prio mppin solution. An importnt issu in thnoloy mppin or LUT-s FPGAs is th ormtion o LUTs. Thouh this issu is rltivly simpl or omintionl iruits, it is omplit or squntil iruits us o th inlusion o rtimin n rplition. Anothr ontriution o this work is to riv mtho or ormin LUTs in squntil iruits y introuin th onpt o xpn iruits. Our lorithm is lso s on th nrl i o no llin [9]. W will introu llin shm tht tks into onsirtion oth lys n FFs. This work is nothr sinint stp towr th unrstnin o thnoloy mppin or LUT-s FPGAs. 2 Prliminris n prolm nition A (squntil) iruit n mol s n wiht irt (multi-)rph. Th nos r th primry inputs (PIs), th primry outputs (POs), n th omintionl prossin lmnts (PEs). (A PE is ithr t or k-lut pnin on whthr th iruit is th initil on or mppin solution.) Th s rprsnt th intronntions. Thr is n rom u to v with wiht t i th output o u, tr pssin throuh t FFs, is n input to v. W will us w() to not th wiht o. Fornovin squntil iruit N, w us N v to not th suiruit inu y th nos tht n rh v. Th output o N v is tht o v. Th lok prio o N is th mximum totl ly (o ts n intronntions) on th omintionl pths (pths without FFs) in N. Rtimin is thniqu o rpositionin th FFs without hnin th untionlity or th strutur o th iruit [10]. Rtimin noyvlu i mns rmovin i FFs rom h nout n in i FFs to h nin o th no. Fiur 4 shows th s in whih i = 1 n 1. In nrl, ll nos in iruit n rtim simultnously ( rtimin o th iruit). It n shown tht th rtim iruit n th oriinl iruit hv th sm untionlity i no rtimin is prorm t th PIs n POs (i.., th rtimin vlus or th PIs n POs r ll zro). v +1-1 Fiur 4: Rtimin no. Th rtim lok prio o N is n to th minimum lok prio o ll th iruits tht n otin y rtimin N. Eint lorithms or omputin th rtim lok prio s wll s rtimin tht hivs th rtim lok prio r prsnt in [10]. v Rr in to Fiur 3. Suppos N is th iruit to mpp. W ssum tht N is k-oun, i.., h t hs t most k inputs. Lt N 0 iruit otin rom N usin rplition n rtimin. Lt N 00 mppin solution o th omintionl loi in N 0, n S th iruit otin y plin th rmov FFs k ton 00 n ollow y nothr rtimin 1. S is mppin solution o N. Th thnoloy mppin prolm rss in this ppr is s ollows: Prolm 1 Fin mppin solution with th minimum lok prio. Finlly, w list svrl rph-thorti onpts. Lt G DAG with on sink ut possily svrl sours. A ut (X;X) is prtition o th nos in G suh tht th sink is in X n ll th sours r in X. Th -st E(X;X) o th ut is th st o s rom X to X, th no-st V (X;X) o th ut is th st o nos in X whih r onnt to on or mor nos in X. Th on o th ut is th surph inu y X. I jv(x; X)j k, (X;X) is urthr ll k-sil ut, or k-ut or short. 3 Formtion o LUTs Rll tht in omintionl iruit, k-lut or no v is orm y th on o k-ut in N v [3]. In this stion, w r oin to riv wy to xmin k-luts or nos in squntil iruits. In our prolm ormultion, squntil iruit n onptully rtim n rplit ritrrily. As rsult, thr is no x iruit or LUT ormtion. To ovrom this iulty, w will stuy n quivlnt prolm in whih only sust o spil mppin solutions is onsir. A mppin solution in whih th output sinls o th LUTs r rom th oriinl iruit is rrr to s simpl mppin solution. Not tht u to rtimin, th output sinl o LUT in mppin solution is in nrl sinl in th oriinl iruit ly or vn y w lok yls. Th st o simpl mppin solutions my not ontin mppin solution with th minimum lok prio. Howvr, w hv th ollowin rsult: Thorm 1 Thr is simpl mppin solution whos rtim lok prio is qul to th minimum lok prio o ll mppin solutions. 2 I w hv simpl mppin solution with th minimum rtim lok prio mon ll simpl mppin solutions, w n thn rtim th simpl mppin solution usin rtimin tht hivs th lok prio to otin mppin solution with th minimum lok prio. As rsult, inst o stuyin Prolm 1 w will stuy th ollowin quivlnt prolm: Prolm 2 Fin simpl mppin solution whos rtim lok prio is minimum. 1 Thouh w n lso pply rplition hr, it turns out to unnssry.

4 Th importn o simpl mppin solutions is tht y rstritin to thm, w only n to stuy how to orm LUTs or th nos in N. To orm LUT or no v, strihtorwr pproh is to us th on o ut in N v. Thn FFs within th on r mov to th ounris o th on usin rtimin n loi rplition. Bsi th prolm tht th numr o inputs to th nl LUT is not irtly rlt to th siz o th no-st o th th ut (this mks it iult to slt uts in th rst pl), this pproh my not nrt ll possil LUTs or v. As n xmpl, or th iruit in Fiur 5() i w rplit (to om 1 n 2) n (to om 1 n 2), thn rtimin 2 y 1,w rriv t th iruit in Fiur 5(). Th loi lint y th sh polyon orms 3-LUT s shown in Fiur 5(). Howvr, this LUT nnot riv without rplition rst. () () Fiur 5: A LUT orm only throuh rplition. Wnowintrou th onpt o xpn iruits. W will us xpn iruits to riv LUTs. Th xpn iruit E v or v is onstrut y rplitin th nos in N v. Th intuition hin th onstrution is s ollows: For pth rom u to v in N v: () 1 2 (u =)u 1! u 2! t! u t+1(= v); w pply rplition to rt uniqu orrsponin pth in th xpn iruits s ollows: u ! u ! 0 t! u 0 t+1; P whr i = w(j), ijt u i i is rplit opy ou i, 0 i opy o i(with th sm wiht), or 1 i t. Lt r(u; v) =w(p)jp, pth rom u to v in N. Tht is, r(u; v) is th st o irnt pth wihts o ll th pths rom u to v in N. E v is otin y sussivly rplitin th nos in N v in topoloil orr strtin rom v. At th innin, N v v is th sm s N v xpt w rnm v s v 0. Suppos w hv onstrut Nv T, n x is in T or h (u; x) inn v, thn N T [u v is otin rom N T v y rplitin u into jr(u; v)j opis s ollows: (1) For h 2 r(u; v), introu no u. (2) For h (u; x 1 ) with wiht t in N T v, n (u ;x 1 ) with wiht t whr = 1 + t. (3) For h (y; u) with wiht t in N T v, n (y; u ) with wiht t or vry 2 r(u; v). (4) Rmov no un th s inint to it. Whn T onsists o ll th nos in N v, th rsultin iruit is E v. As n xmpl, or t in th iruit in Fiur 2(), Fiur 6() shows its xpn iruit. Th importn o th xpn iruits is tht k-lut or no n riv rom h k-ut in th xpn iruit or th no. As n xmpl, or th 6-ut lint y th sh irl in Fiur 6(), th orrsponin 6-LUT is shown in Fiur 6(). In nrl, i u is in th no-st o k-ut in E v, u tr pssin throuh FFs is n input to th orrsponin k-lut. Th loi o th k-lut is simply th on o th k-ut lss th FFs. W n urthr show tht ths r th only k-luts tht n to xmin. In summry, whv Thorm 2 To xmin ll k-luts or no v, it su- s to xmin ll th k-luts tht n riv rom th k-uts in E v. Finlly, w stimt th numrs o nos n s in E v. Hrtr, w will us n to not th numr o nos n to not th numr o FFs in N. Sin N is k-oun, th numr o s in N is O(kn). Oviously, th mximum vlu in r(u; v) or ny pir o nos u n v is t most. Consquntly, th numr o istint vlus in r(u; v) is t most. Thror, th numronos in E v is O(n) n th numr o s is O(kn) (not tht E v is lso k-oun). In prti, w xpt ths numrs to muh smllr. 4 An optiml lok prio mppin lorithm In this stion w prsnt n lorithm or solvin Prolm 2. W minly ous on th unit ly mol, nmly, LUTs hv on unit ly n intronntions hv zro ly. Ltr, w will riy sri how to xtn th lorithm to th nrl ly mol. As ws mntion rlir, w ssum tht th initil iruit N is looplss n k-oun. Th lorithm is s on solvin th ision vrsion o Prolm 2: Prolm 3 Givn trt lok prio, n simpl mppin solution whos rtim lok prio is or lss, i suh mppin solution xists. I whv n lorithm or solvin Prolm 3, w n o inry srh on to solv Prolm 2. In th rminr o this stion, w r oin to prsnt n lorithm or solvin Prolm 3. Our lorithm mploys llin prour n is s on ntwork ow thniqus. Bor prsntin th lorithm, w xmin this qustion: Givn iruit M n n intr, whthr M n rtim to lok prio or lss. Thouh th lorithms in [10] n us to nswr this qustion, w wnt mtho tht is mor suitl or solvin our prolm. To this n, w onstrut rph whos topoloy is th sm

5 i2 i 1 i2 6-ut 6-LUT () () Fiur 6: Otinin LUTs in xpn iruits. s tht o M, ut with th wihts in rn: For n u! v, th nw wiht is w() + 1. Th l-vlu o v is n to th mximum wiht oth pths rom th PIs to v orin to th nw wihts. W hv, Thorm 3 M n rtim to lok prio or lss i th l-vlu o h PO is lss thn or qul to +1. Our lorithm or solvin Prolm 3 hs two phss: th llin phs n th mppin phs. In th llin phs, w omput ll or h noinn. Th ll o no is th minimum l-vlu o th k-luts or th no mon ll simpl mppin solutions o th iruit. With th lls, w n sily trmin whthr N hs simpl mppin solution with rtim lok prio or lss: I th ll o h PO is lss thn or qul to + 1, thr is suh mppin solution. Othrwis, thr is not. I th mppin solution xists, w nrt on suh solution in th mppin phs. In th nxt two sustions, w sri urthr tils o th two phss, sprtly. 4.1 Th llin phs Fornovin N, lt l opt (v) not its ll, nmly, th minimum l-vlu o th k-luts or v mon ll simpl mppin solutions o N. W trmin l opt (v) or h no v in N in this phs o th lorithm. Givn k-ut (X; X) ine v, th minimum l-vlu o th orrsponin k-lut is, mxl opt (u) +1ju!x2E(X; 0 X): (1) By Thorm 2, whv tht l opt (v) is qul to th minimum o th quntity in (1) mon ll k-uts in E v. Oviously, w n omput th lls o th nos in N in topoloil orr strtin rom th PIs. For h PI v, l opt (v) = 0. Suppos w nowwnt to trmin l opt (v) o non-pi no v, ivn tht th lls o ll its prssors hv lry n trmin. To omput l opt (v), w in onsir th ision prolm, tht is, Prolm 4 Dtrmin whthr l opt (v) L or ivn intr L. W us ntwork ow thniqus to solv Prolm 4. A ow ntwork G is onstrut rom E v y pplyin to E v stnr ntwork trnsormtion, ll no-splittin. Eh no xpt v 0 in E v is split into two nos with riin twn thm. A suprsour is n onnt to ll th sours in th ntwork. Th riin or no u hs unit pity i l(u) +1 L. All othr s in G hs innit pity. Th ollowin rsult n rily shown: Lmm 1 l nw L i G hs ut with pity lss thn or qul to k. 2 Bs on th lssil Mx-ow Min-ut Thorm, w n us n umntin pth lorithm or solvin th mx- ow prolm to trmin whthr G hs ut with pity lss thn or qul to k in O(k je(g)j)=o(k 2 n) tim. Thouh l opt (v) n now trmin usin inry srh, w tully only n to solv Prolm 4 on. This is us o th ollowin rsult: Lmm 2 l opt (v) = L v 1 or L v, whr L v = mxl opt (u) w()+1ju!v is in N v. 2 To trmin l opt (v), w hk whthr l opt (v) L v 1. I so, l opt (v) =L v 1; othrwis, l opt (v) =L v. Bs on ths isussions, w hv th ollowin rsult: Thorm 4 Th minimum l-vlus o ll nos in N n trmin ino(k 2 n 2 )tim Th mppin phs Th purpos o this phs is to nrt mppin solution with lok prio or lss i it is trmin tht thr is on. This phs is rltivly simpl. Th rst stp is to nrt simpl mppin solution whos rtim lok prio is or lss. To o so, w kp two lists D n U. D is th st o nos in N or whih whv inlu thir k-luts in th simpl mppin solution n U is th st o nos whos k-luts r inputs to som k-luts in D n hv not yt n inlu. At th innin, D onsists o th PIs n U onsists o th POs. At h itrtion, no

6 v in U is rmov n to D. Lt th k-lut tht rlizs l opt (v) L vs trmin in th llin phs. Thn, i u tr pssin throuh FFs is n input to L v, w rt n rom L u to L v with wiht, n u to U i it is not in D or U. This pross stops whn U oms mpty. Lt S not th rsultin mppin solution. Not tht thr is t most on LUT in S or h nov in N. Finlly, to otin mppin solution with lok prio or lss, w simply pply th ollowin rtimin to S: r(l v)= 0 vispiorpo lopt (v) 1 othrwis. Th rtim solution is urnt to hv lok prio or lss, provi tht th ll o h PO is no mor thn Extnsion to th nrl ly mol In th nrl ly mol, h hs n ssoit ly vlu (not ()). Not tht ll k-luts hv th sm ly (not 2). For n in mppin solution, its ly is ssum to th mximum o th lys o ll s in th initil iruit tht r mpp to this. Th lorithm or th nrl ly mol is lmost th sm s th on or th unit ly mol xpt th ollowin ormul will us to omput l opt (v): min mxl(u) + ()+2ju!x2E(X; 0 X) ; (X; X) whr th minimiztion is ovr ll k-uts in E v. W n show tht th xtn lorithm n prou mppin solution with lok prio tht n wy rom th minimum on y t most th mximum o 2 n th intronntion lys. 5 Exprimntl rsults W implmnt our thnoloy mppin lorithm (rrr to s SqMp) n rri out som xprimnts. In this stion, w sri our xprimnts n summriz th rsults. Sin thr r no looplss squntil nhmrk iruits, w riv our tst xmpls rom th multi-lvl omintionl n squntil nhmrk iruits in th LGSynth91 suit rom MCNC. For omintionl nhmrk iruit, w to it on st o piplin. Th rsultin squntil iruit ws thn rtim to its rtim lok prio to otin tst xmpl. For squntil nhmrk iruit, w rmov st o ts to ut th loops, thn in rtim it to its rtim lok prio to otin tst xmpl. Som stnr SIS ommns suh s sp up, swp, n th omp wr us in th onstrution o th tst xmpls. For omprison, w implmnt thnoloy mppin lorithm s on th onvntionl pproh ll ComMp. ComMp mps squntil iruit y rst rmovin ll th FFs. Thn, it mps th rsultin omintionl loi usin FlowMp ly optiml thnoloy mppin lorithm or omintionl iruits. Finlly, th rmov FFs r onnt k to orm mppin solution o th oriinl iruit. ComMp lso uss rtimin s post-prossin stp y rtimin th initil mppin solution to its rtim lok prio. Th rsultin iruit is thn th nl output o ComMp. In our urrnt implmnttion, nithr ComMp nor SqMp ontins ny post-prossin oprtions or LUT rution. W tst oth ComMp n SqMp on st o xmpl iruits usin 5-LUTs. Th rsults r summriz in Tl 1. In Tl 1, unr olumn initil w list th numr o ts, th numr o FFs, n th lok prio () o h tst xmpl; unr olumn ComMp, w list th numr o LUTs, th numr o FFs, n th lok prio o th mppin solution prou y ComMp. Th sm quntitis r lso list or SqMp in olumn SqMp. Not tht th lok prios o th mppin solutions prou y SqMp r optiml. From th tl, it is lr tht quit otn ComMp prou su-optiml solutions. It n lso sn tht th mppin solutions prou y SqMp usully hv wr LUTs thn tht prou y ComMp. This ws lso xpt sin SqMp my xtn ross FF ounris to orm LUTs. Th runnin tims o SqMp wr out 5 tims tht o ComMp or th tst xmpls. 6 Summry In this ppr, whv stui th FPGA thnoloy mppin prolm or squntil iruits. Th prolm is stui in th most nrl sttin. In our ormultion, th mppin solution sp is muh lrr thn wht th onvntionl pproh (s on mppin lorithm or omintionl iruits) is l to xplor. W hv prsnt n optiml lok prio mppin lorithm or looplss squntil iruits. This lorithm n lso us or iruits with loops y rmovin som o th FFs to rk th loops or th pplition o our lorithm. Anothr wy to unrstn our lorithm is tht it omins rtimin, rplition, n mppin omintionl loi lolly, whil in th onvntionl pproh, thy r rri out sprtly. Our lorithm hs n implmnt. Exprimntl rsults lso onrm th supriority o our pproh ovr th onvntionl on. Currntly, w r in th pross o xtnin our rsults to squntil iruits with loops. W r lso onsirin usin th is vlop hr or LUT minimiztion. Rrns [1] N. Bht n D. Hill. Routl thnoloy mppin or FP- GAs. In ACM/SIGDA Workshop on FPGAs, ps 143{ 148, [2] J. Con n Y. Din. Byon th omintionl limit in pth minimiztion or LUT-s FPGA sins. In Dist Intl. Con. on Computr-Ai Dsin, ps 110{114, [3] J. Con n Y. Din. FlowMp: An optiml thnoloy mppin lorithm or ly optimiztion in lookup-tl s FPGA sins. IEEE Trns. on Computr-Ai Dsin, 13:1{11, 1994.

7 tst Initil ComMp SqMp xmpl #ts #FFs #LUTs #FFs #LUTs #FFs C C m omp ount u m i pm trm x mult s s s s totl Tl 1: Exprimntl rsults. [4] A. H. Frrhi n M. Srrzh. Complxity o th lookup-tl minimiztion prolm or FPGA thnoloy mppin. IEEE Trns. on Computr-Ai Dsin, 13:1319{1332, [5] R. J. Frnis, J. Ros, n K. Chun. Chortl: A thnoloy mppin or lookup tl-s l prormml t rrys. In Pro. ACM/IEEE Dsin Automtion Con., ps 613{619, [6] R. J. Frnis, J. Ros, n Z. Vrnsi. Chortl-r: Fst thnoloy mppin or lookup tl-s FPGAs. In Pro. ACM/IEEE Dsin Automtion Con., ps 227{ 233, [7] R. J. Frnis, J. Ros, n Z. Vrnsi. Thnoloy mppin or lookup tl-s FPGAs or prormn. In Dist Intl. Con. on Computr-Ai Dsin, ps 568{ 571, [8] K. Krplus. Xmp: A thnoloy mppr or tl-lookup FPGAs. In Pro. ACM/IEEE Dsin Automtion Con., ps 240{243, [9] E.L. Lwlr, K.N. Lvitt, n J. Turnr. Moul lustrin to minimiz ly in iitl ntworks. IEEE Trns. on Computrs, 18:47{57, [10] C. E. Lisrson, F. M. Ros, n J. B. Sx. Optimizin synhronous iruitry y rtimin. In Pro. 3r Clth Con. on VLSI, ps 87{116, [11] A. Mthur n C. L. Liu. Prormn rivn thnoloy mppin or lookup-tl s FPGAs usin th nrl ly mol. In ACM/SIGDA Workshop on Fil Prormml Gt Arrys, [12] R. Muri, R.K. Bryton, n A. Sniovnni-Vinntlli. Squntil synthsis or tl look up prormml t rrys. In Pro. ACM/IEEE Dsin Automtion Con., ps 224{229, [13] R. Muri, Y. Nishizki, N. Shnoy, R.K. Bryton, n A. Sniovnni-Vinntlli. Loi synthsis lorithms or tl look up prormml t rrys. In Pro. ACM/IEEE Dsin Automtion Con., ps 620{625, [14] R. Muri, N. Shnoy, R.K. Bryton, n A. Sniovnni- Vinntlli. Improv loi synthsis lorithms or tl look up rhitturs. In Dist Intl. Con. on Computr- Ai Dsin, ps 564{567, [15] P. Swkr n D. Thoms. Prormn irt thnoloy mppin or look-up tl s FPGAs. In Pro. ACM/IEEE Dsin Automtion Con., ps 208{212, [16] M. Shl, J. Kon, n P.K. Chn. Routility-rivn thnoloy mppin or lookup tl-s FPGA's. IEEE Trns. on Computr-Ai Dsin, 13:13{26, [17] U. Winmnn n W. Rosnstil. Thnoloy mppin or squntil iruits s on rtimin thniqus. In Pro. Europn Dsin Automtion Con., ps 318{323, [18] N.-S. Woo. A huristi mtho or FPGA thnoloy mppin s on th visiility. InPro. ACM/IEEE Dsin Automtion Con., ps 248{251, [19] Xilinx. Th Prormml Gt Arrys Dt Book. Xilinx, Sn Jos, CA, [20] H. Yn n D. F. Won. E-Mp: Optiml prormn rivn thnoloy mppin or itrtiv LUT s FPGA sins. In Dist Intl. Con. on Computr-Ai Dsin, ps 150{155, 1994.

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

Multipoint Alternate Marking method for passive and hybrid performance monitoring

Multipoint Alternate Marking method for passive and hybrid performance monitoring Multipoint Altrnt Mrkin mtho or pssiv n hyri prormn monitorin rt-iool-ippm-multipoint-lt-mrk-00 Pru, Jul 2017, IETF 99 Giuspp Fiool (Tlom Itli) Muro Coilio (Tlom Itli) Amo Spio (Politnio i Torino) Riro

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

SAMPLE PAGES. Primary. Primary Maths Basics Series THE SUBTRACTION BOOK. A progression of subtraction skills. written by Jillian Cockings

SAMPLE PAGES. Primary. Primary Maths Basics Series THE SUBTRACTION BOOK. A progression of subtraction skills. written by Jillian Cockings PAGES Primry Primry Mths Bsis Sris THE SUBTRACTION BOOK A prorssion o sutrtion skills writtn y Jillin Cokins INTRODUCTION This ook is intn to hlp sur th mthmtil onpt o sutrtion in hilrn o ll s. Th mstry

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

(a) v 1. v a. v i. v s. (b)

(a) v 1. v a. v i. v s. (b) Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

More information

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael.

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael. 0 Computr i Dsign or Eltroni Systms Ciruit Moling n si Grph Conptslgorithms Instrutor: Mri K. Mihl MKM - Ovrviw hviorl vs. Struturl mols Extrnl vs. Intrnl rprsnttions Funtionl moling t Logi lvl Struturl

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

temporally share the same FPGA Large circuit PI s micro-cycle one user cycle PO s

temporally share the same FPGA Large circuit PI s micro-cycle one user cycle PO s Ciruit Prtitioning for Dynmilly Rongurl FPGAs Huiqun Liu n D. F. Wong Dprtmnt of Computr Sins Unirsity of Txs t Austin Austin, T 787 Emil: fhqliu, wongg@s.utxs.u Astrt Dynmilly rongurl FPGAs h th potntil

More information

Weighted Graphs. Weighted graphs may be either directed or undirected.

Weighted Graphs. Weighted graphs may be either directed or undirected. 1 In mny ppltons, o rp s n ssot numrl vlu, ll wt. Usully, t wts r nonntv ntrs. Wt rps my tr rt or unrt. T wt o n s otn rrr to s t "ost" o t. In ppltons, t wt my msur o t lnt o rout, t pty o ln, t nry rqur

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f lulu jwtt pnlton sin towr ounrs hpl lpp lu Our irst non-linr t strutur! rph G onsists o two sts G = {V, E} st o V vrtis, or nos st o E s, rltionships twn nos surph G onsists o sust o th vrtis n s o G jnt

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

10/30/12. Today. CS/ENGRD 2110 Object- Oriented Programming and Data Structures Fall 2012 Doug James. DFS algorithm. Reachability Algorithms

10/30/12. Today. CS/ENGRD 2110 Object- Oriented Programming and Data Structures Fall 2012 Doug James. DFS algorithm. Reachability Algorithms 0/0/ CS/ENGRD 0 Ojt- Orint Prormmin n Dt Strutur Fll 0 Dou Jm Ltur 9: DFS, BFS & Shortt Pth Toy Rhility Dpth-Firt Srh Brth-Firt Srh Shortt Pth Unwiht rph Wiht rph Dijktr lorithm Rhility Alorithm Dpth Firt

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs Orniztion Domintors, ontrol-pnn n SSA orm Domintor rltion o CFGs postomintor rltion Domintor tr Computin omintor rltion n tr Dtlow lorithm Lnur n Trjn lorithm Control-pnn rltion SSA orm Control-low rphs

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

Tangram Fractions Overview: Students will analyze standard and nonstandard

Tangram Fractions Overview: Students will analyze standard and nonstandard ACTIVITY 1 Mtrils: Stunt opis o tnrm mstrs trnsprnis o tnrm mstrs sissors PROCEDURE Skills: Dsriin n nmin polyons Stuyin onrun Comprin rtions Tnrm Frtions Ovrviw: Stunts will nlyz stnr n nonstnr tnrms

More information

Liqiong Wei, Zhanping Chen, and Kaushik Roy. Yibin Ye and Vivek De. logic circuits more feasible.

Liqiong Wei, Zhanping Chen, and Kaushik Roy. Yibin Ye and Vivek De. logic circuits more feasible. _ Mix-V th (MVT) CMOS Ciruit Dsin Mthooloy or Low Powr Applitions Liqion Wi, Zhnpin Chn, n Kushik Roy Shool o Eltril n Computr Eninrin Puru Univrsity, W. Lytt, IN 47907-1285 Yiin Y n Vivk D Intl Corp.,

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

OpenMx Matrices and Operators

OpenMx Matrices and Operators OpnMx Mtris n Oprtors Sr Mln Mtris: t uilin loks Mny typs? Dnots r lmnt mxmtrix( typ= Zro", nrow=, nol=, nm="" ) mxmtrix( typ= Unit", nrow=, nol=, nm="" ) mxmtrix( typ= Int", nrow=, nol=, nm="" ) mxmtrix(

More information

Decimals DECIMALS.

Decimals DECIMALS. Dimls DECIMALS www.mthltis.o.uk ow os it work? Solutions Dimls P qustions Pl vlu o imls 0 000 00 000 0 000 00 0 000 00 0 000 00 0 000 tnths or 0 thousnths or 000 hunrths or 00 hunrths or 00 0 tn thousnths

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

MULTIPLE-LEVEL LOGIC OPTIMIZATION II

MULTIPLE-LEVEL LOGIC OPTIMIZATION II MUTIPE-EVE OGIC OPTIMIZATION II Booln mthos Eploit Booln proprtis Giovnni D Mihli Don t r onitions Stnfor Univrsit Minimition of th lol funtions Slowr lgorithms, ttr qulit rsults Etrnl on t r onitions

More information

BDD-BASED LOGIC OPTIMIZATION SYSTEM

BDD-BASED LOGIC OPTIMIZATION SYSTEM -ASE LOGIC OPTIMIZATION SYSTEM Conun Yn Mij Cisilski urry 2 TR-CSE-- yn,isils.umss.u prtmnt o Eltril n Computr Eninrin Univrsity o Msshustts Amhrst, MA 3 YANG AN CIESIELSKI: -ASE LOGIC OPTIMIZATION SYSTEM

More information

d e c b a d c b a d e c b a a c a d c c e b

d e c b a d c b a d e c b a a c a d c c e b FLAT PEYOTE STITCH Bin y mkin stoppr -- sw trou n pull it lon t tr until it is out 6 rom t n. Sw trou t in witout splittin t tr. You soul l to sli it up n own t tr ut it will sty in pl wn lt lon. Evn-Count

More information

Two Approaches to Analyzing the Permutations of the 15 Puzzle

Two Approaches to Analyzing the Permutations of the 15 Puzzle Two Approhs to Anlyzin th Prmuttions o th 15 Puzzl Tom How My 2017 Astrt Th prmuttions o th 15 puzzl hv n point o ous sin th 1880 s whn Sm Lloy sin spin-o o th puzzl tht ws impossil to solv. In this ppr,

More information

Logic Redundancy Identication. September 14, target specic faults and are sometimes referred to as. \fault-independent methods.

Logic Redundancy Identication. September 14, target specic faults and are sometimes referred to as. \fault-independent methods. Fix-Vlu n Stm Unosrvility Thorms or Loi Runny Intition Sptmr 14, 2003 Astrt { Thr is lss o implition-s mthos tht intiy loi runny rom iruit topoloy n without ny primry input ssinmnt. Ths mthos r lss omplx

More information

Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently?

Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently? Rgistr Allotion Rgistr Allotion How to ssign vrils to initly mny rgistrs? Wht to o whn it n t on? How to o so iintly? Mony, Jun 3, 13 Mmory Wll Disprity twn CPU sp n mmory ss sp improvmnt Mony, Jun 3,

More information

New challenges on Independent Gate FinFET Transistor Network Generation

New challenges on Independent Gate FinFET Transistor Network Generation Nw hllngs on Inpnnt Gt FinFET Trnsistor Ntwork Gnrtion Viniius N. Possni, Anré I. Ris, Rnto P. Ris, Flip S. Mrqus, Lomr S. Ros Junior Thnology Dvlopmnt Cntr, Frl Univrsity o Plots, Plots, Brzil Institut

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

Clustering for Processing Rate Optimization

Clustering for Processing Rate Optimization Clustring for Prossing Rt Optimiztion Chun Lin, Ji Wng, n Hi Zhou Eltril n Computr Enginring Northwstrn Univrsity Evnston, IL 60208 Astrt Clustring (or prtitioning) is ruil stp twn logi synthsis n physil

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

Construction 11: Book I, Proposition 42

Construction 11: Book I, Proposition 42 Th Visul Construtions of Euli Constrution #11 73 Constrution 11: Book I, Proposition 42 To onstrut, in givn rtilinl ngl, prlllogrm qul to givn tringl. Not: Equl hr mns qul in r. 74 Constrution # 11 Th

More information

Experiment # 3 Introduction to Digital Logic Simulation and Xilinx Schematic Editor

Experiment # 3 Introduction to Digital Logic Simulation and Xilinx Schematic Editor EE2L - Introution to Diitl Ciruits Exprimnt # 3 Exprimnt # 3 Introution to Diitl Loi Simultion n Xilinx Smti Eitor. Synopsis: Tis l introus CAD tool (Computr Ai Dsin tool) ll Xilinx Smti Eitor, wi is us

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications Proings of th 6th WSEAS Intrntionl Confrn on Miroltronis, Nnoltronis, Optoltronis, Istnul, Turky, My 27-29, 27 32 A Low Nois n Rlil CMOS I/O Buffr for Mix Low Voltg Applitions HWANG-CHERNG CHOW n YOU-GANG

More information