Transferring Yesterdays Methods to Tomorrows Technology: The Evolution from HPLC to UPLC TM

Size: px
Start display at page:

Download "Transferring Yesterdays Methods to Tomorrows Technology: The Evolution from HPLC to UPLC TM"

Transcription

1 Transferring Yesterdays Methods to Tomorrows Technology: The Evolution from HPLC to UPLC TM Eric S. Grumbach Thomas E. Wheat Chuck Phoebe Joe Arsenault Jeffrey R. Mazzeo Diane M. Diehl

2 UPLC TECHNOLOGY A new class of separation science Based on chromatography columns with very small particles Based on instruments designed to take advantage of the small particles Provides improved Resolution, Speed, and Sensitivity without compromise Suitable for chromatographic applications in general Appropriate for developing new methods Appropriate for improving existing methods

3 HPLC vs. UPLC TM Speed, Sensitivity and Resolution 0.6 Absorbance at 70 nm HPLC. x 0 mm, µm Rs (,) = Faster, More Sensitive Methods Faster, More Sensitive, Higher Resolution Methods 0.6 Absorbance at 70 nm UPLC TM 8X Speed.4X Sensitivity Same Resolution. x 0 mm,.7 µm Rs (,) = Absorbance at 70 nm UPLC TM 4.X Speed X Sensitivity.X Resolution. x 00 mm,.7 µm Rs (,) =

4 What Does Ultra Performance LC Bring to the Chromatographic Laboratory? Choices available: Speed Resolution Increased speed and sensitivity with the same resolution Increased sensitivity and speed with resolution Increased resolution and sensitivity at the same speed Sensitivity

5 HPLC to Optimized UPLC Absorbance 4 nm An Example of a Successful Method Transfer HPLC Absorbance 4 nm Magnification of Optimized UPLC Optimized UPLC Absorbance 4 nm 0.6.

6 Methods Transfer Considerations Classes of methods transfer Replace a column brand with another Replace an instrument with another Replace both the instrument and the column The benefits of UPLC can only be realized with a new column on a new instrument As with any project to transfer a Liquid Chromatographic method, proper consideration of all the factors which control the separation process is essential for success

7 UPLC TM Column Selection Internal diameter and length Internal diameter. mm or.0 mm Length If primary goal is speed, choose 0 mm length If primary goal is resolution, choose 00 mm length

8 Ratio of Column Length to Particle Size L/dp RATIO 00mm 0 µ m = 0,000 Typical Run Times 970 s ~ 0+ min. 0mm = µm 0, s ~0- min. 00mm =,00 µm 0mm.7µm = 9, s ~ -0 min. 004 ~- min. 00mm.7µm = 8,80 x Maximum Resolution Capability If you keep the L/dp ratio the SAME for columns, you will obtain the SAME Resolution. With smaller particle sizes in shorter columns, you will achieve the same separation, but in LESS TIME!

9 UPLC TM Column Selection Ligand Selection Available Ligands: ACQUITY UPLC TM BEH C 8 Straight chain alkyl C 8 ACQUITY UPLC TM BEH Shield RP 8 Embedded polar group (carbamate) ACQUITY UPLC TM BEH C 8 Straight chain alkyl C 8 ACQUITY UPLC TM BEH Phenyl Why Multiple Ligands?: Changes in hydrophobicity Changes in silanol activity Changes in hydrolytic stability Changes in ligand density Changes in selectivity

10 Reversed-Phase Column Selectivity Chart.6 Waters Spherisorb S P Selectivity (ln [α] amitriptyline/acenaphthene) Waters Spherisorb SCN Nova-Pak CN HP Hypersil CPS Cyano 000 Inertsil CN- Inertsil Ph- Hypersil Phenyl YMC-Pack Phenyl Nova-Pak Phenyl Hypersil BDS Phenyl YMC J'sphere ODS M80 YMCbasic Chromolith Nova-Pak YMC J'sphere ODS H80 XTerra TM RP-8 C8 Phenyl Nova-Pak Luna YMC-Pack ODS AQ YMC-Pack CN YMC-Pack Pro C4 C8 Phenyl Hexyl Atlantis dc8 YMC-Pack Pro C8 YMC-Pack ODS-A ACQUITY UPLC ACT Ace C8 Symmetry C8 Zorbax XDB C8 XTerra Luna BEH C8 MS C8 YMC-Pack Inertsil ODS- C8 () Pro C8 SunFire C8 XTerra Luna SunFire C8 MS C8 C8 Symmetry C8 SymmetryShield RP8 () XTerra RP8 Zorbax SB C8 SymmetryShield RP8 XTerra RP8 YMC-Pack PolymerC8 Retentivity (ln [k] acenaphthene) ACQUITY UPLC BEH Phenyl YMC J'sphere ODS L80 µbondapak C8 Waters Spherisorb ODS Resolve C8 Waters Spherisorb ODS Nucleosil C8 ACQUITY UPLC BEH C ACQUITY UPLC Shield RP8

11 Method Transfer Consideration Solvent delivery Scale flow rate appropriate to column dimensions Scale linear velocity appropriate to particle size Adjust all segments of method, including equilibration Sample injection Scale injection volume Detection Ensure proper data sampling rate Ensure proper time constant

12 Original Gradient Profile 4.6 x 0 mm, µm HPLC Column Gradient Step Time Since Injection Flow Rate %A %B Curve Initial 0. 9 *

13 Target Conditions Gradient Profile Express gradient duration in % change per column volume (cv) units Calculate each segment as a number of column volumes Calculate time required to deliver the same number of column volumes to the UPLC TM column at the chosen flow rate.

14 Express Gradient Segments (Steps) in Units of Column Volumes For min at. ml/min on a 4.6 x 0 mm column Gradient Volume = Flow Rate x Time =. ml/min x min =. ml Column Volume = π x r x L =.4 x. x 0 =.49 ml Gradient Duration (cv) = Gradient Volume Column Volume Gradient Duration =. ml.49 ml = 9.0 cv

15 Original Gradient Profile for Scaling 4.6 x 0 mm, µm HPLC Column Gradient Step Time Since Injection Flow Rate %A % B Curve Segment Duration (min) Segment Duration (Col.Vol.) Initial 0. 9 *

16 Estimate Optimum UPLC Flow Rate Consider.7 µm target particle (. mm i.d. column) Assume temperature and viscosity transferred Adjust flow rate based on van Deemter curve and approximate molecular weight ~0.6 ml/min for average 00 dalton (molecular weight) molecules ~0. ml/min for larger molecules because diffusion is slower, e.g., ~,000 dalton peptides

17 Scaling Gradient Step Time for UPLC Flow Rate - Maintain Duration (cv) Original Step : ml/min with Duration of 9.0cv Calculate Target Step : (keeping 9.0cv) Target Column Volume (. x 0) = 0.7 ml Gradient Step Volume = Duration (cv) x Target Column Volume = 9.0cv x 0.7 ml =.4 ml Gradient Step Time = Gradient Step Volume / UPLC Flow Rate =.4 ml / 0.60 ml/min. =.6 min.

18 Optimized Gradient Profile. x 0 mm,.7 µm UPLC TM Column Gradient Step Time Since Injection Flow Rate % A % B Curve Segment Duration (min) Segment Duration (Col.Vol.) Initial * 0 0 Initial Hold

19 Comparing Results: Does the new method meet resolution criteria? Absorbance 4 nm 4.6 x 0 mm Resolution / = Resolution / = Absorbance 4 nm UPLC optimized. x 0 mm Resolution / = Resolution / =

20 Absorbance 4 nm Absorbance 4 nm Comparing Results: Does the new method meet resolution criteria? 4.6 x 0 mm, µm Resolution / = Resolution / = UPLC optimized. x 0 mm Resolution / = Resolution / =

21 Original HPLC Method: Caffeic Acid Derivatives in Echinacea Purpurea Chromatographic Conditions : Columns: XTerra MS C x 0 mm,.0 µm Mobile Phase A: 0.% CF COOH in H O Mobile Phase B: 0.08% CF COOH in ACN Flow Rate:.0 ml/min Gradient: Time Profile Curve (min) %A %B Injection Volume: 0.0 µl Weak Needle Wash: 0.% CF COOH in 8% ACN Sample: Caffeic Acid Derivatives in Echinacea Purpurea Sample Diluent: 0:0 H O: MeOH with 0.0% CF COOH Sample Concentration: 00 µg/ml Temperature: 40 o C Detection: 0 nm Sampling rate: 0 pts/sec Time Constant: 0. Instrument: Alliance 69 Separations Module with 996 PDA detector Analyte. Caftaric acid. Chlorogenic acid. Cynarin 4. Echinacoside. Cichoric acid AU AU min E.G Enhanced Baseline

22 HPLC-to-UPLC TM Method Transfer: Chromatographic Conditions Original HPLC Method Chromatographic Conditions : Columns: XTerra MS C x 0 mm,.0 µm Mobile Phase A: 0.% CF COOH in H O Mobile Phase B: 0.08% CF COOH in ACN Flow Rate:.0 ml/min Gradient: Time Profile Curve (min) %A %B Injection Volume: 0.0 µl Sample: Caffeic Acid Derivatives in Echinacea Purpurea Sample Diluent: 0:0 H O: MeOH with 0.0% CF COOH Sample Concentration: 00 µg/ml Temperature: 40 o C Detection: 0 nm Sampling rate: 0 pts/sec Time Constant: 0. Instrument: Alliance 69 Separations Module with 996 PDA detector Final UPLC TM Method Chromatographic Conditions : Columns: ACQUITY UPLC TM BEH C 8. x 0 mm,.7 µm Mobile Phase A: 0.% CF COOH in H O Mobile Phase B: 0.08% CF COOH in ACN Flow Rate: 0. ml/min Gradient: Time Profile Curve (min) %A %B Injection Volume:.0 µl Weak Needle Wash: 0.% CF COOH in 8% ACN Sample: Caffeic Acid Derivatives in Echinacea Purpurea Sample Diluent: 0:0 H O: MeOH with 0.0% CF COOH Sample Concentration: 00 µg/ml Temperature: 40 o C Detection: 0 nm Sampling rate: 40 pts/sec Time Constant: 0. Instrument: Waters ACQUITY UPLC TM, with TUV detector

23 HPLC-to-UPLC TM Method Transfer: Caffeic Acid Derivatives in Echinacea Purpurea Original HPLC Method = min XTerra MS C x 0 mm, µm AU Final UPLC TM Method = min ACQUITY UPLC TM BEH C 8. x 0 mm,.7 µm 4 AU

24 HPLC-to-UPLC TM Method Transfer: Caffeic Acid Derivatives in Echinacea Purpurea Original HPLC Method = min XTerra MS C x 0 mm, µm AU Final UPLC TM Method = min ACQUITY UPLC TM BEH C 8. x 0 mm,.7 µm au

25 Conclusions Methods can be moved directly from HPLC to ACQUITY UPLC Improved resolution Improved speed Improved detectability Many parameters can and must be transferred to preserve results Attention to detail leads to success

Validation of ACQUITY UPLC Methods

Validation of ACQUITY UPLC Methods Tanya Jenkins Andrew Aubin Dr. Michael Swartz Waters Corporation 34 Maple Street Milford, MA, 01757,USA Validation of ACQUITY UPLC Methods Agenda Test Method Validation Why ACQUITY UPLC? Redevelop or Convert

More information

Successfully Scaling and Transferring HPLC and UPLC Methods

Successfully Scaling and Transferring HPLC and UPLC Methods Successfully Scaling and Transferring HPLC and UPLC Methods Esa Lehtorinne Esa_Lehtorinne@waters.com Tel: +358-9-5659 6288 Fax: +358-9-5659 6282 Waters Finland Kutomotie 16 00380 Helsinki 2013 Waters Corporation

More information

STUDY OF LOADABILITY AND SELECTIVITY OF PHARMACEUTICAL COMPOUNDS ON RPLC COLUMNS

STUDY OF LOADABILITY AND SELECTIVITY OF PHARMACEUTICAL COMPOUNDS ON RPLC COLUMNS STUDY OF LOADABILITY AND SELECTIVITY OF PHARMACEUTICAL COMPOUNDS ON RPLC COLUMNS Fang Xia, Jie Y. Cavanaugh, Uwe Neue, Jeffrey R. Mazzeo, Diane M. Diehl Waters Corporation, Milford, MA USA OVERVIEW- INTRODUCTION-

More information

Intelligent RP LC Column Selection & New Technologies Peru October 2016 Ricardo Martínez

Intelligent RP LC Column Selection & New Technologies Peru October 2016 Ricardo Martínez Intelligent RP LC Column Selection & New Technologies Peru ctober 2016 Ricardo Martínez 2016 Waters Corporation 1 Agenda LC Fundamentals Columns Quality Particles & Ligands Column Efficiency ph in LC New

More information

ACQUITY UPLC Columns. More Choices More Information HSS C 18 HSS C 18 SB HSS T3. ACCQ TAG Ultra

ACQUITY UPLC Columns. More Choices More Information HSS C 18 HSS C 18 SB HSS T3. ACCQ TAG Ultra ACQUITY UPLC Columns More Choices More Information BEH C 8 BEH Shield RP8 BEH Phenyl BEH HILIC SB HSS T Peptides ligonucleotides ACCQ TAG Ultra VanGuard THe First and nly UPLC Certified Columns Featuring:

More information

UPLC Method Development and Validation

UPLC Method Development and Validation UPLC Method Development and Validation Rev. 2 2008 Waters Corporation Challenges of Method Development Methods are developed throughout the drug development process Samples vary in complexity Redundancy

More information

Comparison Guide to C18 Reversed Phase HPLC Columns

Comparison Guide to C18 Reversed Phase HPLC Columns Comparison Guide to C18 Reversed Phase HPLC Columns Comparison Data on Commonly Used C18 Phases Stationary Phase Specifications Phases Compared According to Relative Hydrophobicity Phases Compared According

More information

Product Bulletin. ACE LC/MS and Rapid Analysis HPLC Columns. HPLC Columns

Product Bulletin. ACE LC/MS and Rapid Analysis HPLC Columns. HPLC Columns Product Bulletin HPLC Columns ACE LC/MS and Rapid Analysis HPLC Columns 0 mm, 30 mm, 35 mm and 50 mm column lengths.0,., 3.0, 4.0 and 4.6 mm column diameters Configured for High Sample Throughput Specially

More information

Prep 150 LC System: Considerations for Analytical to Preparative Scaling

Prep 150 LC System: Considerations for Analytical to Preparative Scaling Andrew Aubin and Jo-Ann Jablonski Waters Corporation, Milford, MA, USA APPLICATION BENEFITS The Prep 150 LC System is an affordable, highly reliable system for preparative chromatography and is suitable

More information

COMPARISON GUIDE. to C18 Reversed Phase HPLC Columns. Comparison Data on 60 Commonly Used C18 Phases. Stationary Phase Specifications

COMPARISON GUIDE. to C18 Reversed Phase HPLC Columns. Comparison Data on 60 Commonly Used C18 Phases. Stationary Phase Specifications COMPARISON GUIDE to C18 Reversed Phase HPLC Columns Comparison Data on 60 Commonly Used C18 Phases Stationary Phase Specifications Phases Compared According to Relative Hydrophobicity Phases Compared According

More information

Streamlining the Analysis of Oral Contraceptives Using the ACQUITY UPLC H-Class System

Streamlining the Analysis of Oral Contraceptives Using the ACQUITY UPLC H-Class System Streamlining the Analysis of Oral Contraceptives Using the ACQUITY UPLC H-Class System Margaret Maziarz, Sean M. McCarthy, Michael D. Jones, and Warren B. Potts Waters Corporation, Milford, MA, USA A P

More information

LC and LC/MS Column Selection Flow Chart

LC and LC/MS Column Selection Flow Chart LC and LC/MS Column Selection Flow Chart To use the column selection diagram below, simply follow the path for your analyte and mobile phase. At the far right, follow your final column selection to the

More information

USP Method Transfer and Routine Use Analysis of Irbesartan Tablets from HPLC to UPLC

USP Method Transfer and Routine Use Analysis of Irbesartan Tablets from HPLC to UPLC USP Method Transfer and Routine Use Analysis of Tablets from HPLC to UPLC Aparna Chavali, Tanya Jenkins and Patricia McConville Waters Corporation, 34 Maple Street, Milford, MA USA APPLICATION BENEFITS

More information

A Quality by Design (QbD) Based Method Development for the Determination of Impurities in a Peroxide Degraded Sample of Ziprasidone

A Quality by Design (QbD) Based Method Development for the Determination of Impurities in a Peroxide Degraded Sample of Ziprasidone A Quality by Design (QbD) Based Method Development for the Determination of Impurities in a Peroxide Degraded Sample of Ziprasidone Mia Summers and Kenneth J. Fountain Waters Corporation, 34 Maple St.,

More information

Phase Separations Customer Education Program

Phase Separations Customer Education Program Phase Separations Customer Education Program Advanced HPLC Column Selection Using the Hydrophobicity Chart neutral neutral 0 base Time (min) base 50 Copyright 1998 Phase Separations Course Library * Strategies

More information

ACE Ultra Inert Base Deactivated HPLC Columns

ACE Ultra Inert Base Deactivated HPLC Columns ACE Ultra Inert Base Deactivated HPLC Columns Contents Page ACE HPLC Columns...- Independent Comparison of HPLC Columns #... Independent Comparison of HPLC Columns #... ACE 00Å HPLC Columns Specifications...-

More information

UPC 2 Strategy for Scaling from Analytical to Preparative SFC Separations

UPC 2 Strategy for Scaling from Analytical to Preparative SFC Separations UPC Strategy for Scaling from Analytical to Preparative SFC Separations Christopher J. Hudalla, Abhijit Tarafder, Jo-Ann Jablonski, and Kenneth J. Fountain Waters Corporation, Milford, MA, USA APPLICATION

More information

Luna 2.5 µm C18(2)-HST. Advantages of 2.5 µm for increasing the speed of analysis while maintaining high efficiency

Luna 2.5 µm C18(2)-HST. Advantages of 2.5 µm for increasing the speed of analysis while maintaining high efficiency Luna 2.5 µm C18(2)-HST Advantages of 2.5 µm for increasing the speed of analysis while maintaining high efficiency Table of Contents Part 1 Theory 1.1 Abstract...3 1.2 Introduction...3 Part 2 Set Up 2.1

More information

UPLC for Synthetic Peptides: A User`s Perspective

UPLC for Synthetic Peptides: A User`s Perspective Tides 2007 Conference Las Vegas, May 23, 2007 UPLC for Synthetic Peptides: A User`s Perspective Holger Hermann, Jens Donath* Lonza AG, Switzerland Welcome to Lonza! One of the leading CMO Production facilities

More information

LC Technical Information

LC Technical Information LC Technical Information Method Transfer to Accucore.6 μm Columns Containing solid core particles, which are engineered to a diameter of.6μm and a very narrow particle size distribution; Accucore HPLC

More information

[ HPLC COLUMNS ] Continuing the Legacy of HPLC Column Performance

[ HPLC COLUMNS ] Continuing the Legacy of HPLC Column Performance [ HPLC CLUMNS ] Continuing the Legacy of HPLC Column Performance HPLC Columns Creating Exceptional Chromatography Waters reputation is based on chromatography, but we do not create chromatography you do.

More information

Thermo Scientific Chromatography Columns and Consumables. Trusted solutions. uncompromised analysis

Thermo Scientific Chromatography Columns and Consumables. Trusted solutions. uncompromised analysis 2012-2013 Thermo Scientific Chromatography Columns and Consumables Trusted solutions uncompromised analysis predictability LC Columns and Accessories Thermo Scientific Chromatography Columns and Consumables

More information

Use of Ultra-High Performance LC-MS for Challenging Assays. David Browne, Laboratory Manager (LC-MS-MS), Covance Laboratories, Harrogate

Use of Ultra-High Performance LC-MS for Challenging Assays. David Browne, Laboratory Manager (LC-MS-MS), Covance Laboratories, Harrogate Use of Ultra-High Performance LC-MS for Challenging Assays David Browne, Laboratory Manager (LC-MS-MS), Covance Laboratories, Harrogate Department of Bioanalytical Services Determination of drug substance

More information

Routine MS Detection for USP Chromatographic Methods

Routine MS Detection for USP Chromatographic Methods Daniel S. Root, Thomas E. Wheat, and Patricia McConville Waters Corporation, Milford, MA, USA APPLICATION BENEFITS This approach enables mass spectral analysis of peaks directly from unmodified USP HPLC

More information

LC800. Smart HPLC. Until now UHPLC From now Smart HPLC

LC800. Smart HPLC. Until now UHPLC From now Smart HPLC LC800 Smart HPLC Until now UHPLC From now Smart HPLC Smart HPLC Leads to Ultimate Performance Patent Pending S LC800 is a completely new and unique concept, designed for maximum performance in high resolution

More information

High Resolution Fast LC

High Resolution Fast LC High Resolution Fast LC Easier Than You Think Rita Steed LC Columns Application Engineer May 9, 2013 What is High Resolution Fast LC? Maintain Resolution with Faster Run Time Increased Resolution with

More information

Thermo Scientific Chromatography Columns and Consumables Your world of. chromatography

Thermo Scientific Chromatography Columns and Consumables Your world of. chromatography Thermo Scientific Chromatography Columns and Consumables 2014-2015 Your world of chromatography predictability LC Columns and Accessories Thermo Scientific Chromatography Columns and Consumables 2014-2015

More information

The Secrets of Rapid HPLC Method Development. Choosing Columns for Rapid Method Development and Short Analysis Times

The Secrets of Rapid HPLC Method Development. Choosing Columns for Rapid Method Development and Short Analysis Times The Secrets of Rapid HPLC Method Development Choosing Columns for Rapid Method Development and Short Analysis Times Rapid Analysis Is More Than Run Time It is developing a method to meet a goal and developing

More information

InertSustainSwift C8

InertSustainSwift C8 Physical Properties Silica Particle Size Surface Area Pore Size Pore Volume Bonded Phase End-capping Carbon Loading ph Range USP Code :ES (Evolved Surface) Silica Gel :.9 μm, μm, μm :00 m /g :00 Å (0 nm)

More information

ACQUITY UPLC Column Solutions

ACQUITY UPLC Column Solutions ACQUITY UPLC Column Solutions ACQUITY UPLC Columns VanGuard Pre-columns High-strength Silica (HSS) HPLC Columns ACQUITY UPLC Columns for BioSeparations Column Solutions Designed for UPLC Scientists Featuring:.-µm

More information

ANALYSIS OF BASIC COMPOUNDS

ANALYSIS OF BASIC COMPOUNDS COMPARISON OF Fully AND Superficially POROUS PARTICLE COLUMNS FOR THE ANALYSIS OF BASIC COMPOUNDS Kenneth J. Fountain, Jane Xu, Zhe Yin, Pamela C. Iraneta, Diane M. Diehl Waters Corporation GOAL Compare

More information

Implementation of Methods Translation between Liquid Chromatography Instrumentation

Implementation of Methods Translation between Liquid Chromatography Instrumentation Implementation of Methods Translation between Liquid Chromatography Instrumentation Michael D. Jones, Peter Alden, Kenneth J. Fountain, and Andrew Aubin Waters Corporation, Milford, MA, U.S. APPLICATION

More information

Welcome to our E-Seminar: Choosing HPLC Columns for Faster Analysis Smaller and Faster

Welcome to our E-Seminar: Choosing HPLC Columns for Faster Analysis Smaller and Faster Welcome to our E-Sear: Choosing HPLC Columns for Faster Analysis Smaller and Faster High Throughput/Fast LC Requires. Short columns 0 mm or shorter Small particle sizes. µm Rapid Resolution or new.8 µm

More information

Assay Transfer from HPLC to UPLC for Higher Analysis Throughput

Assay Transfer from HPLC to UPLC for Higher Analysis Throughput MAY 2005 SEPARATION SCIENCE REDEFINED 31 Assay Transfer from HPLC to UPLC for Higher Analysis Throughput A typical HPLC assay was transferred and optimized for a Waters ACQUITY UPLC system to achieve both

More information

Dilution(*) Chromatography

Dilution(*) Chromatography WA20264 Poster # 184, HPLC 2002, Montreal, 4-5 June 2002 At-Column Column-Dilution for Preparative Dilution(*) Chromatography Cecilia Mazza, Jie Cavanaugh, Ziling Lu,Tom Sirard,Tom Wheat and Uwe Neue Waters

More information

8. Methods in Developing Mobile Phase Condition for C18 Column

8. Methods in Developing Mobile Phase Condition for C18 Column I. HPLC Columns Technical Information 8. Methods in Developing Mobile Phase Condition for C18 Column Introduction In reversed phase HPLC, octadecyl group bonded silica columns (C18, ODS) are the most widely

More information

Chromatographic Analysis

Chromatographic Analysis Chromatographic Analysis Distribution of Analytes between Phases An analyte is in equilibrium between the two phases [S 1 ] [S 2 ] (in phase 1) (in phase 2) AS [S2 ] K 2 A S [S1 ] 1 AS, A 1 S Activity

More information

ACE SuperC18. ACE UHPLC and HPLC Columns. Ultra-Inert UHPLC and HPLC Columns with Extended ph Stability

ACE SuperC18. ACE UHPLC and HPLC Columns. Ultra-Inert UHPLC and HPLC Columns with Extended ph Stability ACE SuperC8 TM Ultra-Inert UHPLC and HPLC Columns with Extended ph Stability Exploit selectivity at low, intermediate and high ph Use with LC/MS compatible buffers between ph.. High efficiency µm, µm,

More information

State-of-the-art C18 HPLC Columns

State-of-the-art C18 HPLC Columns An HPLC GL Sciences Newest and Most Advanced ODS Phase-New For 00 State-of-the-art C HPLC s Improved Peak Shapes and Heights Enhancing Sensitivity High Resolution Fast Equilibration Compatible with 00%

More information

InertSustainSwift C8

InertSustainSwift C8 HPLC, LC/MS Columns InertSustainSwift TM C8 New! InertSustainSwift C8 is an octyl group (C8) bonded column offering the same extreme inertness to any type of compounds just like InertSustainSwift C8, which

More information

Inertsil ODS-EP Technical Information

Inertsil ODS-EP Technical Information Technical Information Advantages of The selectivity is completely different from those of conventional columns such as ODS column due to its specific polar group in the stationary phase. Durability can

More information

penta-hilic UHPLC COLUMNS

penta-hilic UHPLC COLUMNS penta-hilic UHPLC COLUMNS penta-hilic Highly retentive, proprietary penta-hydroxy-ligand Excellent peak shape for polar compounds with a variety of functional groups: acids, bases, zwitterions strong and

More information

Improve Peak Shape and Productivity in HPLC Analysis of Pharmaceutical Compounds with Eclipse Plus C8 Columns Application

Improve Peak Shape and Productivity in HPLC Analysis of Pharmaceutical Compounds with Eclipse Plus C8 Columns Application Improve Peak Shape and Productivity in HPLC Analysis of Pharmaceutical Compounds with Eclipse Plus C8 Columns Application Pharmaceuticals Authors John W. Henderson Jr., Nona Martone, and Cliff Woodward

More information

Peptide Isolation Using the Prep 150 LC System

Peptide Isolation Using the Prep 150 LC System Jo-Ann M. Jablonski and Andrew J. Aubin Waters Corporation, Milford, MA, USA APPLICATION BENEFITS The Prep 150 LC System, an affordable, highly reliable system for preparative chromatography, is suitable

More information

Automatization for development of HPLC methods

Automatization for development of HPLC methods Fresenius J Anal Chem (2001) 369 : 36 41 Springer-Verlag 2001 SPECIAL ISSUE PAPER M. Pfeffer H. Windt Automatization for development of HPLC methods Received: 31 May 2000 / Revised: 13 July 2000 / Accepted:

More information

There s Great Chemistry Between Us.

There s Great Chemistry Between Us. There s Great Chemistry Between Us. Introduction HPLC Columns Theory, Technology and Practice Uwe D. Neue, Waters Corporation, Milford, MA published by John Wiley & Sons High performance liquid chromatography

More information

penta-hilic UHPLC COLUMNS

penta-hilic UHPLC COLUMNS penta-hilic UHPLC COLUMNS Highly retentive, proprietary penta-hydroxy-ligand penta-hilic Excellent peak shape for polar compounds with a variety of functional groups: acids, bases, zwitterions strong and

More information

Reports of the Death of Fully Porous Particles are Greatly Exaggerated

Reports of the Death of Fully Porous Particles are Greatly Exaggerated 32 May/June 2012 Reports of the Death of Fully Porous Particles are Greatly Exaggerated by Douglas R. McCabe, Pamela C. Iraneta and Thomas H. Walter Waters Corporation, 34 Maple Street, Milford, MA 01757

More information

DEMONSTRATING SUPERIOR LINEARITY: THE ACQUITY UPLC PHOTODIODE ARRAY DETECTOR

DEMONSTRATING SUPERIOR LINEARITY: THE ACQUITY UPLC PHOTODIODE ARRAY DETECTOR DEMONSTRATING SUPERIOR LINEARITY: THE ACQUITY UPLC PHOTODIODE ARRAY DETECTOR Tanya Jenkins Waters Corporation, Milford, MA, USA INTRODUCTION ACQUITY UPLC PDA LINEARITY There are two characteristics that

More information

Kromasil. for your analytical HPLC. Kromasil. The way to peak performance in liquid chromatography

Kromasil. for your analytical HPLC. Kromasil. The way to peak performance in liquid chromatography Kromasil for your analytical HPLC Kromasil The way to peak performance in liquid chromatography Kromasil is known, worldwide, for its high performance and excellent total economy in preparative and industrial

More information

Important Guidelines for Optimizing Speed and Sensitivity in Small-Molecule LC UV and LC MS

Important Guidelines for Optimizing Speed and Sensitivity in Small-Molecule LC UV and LC MS Página 1 de 6 Important Guidelines for Optimizing Speed and Sensitivity in Small-Molecule LC UV and LC MS May 1, 2005 By: Richard A. Henry, David S. Bell LCGC North America The task of developing a new

More information

An HPLC column offering moderate retentivity with superb peak shape Inertsil ODS Sprint

An HPLC column offering moderate retentivity with superb peak shape Inertsil ODS Sprint An HPLC column offering moderate retentivity with superb peak shape Inertsil ODS Sprint An important new column in the Inertsil series Bonded-Phase Structure Perfect balance of retention for both polar

More information

Too Polar for Reversed Phase What Do You Do?

Too Polar for Reversed Phase What Do You Do? Too Polar for Reversed Phase What Do You Do? June 20, 2013 Mark Powell Columns and Consumables Technical Support Page 1 C8 or C18 Doesn t Always Do the Job Typical reversed phase conditions involve water/buffer

More information

2007 Waters Corporation. Application of UPLC to Peptide Mapping

2007 Waters Corporation. Application of UPLC to Peptide Mapping 2007 Waters Corporation Application of UPLC to Peptide Mapping Comparison of HPLC and UPLC 7.5e-2 7.0e-2 6.5e-2 6.0e-2 5.5e-2 HPLC 5.0e-2 4.5e-2 4.0e-2 3.5e-2 3.0e-2 2.5e-2 2.0e-2 1.5e-2 1.0e-2 30.00 35.00

More information

AN HPLC COLUMN InertSustain C1 AN HPLC COLUMN InertSustain C1 Inertsil continues to evolve to InertSustain Physical Properties

AN HPLC COLUMN InertSustain C1 AN HPLC COLUMN InertSustain C1 Inertsil continues to evolve to InertSustain Physical Properties AN HPLC COLUMN TM InertSustain C8 AN HPLC COLUMN InertSustain TM C8 Inertsil continues to evolve to InertSustain Physical Properties Silica : Newly Developed Silica Gel Particle Size : m, m, m Surface

More information

1.7µm Fortis C18 UHPLC Columns

1.7µm Fortis C18 UHPLC Columns Strength in Technology.7µm Fortis C8 Columns Ultra High Pressure Chromatography Increase Efficiency Increase Speed Improve Resolution Greater Sensitivity Wider Linear flow rate range .7µm Columns - 8m/g

More information

Part 2. Overview of HPLC Media

Part 2. Overview of HPLC Media Part 1. General Chromatographic Theory Part 2. Overview of HPLC Media Part 3. The Role of the Mobile Phase in Selectivity Part 4. Column Care and Use 1 HPLC Particle Technology Core-Shell Particle Fully

More information

2010 Waters Corporation

2010 Waters Corporation UPLC Column Positioning Jurmala September 3-5 Anne Dyrdal CBU 2010 Waters Corporation Waters Column Product History Styragel 1958 µbondapak ACQUITY UPLC BEH SunFire Columns Spherisorb SymmetryShield XTerra

More information

Inertsil Technical Library

Inertsil Technical Library HPLC COLUMN INERTSIL TECHNICAL LIBRARY H P L C C o l u m n Inertsil Technical Library Inertsil ODS-4, C8-4 Comparison of Performance List of Compared Columns Experimental Explanation, Analytical Conditions

More information

The Evolving HPLC Column Packings

The Evolving HPLC Column Packings The Evolving HPLC Column Packings GL Sciences has been steadily supplying with columns from Inertsil ODS, first-generation to InertSustain series, integration of state-ofthe-art technologies, and has established

More information

Technical Information

Technical Information 356 Miscellaneous Miscellaneous 357 Technical Information Contents Column Handling... 358-360 Mobile Phases for Reversed Phase Columns... 361 HPLC Column Performance... 362 Inspection Reports... 363 FAQ...

More information

Scaling Up to Preparative Chromatography

Scaling Up to Preparative Chromatography Scaling Up to Preparative Chromatography Dr. Shulamit Levin home page: www.forumsci.co.il/hplc Strategy for Preparative Separation Selection of the appropriate mode of chromatography ptimization of the

More information

Basic Principles for Purification Using Supercritical Fluid Chromatography

Basic Principles for Purification Using Supercritical Fluid Chromatography Basic Principles for Purification Using Supercritical Fluid Chromatography Jo-Ann M. Jablonski, Christopher J. Hudalla, Kenneth J. Fountain, Steven M. Collier, and Damian Morrison Waters Corporation, Milford,

More information

Reversed Phase Solvents

Reversed Phase Solvents Part 1. General Chromatographic Theory Part 2. verview of HPLC Media Part 3. The Role of the Mobile Phase in Selectivity Part 4. Column Care and Use Reversed Phase Solvents 2 Solvents for RP Chromatography

More information

High Performance Liquid Chromatography. Table 1: Allowed HPLC Adjustment of USP <621> and EP <2.2.46>

High Performance Liquid Chromatography. Table 1: Allowed HPLC Adjustment of USP <621> and EP <2.2.46> High Performance Liquid Chromatography HPLC-9 Ultra-high Speed Analysis of Ibuprofen within USP Allowed Limits by Nexera Method Scouting In recent years, high-throughput analytical techniques have

More information

New Product Update. HPLC Columns

New Product Update. HPLC Columns New Product Update HPLC Columns ZORBAX MicroBore HPLC Columns ZORBAX Extend-C18 Columns ZORBAX Bonus-RP Columns Inertsil ODS-2 Cartridge Columns ZORBAX Carbohydrate Analysis Columns ZORBAX Eclipse dsdna

More information

-xt. -xt SYSTEM. Specifications for PAL-xt Systems. Valid for PAL-xt System models only. Prep and Load Platform

-xt. -xt SYSTEM. Specifications for PAL-xt Systems. Valid for PAL-xt System models only. Prep and Load Platform -xt SYSTEM Prep and Load Platform -xt Specifications for PAL-xt Systems Valid for PAL-xt System models only Revised March 2013 V5 PAL is a registered trademark of CTC Analytics AG Switzerland -xt SYSTEM

More information

How proteins separate on reverse-phase HPLC

How proteins separate on reverse-phase HPLC 1 Reverse Phase How proteins separate on reverse-phase HPLC RP chromatography separates proteins through the interaction of the hydrophobic foot of the protein with a nonpolar surface of the particle RP

More information

InertSustain AQ-C18. HPLC, LC/MS Columns. Maximizing retention for highly polar compounds in reversed phase methods with highly aqueous mobile phases

InertSustain AQ-C18. HPLC, LC/MS Columns. Maximizing retention for highly polar compounds in reversed phase methods with highly aqueous mobile phases HPLC, LC/MS Columns InertSustain AQ-C8 Maximizing retention for highly polar compounds in reversed phase methods with highly aqueous mobile phases Physical Properties Silica : ES (Evolved Surface) Silica

More information

Method Development Kits

Method Development Kits Method Development Kits sales representative for ordering information or contact...77 Method Development Kits First column choice for Pharma Development USP L C Method Development Kits Maximize retention

More information

Basic chromatographic parameters and optimization in LC

Basic chromatographic parameters and optimization in LC AM0925 Assignment Basic chromatographic parameters and optimization in LC Introduction This is a computer exercise where you will apply a simulator of reversed phase LC to study the influence of chromatographic

More information

New 5-micron HALO-5 columns based on Fused- Core particle technology boost the performance of HPLC. Compared to other HPLC columns, HALO-5 columns

New 5-micron HALO-5 columns based on Fused- Core particle technology boost the performance of HPLC. Compared to other HPLC columns, HALO-5 columns New 5-micron HALO-5 columns based on Fused- Core particle technology boost the performance of HPLC. Compared to other HPLC columns, HALO-5 columns have: the highest plate number versus any other 5-micron

More information

P R O D U C T B U L L E T I N. Fused-Core particle technology for hyper-fast and super-rugged HPLC columns

P R O D U C T B U L L E T I N. Fused-Core particle technology for hyper-fast and super-rugged HPLC columns P R O D U C T B U L L E T I N Fused-Core particle technology for hyper-fast and super-rugged HPLC columns HALO column packings are not made the typical way. Instead, the particles packed into HALO columns

More information

Open Column Chromatography, GC, TLC, and HPLC

Open Column Chromatography, GC, TLC, and HPLC Open Column Chromatography, GC, TLC, and HPLC Murphy, B. (2017). Introduction to Chromatography: Lecture 1. Lecture presented at PHAR 423 Lecture in UIC College of Pharmacy, Chicago. USES OF CHROMATOGRAPHY

More information

Analysis of Beer by Comprehensive 2D-LC with the Agilent 1290 Infinity 2D-LC system

Analysis of Beer by Comprehensive 2D-LC with the Agilent 1290 Infinity 2D-LC system Analysis of Beer by Comprehensive 2D-LC with the Agilent 1290 Infinity 2D-LC system Application Note Food Testing & Agriculture Authors Edgar Naegele Agilent Technologies, Inc. Waldbronn, Germany Keiko

More information

Work plan & Methodology: HPLC Method Development

Work plan & Methodology: HPLC Method Development Work plan & Methodology: HPLC Method Development The HPLC analytical Method developed on the basis of it s chemical structure, Therapeutic category, Molecular weight formula, pka value of molecule, nature,

More information

Peptide and protein analysis by capillary HPLC Optimization of chromatographic and instrument parameters. Application. Angelika Gratzfeld-Huesgen

Peptide and protein analysis by capillary HPLC Optimization of chromatographic and instrument parameters. Application. Angelika Gratzfeld-Huesgen Peptide and protein analysis by capillary HPLC Optimization of chromatographic and instrument parameters Application Angelika Gratzfeld-Huesgen Abstract This application has been verified using an Agilent

More information

ultimate efficiency unleashed [ Cortecs 1.6 µm columns ]

ultimate efficiency unleashed [ Cortecs 1.6 µm columns ] ultimate efficiency unleashed [ Cortecs columns ] [ CORTECS UPLC COLUMNS ] A SUB--µm SOLID-CORE PARTICLE COLUMN THAT LIVES UP TO ITS POTENTIAL. C 8 + C 8 HILIC SOLID-CORE PARTICLE COLUMNS THAT DELIVER

More information

Online Reaction Monitoring of In-Process Manufacturing Samples by UPLC

Online Reaction Monitoring of In-Process Manufacturing Samples by UPLC Online Reaction Monitoring of In- Manufacturing Samples by UPLC Tanya Tollifson Waters Corporation, Milford, MA, USA APPLICATION BENEFITS Better throughput, yield, and process understanding are possible

More information

HPLC Method Development with Eclipse Plus: Standard Practices and New Columns. Agilent Technologies

HPLC Method Development with Eclipse Plus: Standard Practices and New Columns. Agilent Technologies HPLC Method Development with Eclipse Plus: Standard Practices and New Columns Agilent Technologies What are Some Standard Method Development Practices?. Follow preferred method development scheme and do

More information

ACE Excel SuperC18. ACE UHPLC and HPLC Columns. Ultra-Inert UHPLC and HPLC Columns with Extended ph Stability

ACE Excel SuperC18. ACE UHPLC and HPLC Columns. Ultra-Inert UHPLC and HPLC Columns with Extended ph Stability ACE Excel SuperC8 TM Ultra-Inert UHPLC and HPLC s with Extended ph Stability Exploit selectivity at low, intermediate and high ph Use with LC/MS-compatible buffers between ph.. High efficiency µm, µm,

More information

ULTRA PERFORMANCE LIQUID CHROMATOGRAPHY

ULTRA PERFORMANCE LIQUID CHROMATOGRAPHY Int. J. Pharm. Med. & Bio. Sc. 2014 K Naresh et al., 2014 Review Article ISSN 2278 5221 www.ijpmbs.com Vol. 3, No. 3, July 2014 2014 IJPMBS. All Rights Reserved ULTRA PERFORMANCE LIQUID CHROMATOGRAPHY

More information

Overview Applications of NUCLEODUR HPLC Phases

Overview Applications of NUCLEODUR HPLC Phases verview Applications of HPLC Phases Phase Specification Characteristics* Stability Structure A B C octadecyl phase, high density coating multi-endcapping 8% C USP L ph stability -, suitable for LC/MS (Si-

More information

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS 1. List two advantages of temperature programming in GC. a) Allows separation of solutes with widely varying retention factors in a reasonable

More information

HPLC Praktikum Skript

HPLC Praktikum Skript HPLC Praktikum Skript Assistants: Gianluca Bartolomeo HCI D330, 3 46 68, bartolomeo@org.chem.ethz.ch Sahar Ghiasikhou HCI E330, 2 29 29, ghiasikhou@org.chem.ethz.ch 1. Introduction In chromatographic techniques,

More information

3µm Fortis C18. Fortis 2.1µm. Increased Efficiency. Scalability and Sensitivity

3µm Fortis C18. Fortis 2.1µm. Increased Efficiency. Scalability and Sensitivity Fortis 2.1µm 2.1µm Fortis C18 (2) High Efficiency Robust Particles Operate to 15,000psi Fully Scalable to analytical and prep size Fortis 2.1µm particles are designed to provide characteristics, which

More information

H 3 CO H 3 CO S CH 3

H 3 CO H 3 CO S CH 3 FENITROTHION 35 H 3 CO P H 3 CO S O CH 3 NO 2 ISO common name Chemical name Fenitrothion O,O-Dimethyl O-4-nitro-m-tolyl phosphorothioate (IUPAC) O,O-Dimethyl O-(3-methyl-4-nitrophenyl)- phosphorothioate

More information

Automating Method Development with an HPLC System Optimized for Scouting of Columns and Eluents

Automating Method Development with an HPLC System Optimized for Scouting of Columns and Eluents Automating Method Development with an HPLC System Optimized for Scouting of Columns and Eluents Marco Karsten, Bas, Dolman, Giovanni Maio, Frank Steiner, Holger Franz, Frank Arnold and Remco Swart LC Packings,

More information

[ a ppl ic at ion no t e ]

[ a ppl ic at ion no t e ] [ a ppl ic at ion no t e ] Fast A nalysis of A ldehydes and K etones by A C Q U I T Y U P L C Mark E. Benvenuti Waters Corporation, Milford, MA, USA INT RO DUC T ION Aldehydes and ketones are products

More information

HPLC Method Development: Standard Practices and New Columns. Agilent Technologies February 2007

HPLC Method Development: Standard Practices and New Columns. Agilent Technologies February 2007 HPLC Method Development: Standard Practices and New Columns Agilent Technologies February 7 What are Some Standard Method Development Practices?. Follow preferred method development scheme and do hands-on

More information

Quality control analytical methods- Switch from HPLC to UPLC

Quality control analytical methods- Switch from HPLC to UPLC Quality control analytical methods- Switch from HPLC to UPLC Dr. Y. Padmavathi M.pharm,Ph.D. Outline of Talk Analytical techniques in QC Introduction to HPLC UPLC - Principles - Advantages of UPLC - Considerations

More information

ACE C18-PFP. Hydrophobic and pentafluorophenyl mixed mode interaction. High efficiency 2µm, 3µm, 5µm and 10µm particles for UHPLC and HPLC

ACE C18-PFP. Hydrophobic and pentafluorophenyl mixed mode interaction. High efficiency 2µm, 3µm, 5µm and 10µm particles for UHPLC and HPLC ACE C-PFP A C bonded phase with unique selectivity F F F F F Guaranteed reproducibility Exceptional bonded phase stability Hydrophobic and pentafluorophenyl mixed mode interaction High efficiency µm, µm,

More information

HPLC Separation Fundamentals. Ed Kim Application Engineer Agilent Technologies, Inc January 14, 2009

HPLC Separation Fundamentals. Ed Kim Application Engineer Agilent Technologies, Inc January 14, 2009 HPLC Separation Fundamentals Ed Kim Application Engineer Agilent Technologies, Inc January 14, 2009 Separation fundamentals Presentation Outline Major HPLC modes Key Equations Resolution van Deemter Common

More information

OBSERVATIONS ON THE WETTING OF REVERSED-PHASE HPLC PACKINGS

OBSERVATIONS ON THE WETTING OF REVERSED-PHASE HPLC PACKINGS 1997 Waters Corporation p. 1 980947 OBSERVATIONS ON THE WETTING OF REVERSED-PHASE HPLC PACKINGS T. Walter, P. Iraneta, and M. Capparella Waters Corporation, 34 Maple Street, Milford, MA 01757 USA Presented

More information

Modernizing the USP Monograph for Acetaminophen

Modernizing the USP Monograph for Acetaminophen Modernizing the USP Monograph for cetaophen pplication Note Small Molecule Pharmaceuticals and Generics uthor Rongjie Fu gilent Technologies (Shanghai) Co. Ltd bstract new HPLC method was developed for

More information

Practical Applications of Method Translation Using the Agilent Method Translation Tool Rita Steed Inside Application Engineer Agilent Technologies

Practical Applications of Method Translation Using the Agilent Method Translation Tool Rita Steed Inside Application Engineer Agilent Technologies Practical Applications of Method Translation Using the Agilent Method Translation Tool Rita Steed Inside Application Engineer Agilent Technologies Title Objectives Demonstrate Agilent Method Translation

More information

Uptisphere CS Evolution Core Shell columns for fast & highly efficient identification & quantification of small molecules

Uptisphere CS Evolution Core Shell columns for fast & highly efficient identification & quantification of small molecules Uptisphere CS Evolution Core Shell columns for fast & highly efficient identification & quantification of small molecules www.interchim.com www.blog.interchim.com www.forum.interchim.com www.facebook.com/interchim

More information

Application Note. Pharmaceutical QA/QC. Author. Abstract. Siji Joseph Agilent Technologies, Inc. Bangalore, India

Application Note. Pharmaceutical QA/QC. Author. Abstract. Siji Joseph Agilent Technologies, Inc. Bangalore, India Reducing analysis time and solvent consumption for isocratic USP assay methods with current and proposed USP guidelines using the Agilent 129 Infinity LC System An efficient way to reduce cost of analysis

More information

ACE SuperC18. ACE UHPLC and HPLC Columns. Ultra-Inert UHPLC and HPLC Columns with Extended ph Stability

ACE SuperC18. ACE UHPLC and HPLC Columns. Ultra-Inert UHPLC and HPLC Columns with Extended ph Stability ACE SuperC8 TM Ultra-Inert UHPLC and HPLC s with Extended ph Stability Exploit selectivity at low, intermediate and high ph Use with LC/MS compatible buffers between ph.. High efficiency µm, µm, µm and

More information

Hypersil BDS Columns TG 01-05

Hypersil BDS Columns TG 01-05 TG 0-0 Hypersil BDS Columns Introduction Hypersil BDS columns have gained a reputation over the years as one of the most robust, reproducible and reliable HPLC column brands available. This Technical Guide

More information