THE VALIDATION OF THE SNOW COVER MAPPING DERIVED FROM NOAA AVHRR/3 OVER TURKEY

Size: px
Start display at page:

Download "THE VALIDATION OF THE SNOW COVER MAPPING DERIVED FROM NOAA AVHRR/3 OVER TURKEY"

Transcription

1 THE VALIDATION OF THE SNOW COVER MAPPING DERIVED FROM NOAA AVHRR/3 OVER TURKEY Aydın Gürol Ertürk 1, İbrahim Sönmez 1, A. Ünal Şorman 2 1 Turkish State Meteorological Service, Remote Sensing Division, Kalaba, Ankara, 2 Middle East Technical University, Dept. of Civil Engineering, Water Resources Lab., Ankara Abstract Clouds representing the similar spectral characteristics in optical satellites with snow have been the challenging point for the snow cover mapping algorithms. Since 1.6 microns is useful in separating snow and snow free land, The NOAA AVHRR/3 (Advanced Very High Resolution Radiometer) instrument containing 3A (1.6 microns) with time-share 3B (3.7 microns) channel provides promising opportunities. In the frame of EUMETSAT H-SAF (Satellite Application Facilities on Support to Operational Hydrology and Water Management) project, the developed snow cover product algorithm derived from NOAA AVHRR/3 data is introduced. The daily snow cover products are validated over Turkey by using 262 synoptic and climate stations for the time period of 15 November March The performance of the algorithm is analyzed in daily basis by using probability of detection (POD), hit rate (HR) and critical success index (CSI) statistics. Higher success rates such as, HR varying from 63.31% to 97.33% with the overall accuracy of 87.44% is observed. Key Words: NOAA, AVHRR, Snow Cover, Validation and Turkey. Introduction The determination of the spatial and temporal variation of the snow is essential for various reasons. On the one hand, the information of the snow cover is crucial since the water amount originated from snowmelt is the backbone of the hydrological models (e.g., Grayson et al., 2002; Udnaes et al., 2007; Parajaka et al., 2007). On the other hand, snow cover is one of the important components in the radiative transfer models and climate studies (Cohen, 1994). For this reason, various satellite sensors such as, MERIS(Malcher et al., 2003), MODIS(Hall et al., 2002; Parajka and Blosch 2008; Tekeli et al., 2005), SEVIRI (Ramanov et al., 2003; de Ruyter de Wildt et al., 2006) and ASTER(e.g., Logar et al., 1998), are employed to provide snow-cover product. Additional to other sensors, AVHRR sensor on board NOAA polar orbit satellite is used for the snow cover parameter (e.g., Foppa et al., 2005). After successful improvement of AVHRR/3 instrument, the optical and infrared channels became much more potential for snow detection. However, cloud obstruction (Parajka and Blosch 2008) still remains as the main limitation of such application. In this study, snow cover product generated by using the NOAA AVHRR/3 Level 1b data is validated by using the 262 synoptic and climate in-situ data over Turkey. The categorical statistics of POD(probability of detection), HR (Hit Rate) and CSI(Critical Success Index) product are performed daily basis for the time period from 15 November 2007 to 31 March The temporal variation of each statistic is introduced.

2 Snow Depth Measurements Snow depth measurements from the total number of 262 in-situ sites over Turkey of which 125 are synoptic and 137 are climate observation sites are used as the ground truth for validation. The spatial distribution of the stations is provided in Figure 1. Snow depth measurements from the synop stations are reported at 6:00 UTC. On the other hand, the same parameter is reported by the climate stations at 7:00 am local time which corresponds to time period varying from 04:00 UTC to 06 UTC for the study domain. All these sites have been operated by Turkish State Meteorological Service (TSMS). The amount of the non-zero snow depth amount reported at the time mentioned above is assumed to be remained during the day. Even the snow depth amount is subject to vary during the day; the presence of the snow on the ground is the main concern for this study. To avoid any snow depth amount reaching null depth during the daytime, 1 cm is chosen to be the threshold and any snow depth observations less than this amount are excluded from the analysis. Figure 1. In-situ site distribution used for the validation. Snow Cover Product Separation of the purely snow-covered and snow-free land is comparatively easy since the spectral characteristics of them are significantly different. On the other hand, pixels containing mixture of snow, forest, rock, etc. lead to inaccurate classifications (Daly et al., 2000). These errors are mainly originated because of the assumption of homogenous pixel content which indeed is generally not the case. To clarify the problem, various studies conducted for better snow cover detection at sub-pixel scale (Painter et al., 1998; Metsamaki et al., 2002; Vikhamar and Solberg, 2002). Due to the similar spectral characteristics, the other challenging classification occurs between snow and clouds. Various snow and cloud extraction methodologies for the AVHRR data is introduced in the literature (e.g., Saunders and Kriebel, 1988; Gesell,; Derrien et al., 1993;).

3 For the snow and ice pixels, the reflectance of channel 3A is relatively lower than Channel 1 reflectance. This difference is significantly demonstrated in the ratio of Channel 3A and Channel 1. Tuning the NDSI proposed by Hall et al. (2002), the snow cover classification using NOAA AVHRR/3 data is performed on the variation of this ratio described by Ramanov et al. (2003) as follows; Channel_1 > 0.15 AND Channel_3A / Channel_1 < 0.4 AND Channel_4< 288 K In addition, the cloud coverage classification is determined using the threshold method proposed by Derrein and Gléau, (2003) including the support of Channel 4 brightness temperatures. 1) Channel_4 < 253 K OR 2) Channel_3A / Channel_1 > 0.4 AND Channel_3A / Channel_1 < 1.6 AND Channel_1 > 0.2 AND Channel_3A > 0.25 By using the classification criteria mentioned above, a sample snow cover product map for the date 22 Feb 2008 is illustrated in Figure 2. Figure 2. A sample snow cover map for the date 22 Feb The white, green aqua, gray and blue corresponds snow, land, cloud, no data and water respectively. The SCA products have been producing regularly since November 2007 at TSMS, Remote Sensing Division product center. Validation Methodology The snow cover product generated by using the NOAA 17 Level 1b data is validated by using the snow depth observations from 262 in-situ sites. Daily-generated

4 NOAA snow product and in-situ observations are compared for the period from 15 November 2007 to 31 March 2008 (101 observations). For this period, some days are excluded from the analysis due to NOAA data reception problem or having not any insitu observations exceeding 1 cm of snow depth. Categorical statistics of POD, HR and CSI are performed to test the validity of the NOAA snow cover product. For each comparison day, in-situ observations and the snow cover product for the corresponding NOAA pixels are used to determine the total number of the contingency table elements (a,b,c and d) in Table 1. Table 1 Contingency table representation for the snow cover product validation. In-situ Observation Snow Presence Snow Cover Product Snow Presence a None None c d b If any in-situ observation does not exist, confirmed as unreliable or product pixel is labeled as no data/cloud, then the corresponding pair is not included in the determination of the a, b, c and d totals, At the final step, categorical statistics of the POD, HR and CSI are determined for the considered day by the following equations. POD = a / (a+b) (1) HR = (a+d) / (a+b+c+d) (2) CSI = a / (a+b+c) (3) Due to the possibility of the uncertainties originated by the latitude and longitude of the in-situ sites or the geolocation of the NOAA AVHRR pixels, 3x3 and 5x5 pixel comparison of the snow cover product with the in-situ observations is also performed as part of the validation procedure. In 3X3 and 5x5 cases, the pixel containing the in-situ site is located in the middle. For the 3X3 case, the product is considered as snow if any of the 3X3 pixels (9 in total) indicates snow. The product is considered as snow free if all of the 3X3 pixels indicate no-snow. The same procedure is followed for the 5X5 case as well. Finally, the POD, HR and CSI statistics are performed as described above. Results Totally 101 daily snow cover products is validated in this study for the time period from 15 November 2007 to 31 March Among these, contingency table elements for the date 31 Jan, 21 Feb and 28 Feb are provided in Table 2 for the 5X5 grid configuration as an example. For the Jan 31 th, 134 of the in-situ sites reported non-zero, greater than 1cm, snow cover amount of which 121 of them is successfully detected by the NOAA snow cover product with the percentage POD value of In the same way,

5 more than 90% POD values are obtained for the other two dates. Also, more than 85% of HR and more than 80% of CSI amounts are achieved for the mentioned dates (Table 2). Table 2: Categorical statistics for the sample 3 dates for 5X5 grid configuration. Year Month Day a b c d POD% HR% CSI% The performance effect of the, 1X1, 3X3 and 5X5 pixel configurations for the categorical statistics are also analyzed in Table 3. The overall averages of the POD, HR and CSI percentages are presented for 1X1, 3X3 and 5X5 pixel configurations considering the whole study period. Significantly increasing percentages are observed with the increasing grid configuration. Table 3: Average POD, HR and CSI percentages for the whole study period.. 1 X 1 3 X 3 5 X 5 POD % HR % CSI % Temporal variations of the categorical statistics for the considered pixel configurations are also given in Table 4 for the sub-study period of Jan 2008 March In monthly basis, highest POD statistic is obtained in February. Climatologically, January and February are the highest snowy period for Turkey and the melting period starts in March. The findings of the categorical statistics prove that the algorithm performs better during the snowy period. Table 4: Average POD, HR and CSI percentages (including 67 days of analysis). January 2008 February 2008 March X 1 3 X 3 5 X 5 1 X 1 3 X 3 5 X 5 1 X 1 3 X 3 5 X 5 POD % HR % CSI % Lastly, temporal variation of the POD, HR and CSI statistics are introduced in Figure 3, 4 and 5 with respect to 1X1, 3X3 and 5X5 pixel configurations. Relatively higher percentages are observed in the order of 5X5, 3X3 and 1X1 pixel configuration for each day. Analysis indicated that cloud obstruction was the dominant parameter affecting the performance of each configuration. Higher percentages are observed for the days with the lower cloudy pixel amounts and vice versa.

6 POD Pod X 1 3 X 3 5 X Days Figure 3. Temporal variation of the POD percentages. Hit Rate HR X 1 3 X 3 5 X Days Figure 4. Temporal variation of the HR percentages. CSI CSI X 1 3 X 3 5 X Days Figure 5 Temporal variation of the CSI percentages.

7 The higher POD, HR and CSI percentages prove the validity of the NOAA AVHRR snow cover product. In case of the lower percentages of the categorical statistics, presence of the ice clouds may be considered as the main concern. On the other hand, highest percentages are observed in the snowy days of January and February. The overall performance of NOAA snow cover products may be considered reliable according to the higher categorical statistic percentages. This result indicates that this product may be used as an input component for the hydrological models and may positively contribute to the performance of the model for estimating runoffs resulting from snowmelt. Meanwhile, comparison of another satellite derived snow cover product called IMS (Interactive Multisensor Snow and Ice Mapping System) is considered as a future work. References Cohen, J. (1994). Snow and climate. Weather, 49, Daly, S.F., R. Davis, E. Ochs and T. Pangburn, (2000) An approach to spatially distributed snow modelling of the Sacramento and San Joaquin basins, California. Hydrological Processes. 14(18), pp: Derrien, M., Farki, B., Harang, L., Legleau, H., Noyalet, A., Pochic, D. & Sairouni, A. (1993): Automatic Cloud Detection Applied to NOAA-11 / AVHRR Imagery. Remote Sensing of Environment, Vol. 46, pp Derrien, M., H. Le Gléau, (2003). SAFNWC/MSG SEVIRI Cloud Product, Proceeding of the EUMETSAT Meteorological Satellite Conference, de Ruyter de Wildt M, G Seiz & A Grün, (2006). Snow mapping using multi-temporal Meteosat-8 data. EARSeL eproceedings, 5(1): Foppa, N., A. Hauser, D. Oesch, S. Wunderle, R. Meister and A. Stoffel (2005). Validation of operational AVHRR sub-pixel snow cover maps for the European Alps. EGU General Assembly 2005, Vienna, Austria. Grayson, R. B., G. Bloschl, A. Western, and T. McMahon (2002), Advances in the use of observed spatial patterns of catchment hydrological response, Adv. Water Resour., 25, Hall, D. K., Riggs, G. A., Salomonson, V. V., DeGirolamo, N. E., Bayr, K. J., & Jin, J. M. (2002). MODIS Snow-cover products. Remote Sensing of Environment, 83, Logar, A.M.; Lloyd, D.E.; Corwin, E.M.; Penaloza, M.L.; Feind, R.E.; Berendes, T.A.; Kwo-Sen Kuo; Welch, R.M. (1998). The ASTER polar cloud mask. IEEE Transactions on Geoscience and Remote Sensing, Vol. 36:

8 Malcher, P.; Floricioiu, D.; Rott, H. (2003). Snow mapping in Alpine areas using medium resolution spectrometric sensors. Proceedings. IEEE IGRASS03 (Toulouse) 4630 pp. Vol. 4: Metsamaki, S., J. Vepsalainen, J. Pullinainen and Y. Sucksdor_. (2002). Improved linear interpolation method for the estimation of snow-covered area from optical data. Remote Sensing Environ., 82(1), Painter, T., D. Roberts, R. Green and J. Dozier. (1998). The E_ect of Grain Size on Spectral Mixture Analysis of Snow-Covered Area from Aviris Data. Remote Sensing Environ., 65(3), Parajka, J., R. Merz, and G. Bloschl (2007), Uncertainty and multiple objective calibration in regional water balance modelling - Case study in 320 Austrian catchments, Hydrol. Processes, 21, Parajka, J., G. Bloschl (2008), Spatio-temporal combination of MODIS images potential for snow cover mapping, Water Resources Research, 44, W Romanov P., Tarpley D., Gutman G. & Carroll T.R, (2003). Mapping and monitoring of the snow cover fraction over North America. Journal of Geophysical Research, 108:D16: 8619 Saunders, R.W. & Kriebel, K.T. (1988): An Improved Method for Detecting Clear Sky and Cloudy Radiances from AVHRR Data. International Journal of Remote Sensing, Vol. 9, No. 1, pp Tekeli, A. E., Z. Akyurek, A. A. Sorman, A. Sensoy, and A. U.Sorman (2005), Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey, Remote Sens. Environ., 97, Udnaes, H. Ch., E. Alfnes, and L. M. Andreassen (2007), Improving runoff modeling using satellite-derived snow cover area?, Nordic Hydrol., 38(1), Vikhamar, D. and R. Solberg. (2002). Subpixel mapping of snow cover in forests by optical remote sensing. Remote Sensing Environ., 84(1),

SATELLITE BASED SNOW COVER VALIDATION AND LONG TERM TREND ANALYSIS OVER TURKEY ABSTRACT

SATELLITE BASED SNOW COVER VALIDATION AND LONG TERM TREND ANALYSIS OVER TURKEY ABSTRACT SATELLITE BASED SNOW COVER VALIDATION AND LONG TERM TREND ANALYSIS OVER TURKEY İbrahim SÖNMEZ 1, Ahmet Emre TEKELİ 2, Erdem ERDİ 3 1 Department of Meteorology, Ondokuz Mayıs University, Samsun, Turkey

More information

VALIDATION RESULTS OF THE OPERATIONAL LSA-SAF SNOW COVER MAPPING

VALIDATION RESULTS OF THE OPERATIONAL LSA-SAF SNOW COVER MAPPING VALIDATION RESULTS OF THE OPERATIONAL LSA-SAF SNOW COVER MAPPING Niilo Siljamo, Otto Hyvärinen Finnish Meteorological Institute, Erik Palménin aukio 1, P.O.Box 503, FI-00101 HELSINKI Abstract Hydrological

More information

SNOW MAPPING USING MULTI-TEMPORAL METEOSAT-8 DATA

SNOW MAPPING USING MULTI-TEMPORAL METEOSAT-8 DATA EARSeL eproceedings 5, 1/2006 18 SNOW MAPPING USING MULTI-TEMPORAL METEOSAT-8 DATA Martijn de Ruyter de Wildt 1, Gabriela Seiz 2 and Armin Grün 1 1. ETH Zurich, Institute of Geodesy and Photogrammetry,

More information

Creating a cloud-free MODIS snow cover product using spatial and temporal interpolation and temperature thresholds

Creating a cloud-free MODIS snow cover product using spatial and temporal interpolation and temperature thresholds Creating a cloud-free MODIS snow cover product using spatial and temporal interpolation and temperature thresholds Justinas Kilpys, Egidijus Rimkus, Silvija Pipiraitė Vilnius University, Institute of Geosciences

More information

Spatio-temporal combination of MODIS images potential for snow cover mapping

Spatio-temporal combination of MODIS images potential for snow cover mapping Click Here for Full Article Spatio-temporal combination of MODIS images potential for snow cover mapping J. Parajka 1,2 and G. Blöschl 1 WATER RESOURCES RESEARCH, VOL. 44,, doi:10.1029/2007wr006204, 2008

More information

Commentary on comparison of MODIS snow cover and albedo products with ground observations over the mountainous terrain of Turkey

Commentary on comparison of MODIS snow cover and albedo products with ground observations over the mountainous terrain of Turkey Author(s) 2007. This work is licensed under a Creative Commons License. Hydrology and Earth System Sciences Commentary on comparison of MODIS snow cover and albedo products with ground observations over

More information

A HIGH RESOLUTION EUROPEAN CLOUD CLIMATOLOGY FROM 15 YEARS OF NOAA/AVHRR DATA

A HIGH RESOLUTION EUROPEAN CLOUD CLIMATOLOGY FROM 15 YEARS OF NOAA/AVHRR DATA A HIGH RESOLUTION EUROPEAN CLOUD CLIMATOLOGY FROM 15 YEARS OF NOAA/AVHRR DATA R. Meerkötter 1, G. Gesell 2, V. Grewe 1, C. König 1, S. Lohmann 1, H. Mannstein 1 Deutsches Zentrum für Luft- und Raumfahrt

More information

Snow cover trend analysis using Interactive Multisensor Snow and Ice Mapping System data over Turkey

Snow cover trend analysis using Interactive Multisensor Snow and Ice Mapping System data over Turkey INTERNATIONAL JOURNAL OF CLIMATOLOGY Int. J. Climatol. 34: 2349 2361 (2014) Published online 18 October 2013 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/joc.3843 Snow cover trend analysis

More information

USE OF SATELLITE INFORMATION IN THE HUNGARIAN NOWCASTING SYSTEM

USE OF SATELLITE INFORMATION IN THE HUNGARIAN NOWCASTING SYSTEM USE OF SATELLITE INFORMATION IN THE HUNGARIAN NOWCASTING SYSTEM Mária Putsay, Zsófia Kocsis and Ildikó Szenyán Hungarian Meteorological Service, Kitaibel Pál u. 1, H-1024, Budapest, Hungary Abstract The

More information

SNOW COVER MAPPING USING METOP/AVHRR AND MSG/SEVIRI

SNOW COVER MAPPING USING METOP/AVHRR AND MSG/SEVIRI SNOW COVER MAPPING USING METOP/AVHRR AND MSG/SEVIRI Niilo Siljamo, Markku Suomalainen, Otto Hyvärinen Finnish Meteorological Institute, P.O.Box 503, FI-00101 Helsinki, Finland Abstract Weather and meteorological

More information

Validation of MODIS snow cover images over Austria

Validation of MODIS snow cover images over Austria Validation of MODIS snow cover images over Austria J. Parajka, G. Blöschl To cite this version: J. Parajka, G. Blöschl. Validation of MODIS snow cover images over Austria. Hydrology and Earth System Sciences

More information

Using MODIS imagery to validate the spatial representation of snow cover extent obtained from SWAT in a data-scarce Chilean Andean watershed

Using MODIS imagery to validate the spatial representation of snow cover extent obtained from SWAT in a data-scarce Chilean Andean watershed Using MODIS imagery to validate the spatial representation of snow cover extent obtained from SWAT in a data-scarce Chilean Andean watershed Alejandra Stehr 1, Oscar Link 2, Mauricio Aguayo 1 1 Centro

More information

MSGVIEW: AN OPERATIONAL AND TRAINING TOOL TO PROCESS, ANALYZE AND VISUALIZATION OF MSG SEVIRI DATA

MSGVIEW: AN OPERATIONAL AND TRAINING TOOL TO PROCESS, ANALYZE AND VISUALIZATION OF MSG SEVIRI DATA MSGVIEW: AN OPERATIONAL AND TRAINING TOOL TO PROCESS, ANALYZE AND VISUALIZATION OF MSG SEVIRI DATA Aydın Gürol Ertürk Turkish State Meteorological Service, Remote Sensing Division, CC 401, Kalaba Ankara,

More information

Comparing different MODIS snow products with distributed simulation of the snowpack in the French Alps

Comparing different MODIS snow products with distributed simulation of the snowpack in the French Alps Comparing different MODIS snow products with distributed simulation of the snowpack in the French Alps Luc Charrois 1, Marie Dumont 1,*, Pascal Sirguey 2, Samuel Morin 1, Matthieu Lafaysse 1 and Fatima

More information

SAFNWC/MSG SEVIRI CLOUD PRODUCTS

SAFNWC/MSG SEVIRI CLOUD PRODUCTS SAFNWC/MSG SEVIRI CLOUD PRODUCTS M. Derrien and H. Le Gléau Météo-France / DP / Centre de Météorologie Spatiale BP 147 22302 Lannion. France ABSTRACT Within the SAF in support to Nowcasting and Very Short

More information

Validation of the operational MSG-SEVIRI snow cover product over Austria

Validation of the operational MSG-SEVIRI snow cover product over Austria Hydrol. Earth Syst. Sci., 8, 63 4, 04 www.hydrol-earth-syst-sci.net/8/63/04/ doi:0.594/hess-8-63-04 Author(s) 04. CC Attribution 3.0 License. Hydrology and Earth System Sciences Open Access Validation

More information

Mapping and monitoring of the snow cover fraction over North America

Mapping and monitoring of the snow cover fraction over North America JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D16, 8619, doi:10.1029/2002jd003142, 2003 Mapping and monitoring of the snow cover fraction over North America Peter Romanov, 1,2 Dan Tarpley, 1 Garik Gutman,

More information

Satellite-Based Detection of Fog and Very Low Stratus

Satellite-Based Detection of Fog and Very Low Stratus Satellite-Based Detection of Fog and Very Low Stratus A High-Latitude Case Study Centred on the Helsinki Testbed Experiment J. Cermak 1, J. Kotro 2, O. Hyvärinen 2, V. Nietosvaara 2, J. Bendix 1 1: Laboratory

More information

Using satellite-derived snow cover data to implement a snow analysis in the Met Office global NWP model

Using satellite-derived snow cover data to implement a snow analysis in the Met Office global NWP model Using satellite-derived snow cover data to implement a snow analysis in the Met Office global NWP model Pullen, C Jones, and G Rooney Met Office, Exeter, UK amantha.pullen@metoffice.gov.uk 1. Introduction

More information

[Final report of the visiting stay.] Assoc. Prof. Juraj Parajka. TU Vienna, Austria

[Final report of the visiting stay.] Assoc. Prof. Juraj Parajka. TU Vienna, Austria Validation of HSAF snow products in mountainous terrain in Austria and assimilating the snow products into a conceptual hydrological model at regional scale [Final report of the visiting stay.] Assoc.

More information

Remote Sensing of Snow and Ice. Lecture 21 Nov. 9, 2005

Remote Sensing of Snow and Ice. Lecture 21 Nov. 9, 2005 Remote Sensing of Snow and Ice Lecture 21 Nov. 9, 2005 Topics Remote sensing snow depth: passive microwave (covered in Lecture 14) Remote sensing sea ice and ice sheet elevation change: Lidar - ICESat

More information

ARCTIC SEA ICE ALBEDO VARIABILITY AND TRENDS,

ARCTIC SEA ICE ALBEDO VARIABILITY AND TRENDS, ARCTIC SEA ICE ALBEDO VARIABILITY AND TRENDS, 1982-1998 Vesa Laine Finnish Meteorological Institute (FMI), Helsinki, Finland Abstract Whole-summer and monthly sea ice regional albedo averages, variations

More information

HOMOGENEOUS VALIDATION SCHEME OF THE OSI SAF SEA SURFACE TEMPERATURE PRODUCTS

HOMOGENEOUS VALIDATION SCHEME OF THE OSI SAF SEA SURFACE TEMPERATURE PRODUCTS HOMOGENEOUS VALIDATION SCHEME OF THE OSI SAF SEA SURFACE TEMPERATURE PRODUCTS Pierre Le Borgne, Gérard Legendre, Anne Marsouin, Sonia Péré Météo-France/DP/Centre de Météorologie Spatiale BP 50747, 22307

More information

Paper presented at the 9th AGILE Conference on Geographic Information Science, Visegrád, Hungary,

Paper presented at the 9th AGILE Conference on Geographic Information Science, Visegrád, Hungary, Paper presented at the 9th AGILE Conference on Geographic Information Science, Visegrád, Hungary, 2006 21 Validation of MODIS Snowcover Products in Romania. Methodology and conclusions C. Flueraru, G.

More information

A HISTORICAL PERSPECTIVE ON THE SNOW STUDIES IN TURKEY. Prof.Dr. A. Ünal ŞORMAN 1,2

A HISTORICAL PERSPECTIVE ON THE SNOW STUDIES IN TURKEY. Prof.Dr. A. Ünal ŞORMAN 1,2 A HISTORICAL PERSPECTIVE ON THE SNOW STUDIES IN TURKEY Prof.Dr. A. Ünal ŞORMAN 1,2 Aynur Şensoy 3, Arda Şorman 3, Gökçen Uysal 3, Cansaran Ertaş 3, Bulut Akkol 3, Cihan Çoşkun 3 1 N e a r E a s t U n i

More information

A Comparison of A MSR-E/Aqua Snow Products with in situ Observations and M O DIS Snow Cover Products in the Mackenzie River Basin, Canada

A Comparison of A MSR-E/Aqua Snow Products with in situ Observations and M O DIS Snow Cover Products in the Mackenzie River Basin, Canada Remote Sensing 2010, 2, 2313-2322; doi:10.3390/rs2102313 Letter OPE N A C C ESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing A Comparison of A MSR-E/Aqua Snow Products with in situ

More information

THE LAND-SAF SURFACE ALBEDO AND DOWNWELLING SHORTWAVE RADIATION FLUX PRODUCTS

THE LAND-SAF SURFACE ALBEDO AND DOWNWELLING SHORTWAVE RADIATION FLUX PRODUCTS THE LAND-SAF SURFACE ALBEDO AND DOWNWELLING SHORTWAVE RADIATION FLUX PRODUCTS Bernhard Geiger, Dulce Lajas, Laurent Franchistéguy, Dominique Carrer, Jean-Louis Roujean, Siham Lanjeri, and Catherine Meurey

More information

Evaluating and improving the developed algorithms for effective snow cover mapping on mountainous terrain for hydrological applications

Evaluating and improving the developed algorithms for effective snow cover mapping on mountainous terrain for hydrological applications Satellite Application Facility for Hydrology Final Report on the Visiting Scientist activities: Evaluating and improving the developed algorithms for effective snow cover mapping on mountainous terrain

More information

INDEPENDENT VALIDATION OF THE H-SAF SNOW COVER PRODUCTS (H10, H12, H31)

INDEPENDENT VALIDATION OF THE H-SAF SNOW COVER PRODUCTS (H10, H12, H31) Hydrological SAF Associated & Visiting Scientist Activity IDEPEDET VALIDATIO OF THE H-SAF SOW COVER PRODUCTS (H10, H12, H31) Final Report Reference: H_AVS15_01 Prepared by: Justinas Kilpys (LHMS) Supervised

More information

Snow Cover Applications: Major Gaps in Current EO Measurement Capabilities

Snow Cover Applications: Major Gaps in Current EO Measurement Capabilities Snow Cover Applications: Major Gaps in Current EO Measurement Capabilities Thomas NAGLER ENVEO Environmental Earth Observation IT GmbH INNSBRUCK, AUSTRIA Polar and Snow Cover Applications User Requirements

More information

Real Time Snow Water Equivalent (SWE) Simulation February 5, 2014 Sierra Nevada Mountains, California

Real Time Snow Water Equivalent (SWE) Simulation February 5, 2014 Sierra Nevada Mountains, California Real Time Snow Water Equivalent (SWE) Simulation February 5, 2014 Sierra Nevada Mountains, California Introduction We have developed a real-time SWE estimation scheme based on historical SWE reconstructions

More information

MSG/SEVIRI AND METOP/AVHRR SNOW EXTENT PRODUCTS IN H-SAF

MSG/SEVIRI AND METOP/AVHRR SNOW EXTENT PRODUCTS IN H-SAF MSG/SEVIRI AND METOP/AVHRR SNOW EXTENT PRODUCTS IN H-SAF Niilo Siljamo, Otto Hyvärinen Finnish Meteorological Institute, Erik Palménin aukio 1, Helsinki, Finland Abstract Weather and meteorological processes

More information

SIMULATION OF SPACEBORNE MICROWAVE RADIOMETER MEASUREMENTS OF SNOW COVER FROM IN-SITU DATA AND EMISSION MODELS

SIMULATION OF SPACEBORNE MICROWAVE RADIOMETER MEASUREMENTS OF SNOW COVER FROM IN-SITU DATA AND EMISSION MODELS SIMULATION OF SPACEBORNE MICROWAVE RADIOMETER MEASUREMENTS OF SNOW COVER FROM IN-SITU DATA AND EMISSION MODELS Anna Kontu 1 and Jouni Pulliainen 1 1. Finnish Meteorological Institute, Arctic Research,

More information

VALIDATION OF A METHOD FOR SNOW COVER EXTENT MONITORING OVER QUEBEC (CANADA) USING NOAA-AVHRR DATA

VALIDATION OF A METHOD FOR SNOW COVER EXTENT MONITORING OVER QUEBEC (CANADA) USING NOAA-AVHRR DATA EARSeL eproceedings 4, 1/2005 106 VALIDATION OF A METHOD FOR SNOW COVER EXTENT MONITORING OVER QUEBEC (CANADA) USING NOAA-AVHRR DATA Karem Chokmani 1, Monique Bernier 1 and Michel Slivitzky 2 1. INRS-ETE,

More information

H-SAF future developments on Convective Precipitation Retrieval

H-SAF future developments on Convective Precipitation Retrieval H-SAF future developments on Convective Precipitation Retrieval Francesco Zauli 1, Daniele Biron 1, Davide Melfi 1, Antonio Vocino 1, Massimiliano Sist 2, Michele De Rosa 2, Matteo Picchiani 2, De Leonibus

More information

NESDIS Global Automated Satellite Snow Product: Current Status and Recent Results Peter Romanov

NESDIS Global Automated Satellite Snow Product: Current Status and Recent Results Peter Romanov NESDIS Global Automated Satellite Snow Product: Current Status and Recent Results Peter Romanov NOAA-CREST, City University of New York (CUNY) Center for Satellite Applications and Research (STAR), NOAA/NESDIS

More information

ADVANCEMENTS IN SNOW MONITORING

ADVANCEMENTS IN SNOW MONITORING Polar Space Task Group ADVANCEMENTS IN SNOW MONITORING Thomas Nagler, ENVEO IT GmbH, Innsbruck, Austria Outline Towards a pan-european Multi-sensor Snow Product SnowPEx Summary Upcoming activities SEOM

More information

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean C. Marty, R. Storvold, and X. Xiong Geophysical Institute University of Alaska Fairbanks, Alaska K. H. Stamnes Stevens Institute

More information

Intercomparison of Snow Extent Products from Earth Observation Data

Intercomparison of Snow Extent Products from Earth Observation Data Intercomparison of Snow Extent Products from Earth Observation Data, Elisabeth Ripper, Gabriele Bippus, Helmut Rott FMI Richard Fernandes Kari Luojus Sari Metsämäki Dorothy Hall David Robinson Bojan Bojkov

More information

SNOW COVER MAPPING USING METOP/AVHRR DATA

SNOW COVER MAPPING USING METOP/AVHRR DATA SNOW COVER MAPPING USING METOP/AVHRR DATA Niilo Siljamo, Markku Suomalainen, Otto Hyvärinen Finnish Meteorological Institute, Erik Palménin Aukio 1, FI-00101 Helsinki, Finland Abstract LSA SAF snow cover

More information

Snowcover along elevation gradients in the Upper Merced and Tuolumne River basin of the Sierra Nevada of California from MODIS and blended ground data

Snowcover along elevation gradients in the Upper Merced and Tuolumne River basin of the Sierra Nevada of California from MODIS and blended ground data Snowcover along elevation gradients in the Upper Merced and Tuolumne River basin of the Sierra Nevada of California from MODIS and blended ground data Robert Rice a, Roger Bales a, Thomas H. Painter b,

More information

A satellite-based long-term Land Surface Temperature Climate Data Record

A satellite-based long-term Land Surface Temperature Climate Data Record Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss A satellite-based long-term Land Surface Temperature Climate Data Record, Virgílio A. Bento, Frank M. Göttsche,

More information

Studying snow cover in European Russia with the use of remote sensing methods

Studying snow cover in European Russia with the use of remote sensing methods 40 Remote Sensing and GIS for Hydrology and Water Resources (IAHS Publ. 368, 2015) (Proceedings RSHS14 and ICGRHWE14, Guangzhou, China, August 2014). Studying snow cover in European Russia with the use

More information

Remote sensing of snow at SYKE Sari Metsämäki

Remote sensing of snow at SYKE Sari Metsämäki Remote sensing of snow at SYKE 2011-01-21 Sari Metsämäki Activities in different projects Snow extent product in ESA DUE-project GlobSnow Long term datasets (15-30 years) on Snow Extent (SE) and Snow Water

More information

OSSE to infer the impact of Arctic AMVs extracted from highly elliptical orbit imagery

OSSE to infer the impact of Arctic AMVs extracted from highly elliptical orbit imagery OSSE to infer the impact of Arctic AMVs extracted from highly elliptical orbit imagery L. Garand 1 Y. Rochon 1, S. Heilliette 1, J. Feng 1, A.P. Trishchenko 2 1 Environment Canada, 2 Canada Center for

More information

Comparison of cloud statistics from Meteosat with regional climate model data

Comparison of cloud statistics from Meteosat with regional climate model data Comparison of cloud statistics from Meteosat with regional climate model data R. Huckle, F. Olesen, G. Schädler Institut für Meteorologie und Klimaforschung, Forschungszentrum Karlsruhe, Germany (roger.huckle@imk.fzk.de

More information

Real Time Snow Water Equivalent (SWE) Simulation March 29, 2015 Sierra Nevada Mountains, California

Real Time Snow Water Equivalent (SWE) Simulation March 29, 2015 Sierra Nevada Mountains, California Real Time Snow Water Equivalent (SWE) Simulation March 29, 2015 Sierra Nevada Mountains, California Introduction We have developed a real-time SWE estimation scheme based on historical SWE reconstructions

More information

Reduction of Cloud Obscuration in the MODIS Snow Data Product

Reduction of Cloud Obscuration in the MODIS Snow Data Product 59th EASTERN SNOW CONFERENCE Stowe, Vermont USA 2002 Reduction of Cloud Obscuration in the MODIS Snow Data Product GEORGE RIGGS 1 AND DOROTHY K. HALL 2 ABSTRACT A challenging problem in snow mapping is

More information

Central Asia Regional Flash Flood Guidance System 4-6 October Hydrologic Research Center A Nonprofit, Public-Benefit Corporation

Central Asia Regional Flash Flood Guidance System 4-6 October Hydrologic Research Center A Nonprofit, Public-Benefit Corporation http://www.hrcwater.org Central Asia Regional Flash Flood Guidance System 4-6 October 2016 Hydrologic Research Center A Nonprofit, Public-Benefit Corporation FFGS Snow Components Snow Accumulation and

More information

Cloud analysis from METEOSAT data using image segmentation for climate model verification

Cloud analysis from METEOSAT data using image segmentation for climate model verification Cloud analysis from METEOSAT data using image segmentation for climate model verification R. Huckle 1, F. Olesen 2 Institut für Meteorologie und Klimaforschung, 1 University of Karlsruhe, 2 Forschungszentrum

More information

ENHANCED SNOW COVER ALGORITHM BASED ON 250 M MODIS IMAGES FOR MONITORING TEMPORAL AND SPATIAL CHANGES IN THE MOUNTAIN AREAS

ENHANCED SNOW COVER ALGORITHM BASED ON 250 M MODIS IMAGES FOR MONITORING TEMPORAL AND SPATIAL CHANGES IN THE MOUNTAIN AREAS 1st Internationational Satellite Snow Product Intercomparison Workshop, 21-23 July College Park, MD ENHANCED SNOW COVER ALGORITHM BASED ON 250 M MODIS IMAGES FOR MONITORING TEMPORAL AND SPATIAL CHANGES

More information

Cloud Masking for Remotely Sensed Data Using Spectral and Principal Components Analysis

Cloud Masking for Remotely Sensed Data Using Spectral and Principal Components Analysis ETASR - Engineering, Technology & Applied Science Research Vol. 2, o. 3, 2012, 221-225 221 Cloud Masking for Remotely Sensed Data Using Spectral and Principal Components Analysis Asmala Ahmad Faculty of

More information

LANDSAF SNOW COVER MAPPING USING MSG/SEVIRI DATA

LANDSAF SNOW COVER MAPPING USING MSG/SEVIRI DATA LANDSAF SNOW COVER MAPPING USING MSG/SEVIRI DATA Niilo Siljamo and Otto Hyvärinen Finnish Meteorological Institute, Erik Palménin aukio 1, P.O.Box 503, FI-00101 Helsinki, Finland Abstract Land Surface

More information

Fog Detection(FOG) Algorithm Theoretical Basis Document

Fog Detection(FOG) Algorithm Theoretical Basis Document (FOG) (FOG-v1.0) NMSC/SCI/ATBD/FOG, Issue 1, rev.0 2012.12.12 National Meteorological Satellite Center REPORT SIGNATURE TABLE National Meteorological Satellite Center DOCUMENT CHANGE RECORD National Meteorological

More information

ESTIMATION OF ATMOSPHERIC COLUMN AND NEAR SURFACE WATER VAPOR CONTENT USING THE RADIANCE VALUES OF MODIS

ESTIMATION OF ATMOSPHERIC COLUMN AND NEAR SURFACE WATER VAPOR CONTENT USING THE RADIANCE VALUES OF MODIS ESTIMATION OF ATMOSPHERIC COLUMN AND NEAR SURFACE WATER VAPOR CONTENT USIN THE RADIANCE VALUES OF MODIS M. Moradizadeh a,, M. Momeni b, M.R. Saradjian a a Remote Sensing Division, Centre of Excellence

More information

ESTIMATING SNOWMELT CONTRIBUTION FROM THE GANGOTRI GLACIER CATCHMENT INTO THE BHAGIRATHI RIVER, INDIA ABSTRACT INTRODUCTION

ESTIMATING SNOWMELT CONTRIBUTION FROM THE GANGOTRI GLACIER CATCHMENT INTO THE BHAGIRATHI RIVER, INDIA ABSTRACT INTRODUCTION ESTIMATING SNOWMELT CONTRIBUTION FROM THE GANGOTRI GLACIER CATCHMENT INTO THE BHAGIRATHI RIVER, INDIA Rodney M. Chai 1, Leigh A. Stearns 2, C. J. van der Veen 1 ABSTRACT The Bhagirathi River emerges from

More information

Improving the CALIPSO VFM product with Aqua MODIS measurements

Improving the CALIPSO VFM product with Aqua MODIS measurements University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln NASA Publications National Aeronautics and Space Administration 2010 Improving the CALIPSO VFM product with Aqua MODIS measurements

More information

VALIDATION OF THE OSI SAF RADIATIVE FLUXES

VALIDATION OF THE OSI SAF RADIATIVE FLUXES VALIDATION OF THE OSI SAF RADIATIVE FLUXES Pierre Le Borgne, Gérard Legendre, Anne Marsouin Météo-France/DP/Centre de Météorologie Spatiale BP 50747, 22307 Lannion, France Abstract The Ocean and Sea Ice

More information

Determination of the NDSI index and cloud mask algorithm (The Case Study: Sepidan Region, Iran)

Determination of the NDSI index and cloud mask algorithm (The Case Study: Sepidan Region, Iran) 2012 International Conference on Future Environment and Energy IPCBEE vol.28(2012) (2012)IACSIT Press, Singapoore Determination of the NDSI index and cloud mask algorithm (The Case Study: Sepidan Region,

More information

Examples on Sentinel data applications in Finland, possibilities, plans and how NSDC will be utilized - Snow

Examples on Sentinel data applications in Finland, possibilities, plans and how NSDC will be utilized - Snow Examples on Sentinel data applications in Finland, possibilities, plans and how NSDC will be utilized - Snow Kari Luojus, Jouni Pulliainen, Jyri Heilimo, Matias Takala, Juha Lemmetyinen, Ali Arslan, Timo

More information

"Experiences with use of EUMETSAT MPEF GII product for convection/storm nowcasting"

Experiences with use of EUMETSAT MPEF GII product for convection/storm nowcasting "Experiences with use of EUMETSAT MPEF GII product for convection/storm nowcasting" Marianne König 1, Monika Pajek 2, Piotr Struzik 2 1) EUMETSAT 2) Institute of Meteorology and Water Management, Kraków,

More information

OPERATIONAL CLOUD MASKING FOR THE OSI SAF GLOBAL METOP/AVHRR SST PRODUCT

OPERATIONAL CLOUD MASKING FOR THE OSI SAF GLOBAL METOP/AVHRR SST PRODUCT OPERATIONAL CLOUD MASKING FOR THE OSI SAF GLOBAL METOP/AVHRR SST PRODUCT Lydie Lavanant, Philippe Marguinaud Loic Harang, Jérôme Lelay, Sonia Péré, Sabine Philippe Météo-France / DP / Centre de Météorologie

More information

MODIS snow cover mapping accuracy in a small mountain catchment comparison between open and forest sites

MODIS snow cover mapping accuracy in a small mountain catchment comparison between open and forest sites doi:10.5194/hess-16-2365-2012 Author(s) 2012. CC Attribution 3.0 License. Hydrology and Earth System Sciences MODIS snow cover mapping accuracy in a small mountain catchment comparison between open and

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

H-SAF Snow products and their use in applications. Matias Takala

H-SAF Snow products and their use in applications. Matias Takala H-SAF Snow products and their use in applications Matias Takala Matias.takala@fmi.fi H-SAF snow products H-SAF: EUMETSAT funded satellite application facility (SAF) for Support to Operational Hydrology

More information

Judit Kerényi. OMSZ-Hungarian Meteorological Service P.O.Box 38, H-1525, Budapest Hungary Abstract

Judit Kerényi. OMSZ-Hungarian Meteorological Service P.O.Box 38, H-1525, Budapest Hungary Abstract Comparison of the precipitation products of Hydrology SAF with the Convective Rainfall Rate of Nowcasting-SAF and the Multisensor Precipitation Estimate of EUMETSAT Judit Kerényi OMSZ-Hungarian Meteorological

More information

Fact Sheet on Snow Hydrology Products in GIN. SWE Maps

Fact Sheet on Snow Hydrology Products in GIN. SWE Maps Fact Sheet on Snow Hydrology Products in GIN SWE Maps Description The snow water equivalent maps (SWE maps) present an estimation of the distribution of snow water resources in Switzerland. The maps have

More information

Modelling snow accumulation and snow melt in a continuous hydrological model for real-time flood forecasting

Modelling snow accumulation and snow melt in a continuous hydrological model for real-time flood forecasting IOP Conference Series: Earth and Environmental Science Modelling snow accumulation and snow melt in a continuous hydrological model for real-time flood forecasting To cite this article: Ph Stanzel et al

More information

IMPORTANCE OF SATELLITE DATA (FOR REANALYSIS AND BEYOND) Jörg Schulz EUMETSAT

IMPORTANCE OF SATELLITE DATA (FOR REANALYSIS AND BEYOND) Jörg Schulz EUMETSAT IMPORTANCE OF SATELLITE DATA (FOR REANALYSIS AND BEYOND) Jörg Schulz EUMETSAT Why satellite data for climate monitoring? Global coverage Global consistency, sometimes also temporal consistency High spatial

More information

NESDIS Global Automated Satellite Snow Product: Current Status and Planned Upgrades Peter Romanov

NESDIS Global Automated Satellite Snow Product: Current Status and Planned Upgrades Peter Romanov NESDIS Global Automated Satellite Snow Product: Current Status and Planned Upgrades Peter Romanov NOAA-CREST, City University of New York (CUNY) Center for Satellite Applications and Research (STAR), NOAA/NESDIS

More information

Application of a Land Surface Temperature Validation Protocol to AATSR data. Dar ren Ghent1, Fr ank Göttsche2, Folke Olesen2 & John Remedios1

Application of a Land Surface Temperature Validation Protocol to AATSR data. Dar ren Ghent1, Fr ank Göttsche2, Folke Olesen2 & John Remedios1 Application of a Land Surface Temperature Validation Protocol to AATSR data Dar ren Ghent1, Fr ank Göttsche, Folke Olesen & John Remedios1 1 E a r t h O b s e r v a t i o n S c i e n c e, D e p a r t m

More information

MSG system over view

MSG system over view MSG system over view 1 Introduction METEOSAT SECOND GENERATION Overview 2 MSG Missions and Services 3 The SEVIRI Instrument 4 The MSG Ground Segment 5 SAF Network 6 Conclusions METEOSAT SECOND GENERATION

More information

Estimation of snow cover over large mountainous areas using Radarsat ScanSAR

Estimation of snow cover over large mountainous areas using Radarsat ScanSAR Remote Sensing and Hydrology 2000 (Proceedings of a symposium held at Santa Fe, New Mexico, USA, April 2000). IAHS Publ. no. 267, 2001. 333 Estimation of snow cover over large mountainous areas using Radarsat

More information

Long-Term Time Series of Water Vapour Total Columns from GOME, SCIAMACHY and GOME-2

Long-Term Time Series of Water Vapour Total Columns from GOME, SCIAMACHY and GOME-2 Graphics: ESA Graphics: ESA Graphics: ESA Long-Term Time Series of Water Vapour Total Columns from GOME, SCIAMACHY and GOME-2 S. Noël, S. Mieruch, H. Bovensmann, J. P. Burrows Institute of Environmental

More information

(1) AEMET (Spanish State Meteorological Agency), Demóstenes 4, Málaga, Spain ABSTRACT

(1) AEMET (Spanish State Meteorological Agency), Demóstenes 4, Málaga, Spain ABSTRACT COMPARISON OF GROUND BASED GLOBAL RADIATION MEASUREMENTS FROM AEMET RADIATION NETWORK WITH SIS (SURFACE INCOMING SHORTWAVE RADIATION) FROM CLIMATE MONITORING-SAF Juanma Sancho1, M. Carmen Sánchez de Cos1,

More information

Real Time (RT) Snow Water Equivalent (SWE) Simulation May 11, 2014 Sierra Nevada Mountains, California

Real Time (RT) Snow Water Equivalent (SWE) Simulation May 11, 2014 Sierra Nevada Mountains, California Real Time (RT) Snow Water Equivalent (SWE) Simulation May 11, 2014 Sierra Nevada Mountains, California Abstract On May 11 th, percent of average SWE values for this date have shown an increase (see note

More information

A statistical approach for rainfall confidence estimation using MSG-SEVIRI observations

A statistical approach for rainfall confidence estimation using MSG-SEVIRI observations A statistical approach for rainfall confidence estimation using MSG-SEVIRI observations Elisabetta Ricciardelli*, Filomena Romano*, Nico Cimini*, Frank Silvio Marzano, Vincenzo Cuomo* *Institute of Methodologies

More information

THE USE OF MERIS SPECTROMETER DATA IN SEASONAL SNOW MAPPING

THE USE OF MERIS SPECTROMETER DATA IN SEASONAL SNOW MAPPING THE USE OF MERIS SPECTROMETER DATA IN SEASONAL SNOW MAPPING Miia Eskelinen, Sari Metsämäki The Finnish Environment Institute Geoinformatics and Land use division P.O.Box 140, FI 00251 Helsinki, Finland

More information

LAND SURFACE TEMPERATURE VALIDATION WITH IN SITU MEASUREMENTS

LAND SURFACE TEMPERATURE VALIDATION WITH IN SITU MEASUREMENTS LAND SURFACE TEMPERATURE VALIDATION WITH IN SITU MEASUREMENTS Group 7 Juan Manuel González Cantero Irene Grimaret Rincón Alex Webb Advisor: Darren Ghent Research problem The project task is to design an

More information

LAND SURFACE ALBEDO AND DOWNWELLING SHORTWAVE RADIATION FROM MSG GEOSTATIONARY SATELLITE (METHOD FOR RETRIEVAL, VALIDATION, AND APPLICATION)

LAND SURFACE ALBEDO AND DOWNWELLING SHORTWAVE RADIATION FROM MSG GEOSTATIONARY SATELLITE (METHOD FOR RETRIEVAL, VALIDATION, AND APPLICATION) LAND SURFACE ALBEDO AND DOWNWELLING SHORTWAVE RADIATION FROM MSG GEOSTATIONARY SATELLITE (METHOD FOR RETRIEVAL, VALIDATION, AND APPLICATION) Dominique Carrer, Jean-Louis Roujean, Olivier Hautecoeur, Jean-Christophe

More information

H SAF SATELLITE APPLICATION FACILITY ON SUPPORT TO OPERATIONAL HYDROLOGY AND WATER MANAGEMENT EUMETSAT NETWORK OF SATELLITE APPLICATION FACILITIES

H SAF SATELLITE APPLICATION FACILITY ON SUPPORT TO OPERATIONAL HYDROLOGY AND WATER MANAGEMENT EUMETSAT NETWORK OF SATELLITE APPLICATION FACILITIES H SAF SATELLITE APPLICATION FACILITY ON SUPPORT TO OPERATIONAL HYDROLOGY AND WATER MANAGEMENT EUMETSAT NETWORK OF SATELLITE APPLICATION FACILITIES H-SAF: SATELLITE PRODUCTS FOR OPERATIONAL HYDROLOGY H-SAF

More information

Validation of NOAA Interactive Snow Maps in the North American region with National Climatic Data Center Ground-based Data

Validation of NOAA Interactive Snow Maps in the North American region with National Climatic Data Center Ground-based Data City University of New York (CUNY) CUNY Academic Works Master's Theses City College of New York 2011 Validation of NOAA Interactive Snow Maps in the North American region with National Climatic Data Center

More information

MONITORING THE SURFACE HEAT ISLAND (SHI) EFFECTS OF INDUSTRIAL ENTERPRISES

MONITORING THE SURFACE HEAT ISLAND (SHI) EFFECTS OF INDUSTRIAL ENTERPRISES MONITORING THE SURFACE HEAT ISLAND (SHI) EFFECTS OF INDUSTRIAL ENTERPRISES A. Şekertekin a, *, Ş. H. Kutoglu a, S. Kaya b, A. M. Marangoz a a BEU, Engineering Faculty, Geomatics Engineering Department

More information

MAPPING NATURAL SURFACE UV RADIATION WITH MSG: MAPS SERIES IN SPRING 2004, COMPARISON WITH METEOSAT DERIVED RESULTS AND REFERENCE MEASUREMENTS

MAPPING NATURAL SURFACE UV RADIATION WITH MSG: MAPS SERIES IN SPRING 2004, COMPARISON WITH METEOSAT DERIVED RESULTS AND REFERENCE MEASUREMENTS MAPPING NATURAL SURFACE UV RADIATION WITH MSG: MAPS SERIES IN SPRING 2004, COMPARISON WITH METEOSAT DERIVED RESULTS AND REFERENCE MEASUREMENTS Jean Verdebout & Julian Gröbner European Commission - Joint

More information

CHARACTERISATION OF STORM SEVERITY BY USE OF SELECTED CONVECTIVE CELL PARAMETERS DERIVED FROM SATELLITE DATA

CHARACTERISATION OF STORM SEVERITY BY USE OF SELECTED CONVECTIVE CELL PARAMETERS DERIVED FROM SATELLITE DATA CHARACTERISATION OF STORM SEVERITY BY USE OF SELECTED CONVECTIVE CELL PARAMETERS DERIVED FROM SATELLITE DATA Piotr Struzik Institute of Meteorology and Water Management, Satellite Remote Sensing Centre

More information

SAFNWC/MSG Dust flag.

SAFNWC/MSG Dust flag. SAFNWC/MSG Dust flag. Dust Week 1-5 March 2010 Hervé LE GLEAU, Marcel DERRIEN Centre de météorologie Spatiale. Lannion Météo-France 1 Plan SAFNWC context Dust flag in SAFNWC/MSG Cma product Algorithm description

More information

MAIN ATTRIBUTES OF THE PRECIPITATION PRODUCTS DEVELOPED BY THE HYDROLOGY SAF PROJECT RESULTS OF THE VALIDATION IN HUNGARY

MAIN ATTRIBUTES OF THE PRECIPITATION PRODUCTS DEVELOPED BY THE HYDROLOGY SAF PROJECT RESULTS OF THE VALIDATION IN HUNGARY MAIN ATTRIBUTES OF THE PRECIPITATION PRODUCTS DEVELOPED BY THE HYDROLOGY SAF PROJECT RESULTS OF THE VALIDATION IN HUNGARY Eszter Lábó OMSZ-Hungarian Meteorological Service, Budapest, Hungary labo.e@met.hu

More information

STATUS OF JAPANESE METEOROLOGICAL SATELLITES AND RECENT ACTIVITIES OF MSC

STATUS OF JAPANESE METEOROLOGICAL SATELLITES AND RECENT ACTIVITIES OF MSC STATUS OF JAPANESE METEOROLOGICAL SATELLITES AND RECENT ACTIVITIES OF MSC Daisaku Uesawa Meteorological Satellite Center, Japan Meteorological Agency Abstract MTSAT-1R is the current operational Japanese

More information

OSI SAF SST Products and Services

OSI SAF SST Products and Services OSI SAF SST Products and Services Pierre Le Borgne Météo-France/DP/CMS (With G. Legendre, A. Marsouin, S. Péré, S. Philippe, H. Roquet) 2 Outline Satellite IR radiometric measurements From Brightness Temperatures

More information

NEW OSI SAF SST GEOSTATIONARY CHAIN VALIDATION RESULTS

NEW OSI SAF SST GEOSTATIONARY CHAIN VALIDATION RESULTS NEW OSI SAF SST GEOSTATIONARY CHAIN VALIDATION RESULTS Anne Marsouin, Pierre Le Borgne, Gérard Legendre, Sonia Péré Météo-France/DP/Centre de Météorologie Spatiale BP 50747, 22307 Lannion, France Abstract

More information

Land Surface Temperature in the EUMETSAT LSA SAF: Current Service and Perspectives. Isabel Trigo

Land Surface Temperature in the EUMETSAT LSA SAF: Current Service and Perspectives. Isabel Trigo Land Surface Temperature in the EUMETSAT LSA SAF: Current Service and Perspectives Isabel Trigo Outline EUMETSAT Land-SAF: Land Surface Temperature Geostationary Service SEVIRI Polar-Orbiter AVHRR/Metop

More information

A high spectral resolution global land surface infrared emissivity database

A high spectral resolution global land surface infrared emissivity database A high spectral resolution global land surface infrared emissivity database Eva E. Borbas, Robert O. Knuteson, Suzanne W. Seemann, Elisabeth Weisz, Leslie Moy, and Hung-Lung Huang Space Science and Engineering

More information

INTERCOMPARISON OF METEOSAT-8 DERIVED LST WITH MODIS AND AATSR SIMILAR PRODUCTS

INTERCOMPARISON OF METEOSAT-8 DERIVED LST WITH MODIS AND AATSR SIMILAR PRODUCTS INTERCOMPARISON OF METEOSAT-8 DERIVED LST WITH MODIS AND AATSR SIMILAR PRODUCTS Cristina Madeira, Prasanjit Dash, Folke Olesen, and Isabel Trigo, Instituto de Meteorologia, Rua C- Aeroporto, 700-09 Lisboa,

More information

MODIS snow-cover products

MODIS snow-cover products Remote Sensing of Environment 83 (2002) 181 194 www.elsevier.com/locate/rse MODIS snow-cover products Dorothy K. Hall a, *, George A. Riggs b, Vincent V. Salomonson c, Nicolo E. DiGirolamo b, Klaus J.

More information

View angle effects on MODIS snow mapping in forests

View angle effects on MODIS snow mapping in forests University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications, Agencies and Staff of the U.S. Department of Commerce U.S. Department of Commerce 2012 View angle effects

More information

ESA GlobSnow - project overview

ESA GlobSnow - project overview ESA GlobSnow - project overview GCW 1 st Implementation meeting Geneve, 23 Nov. 2011 K. Luojus & J. Pulliainen (FMI) + R. Solberg (NR) Finnish Meteorological Institute 1.12.2011 1 ESA GlobSnow ESA-GlobSnow

More information

The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models

The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models Journal of Hydrology (2) 35, 2 25 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/jhydrol The value of MODIS snow cover data in validating and calibrating conceptual hydrologic

More information

The use of the high resolution visible in SAFNWC/MSG cloud mask

The use of the high resolution visible in SAFNWC/MSG cloud mask The use of the high resolution visible in SAFNWC/MSG cloud mask Marcel Derrien, Herve Le Gleau, Marie-Paule Raoul To cite this version: Marcel Derrien, Herve Le Gleau, Marie-Paule Raoul. The use of the

More information

C o p e r n i c u s L a n d M o n i t o r i n g S e r v i c e

C o p e r n i c u s L a n d M o n i t o r i n g S e r v i c e C o p e r n i c u s L a n d M o n i t o r i n g S e r v i c e Integration into existing Snow and Ice Services and draft product specifications Annett BARTSCH b.geos Copernicus High Resolution Snow and

More information

Defining microclimates on Long Island using interannual surface temperature records from satellite imagery

Defining microclimates on Long Island using interannual surface temperature records from satellite imagery Defining microclimates on Long Island using interannual surface temperature records from satellite imagery Deanne Rogers*, Katherine Schwarting, and Gilbert Hanson Dept. of Geosciences, Stony Brook University,

More information