COMBINED USE OF MSG IMAGES, PRODUCTS AND OTHER DATA FOR OPERATIONAL FORECASTING AT AEMET-SPAIN: APPLICATIONS TO FOG AND IN-FLIGHT AVIATION

Size: px
Start display at page:

Download "COMBINED USE OF MSG IMAGES, PRODUCTS AND OTHER DATA FOR OPERATIONAL FORECASTING AT AEMET-SPAIN: APPLICATIONS TO FOG AND IN-FLIGHT AVIATION"

Transcription

1 COMBINED USE OF MSG IMAGES, PRODUCTS AND OTHER DATA FOR OPERATIONAL FORECASTING AT AEMET-SPAIN: APPLICATIONS TO FOG AND IN-FLIGHT AVIATION José Miguel Fernández-Serdán ATAP/AEMet, c/leonardo Prieto Castro 8, Madrid, Spain Abstract For many years forecasters mostly used METEOSAT images, IR, VIS, and WV. MSG is providing new channels, and many products are now available to the meteorological community, as those in the Satellite Application Facility in support to Nowcasting (SAFNWC) 1. But in order to have these actually used, it is important to both, propose them in an attractive way and be able to determine adequate field-oriented displays and products. Some are described in this paper, part or to be part of the intranet pages for access to real time data and products from any AEMet location. A real-time visualisation combining Cloud Type (CT) product, IR window channel, and in-situ observations, has proven to be useful to monitor and nowcast fog coverage. Night-time, and at twilight when CT performs worse, channel-differences are also displayed. As the vertical description provided by CT is too coarse, the use of Cloud Top Temperature and Height (CTTH) SAFNWC product and terrain elevation is being checked to refine description of the layer of potential fog. Observation of phenomena affecting in-flight aviation, as icing, is a challenge: no or no distribution of aircraft reports over Europe, no products as cloud water phase by now proposed by the SAFNWC. At AEMet a well known product developed for GOES (ICECAP), has been adapted to MSG and is displayed to aviation forecasters, with addition of CTTH, CT and NWP information. The product is kept close to ICECAP (checked where both satellites overlap, in the Atlantic), which is available in the web with coincident observations over the USA: this has allowed to set-in some indirect, provisional, subjective verification method. APPLICATIONS TO THE MONITORING (AND NOWCASTING) OF FOG OR REDUCED VISIBILITY MSGlow-twl : Display of channels and channel-differences for day/night and night/day transitions: Use of satellite information is more critical in twilight conditions. Derived cloud products fail to detect part of the low cloudiness for one or more MSG time-slots, despite improvement in version 1.4/2008 of SAFNWC cloud products. Day-time visible channels (HRV as the most interesting) are useful but few illuminated. The well known IR3.9-IR10.8 channel difference, displayed night-time as a complement to CTlow (see next), can be useful despite affected by some reflected sunlight. MSGlow-twl, proposed around twilight to ensure continuity in fog monitoring, shows simultaneously 4 panels: 2 enhanced channel differences (IR3.9-IR10.8, IR8.7-IR10.8), VIS06 and sun-normalised VIS0.6. Sequence of last 4 images (one hour) with superimposed METAR observations. Low cloudiness in IR8.7-IR10.8 channel difference is known to give similar response (even though less intense) than IR3.9-IR10.8 nigh-time, and as IR8.7 is pure thermal channel, it ensures day/night continuity. Nevertheless, some (bare) soils give response similar to low cloud, varying along the year,

2 sometimes confusing (e.g. in the N. Plateau of Spain in winter, where and when thick fog is far from rare). Figure 1: MSGlow-twl display, 17/08/08 5:15z. Left to right and up to down: IR3.9 dif. + METAR most recent observations (locations with an available observation in green, present weather in yellow, and visibility but only plotted where less than 3km, not observed here); IR8.7 dif.; VIS0.6 and VIS0.6 norm. Low cloudiness covers the northern coastal regions, yet at this time only partially detected at 3.9 difference ; 8.7 difference slightly noisy but useful in this summer example (after rainy spring and early summer, no or almost no confusing bare-soil signatures, that are more common in winter). CTlow visualisation combining Cloud Type (CT) product, IR window channel, and in-situ observations: Of the SAFNWC CT (PGE02) product, only very low, low and broken cloudiness classes are displayed, as these should include any potential fog. Elsewhere, the IR10.8 channel image is shown, as it gives information on synoptic and surrounding cloudiness context, ground cooling, etc. IR10.8 also modulates colour intensity in the selected CT classes, as this is sometimes useful for space and time considerations on cloud (or fog) thickness or cloud top heating. Other features in the display (in the intranet page) are: overlay of updated relevant in-situ observations (SYNOP, METAR), to confirm the existence of fog at some point and for coverage considerations at local scale. And a sequence that could be animated of the last 4 images (one hour), to help discriminating moving/non moving cloudiness and for details in the evolution of candidate cloudiness (e.g. dissipating edges).

3 CTlow has proven useful to monitor and nowcast fog coverage. But some limitations come from the CT product itself: poor vertical resolution and inversions not resolved, ground elevation not considered, etc. And of course, nothing is known about cloud base (information is just for its top). Figure 2: CTlow product for 1/07/08 at 7:45z. IR10.8 image for CT classes separately: very low (reddish tone), low (yellowish), broken (bluish), other (black and white). Low and very low cloudiness, pre-frontal (northern coast) or related to the front, is seen in CTlow product, but without much detail, see also comments to fig. 4. CTTHlow product, complementary to CTlow, with Cloud Top Temperature and Height (CTTH), and ground elevation information: In order to overcome CT weaknesses due to poor vertical resolution, and better manage ground elevation, a product using the geo-potential in SAFNWC CTTH (PGE03) product, and an elevation database, has been developed and is under testing. The database is at an initial resolution around 1km and is pre-processed to derive mean, maximum, and gap (maximum-minimum) elevation at the basic 3km resolution of MSG and of course CTTH. CTTHlow is the difference [CTTH - maximum elevation 3x3km 2 ], shown in colour in the range to 1000m (cold colours for negative or around 0 values, white around 200m, warm colours other positive ): in most cases (except for very thick fog, or deep valleys), the cloud presumed to be really fog, locates around the central values of the range (, green, white, yellow ). Of course there is a dependence on local topography, for example, a thin layer of radiation fog will have slightly positive values (white, yellow) over a fairly flat terrain, but increasingly negative as the elevation gap increases, as CTTHlow is referred to the maximum elevation. And topography has an influence in the occurrence, persistence, evolution, etc., of fog. Thus, additional mouse-driven roaming windows, for the mean and gap elevation, see figures, are part of the CTTHlow display.

4 Figure 3: CTTHlow product display, same time of fig. 2. Product is [CTTH m ax. elev.], colour scale as indicated, IR10.8 where no cloud or above 1000m ; and broken cloudiness in product CT (maroon) for which CTTH is not known. Right side boxes are for mean topography (up, in usual colours) and gap elevation (down, same 0 or negative colourscale part as for CTTHlow), both centred at the location indicated by the small squared empty box over product (here, north of Portugal). It is also shown the html/java frame with interactive -option buttons, the same or similar to already used for intranet operational display of CTlow and MSGlow_twl, proposed for CTTHlow still experimental. CTTHlow is routinely computed and checked on an experimental basis since spring 2008, and looks promising but more work on product characterisation is needed before operational use. Other display features are, by now, proposed as for CTlow: Filling with IR10.8 data, overlaid observations, and one hour sequences. Note some limitations in CTTH itself: it sometimes reflects processing done at segment resolution (somewhere rectangular aspect) and (intrinsically) the NWP model resolution. Some very low cloud pixels with erroneous CTTH_z = 0m, so are not colour enhanced in the display.

5 Figure 4: as in fig. 3, but buttons zoom ( Acercar ) and SYNOP/SHIP are activated (visibility in red if less than or equal to 1km - properly fog, in yellow from 1 to 3km; other criteria as for METAR in fig. 1). Fig. 2 to 4: frontal cloudiness reaches NW corner of the Iberian Peninsula. In CTTHlow (fig. 2 and 3), fog is likely to be found when cloud-tops slightly above, around or even below elevation maxima, i. e. very small patches in the north and mostly in the frontal cloudiness, in inner valleys (see elevation information), almost reaching the coast in its northern edge, where SYNOP observations (some 2h old anyway) confirmed the existence of fog. Figure 5: 6/08/08 at 6:30z. CTlow and SYNOP observations (left, colours as in fig. 2, SYNOP information as in fig. 4), CTTHlow (right, colour scale as in fig. 3). Fog more probable (in green, quite low cloud top) in SW of France (notice the grey hole due to bad CTTH assignment = 0m) and inner Spain (Ebro valley). Probability is lesser in coastal provinces of Spain and over sea (warm colours, higher cloud top).

6 Figure 6: 19/07/08 at 8:00z. CTlow (left), CTTHlow (right), SW of France. Despite the (2h old) observation, and the broad very low-level CT cloudiness, holes and the CTTHlow aspect suggest a rather elevated, dissipating pattern of (maybe, partly confirmed in fact by previous sequences) earlier fog, or St layer. AN APPLICATION TO THE MONITORING (AND NOWCASTING) OF ICING MSGicing product of cloud icing potential, and visualisation, with Cloud Type (CT) and Cloud Top Temperature and Height (CTTH) SAFNWC products and NWP information: Super-cooled liquid water cloud droplets could be harmful to lightweight aviation, when accumulating ice on aircraft surfaces. Icing forecast techniques using NWP fields are well known, but direct observations are difficult to collect (and are presently unavailable at AEMet over our region). A satellite-derived icing diagnostic could be useful for nowcasting purposes. Feasibility is prove n, given the sensitivity to various meteorological cloud-top parameters (temperature, water phase, liquid water path, effective radius), ingredients of icing, in channels similar to SEVIRI (Minnis, 2004, MSG products including icing but not in real time are shown in the NASA-Langley web page 2 ). These microphysical cloud properties must be computed in a quite complex chain, as could be the SAFNWC, unfortunately not or not yet providing but the cloud-top temperature. In AEMet instead, an existing, much more simple product developed by NOAA/NESDIS for GOES, ICECAP (Ellrod, 2007), has been adapted to MSG. Temperatures in CTTH product are used instead of IR10.8 channel for the temperature range check (-1º to -29º). Presently, thresholds for the IR3.9 channel-difference (the basic liquid-water discriminator), are: IR10.8-IR3.9 > 4.5º as night-time condition. IR3.9-IR10.8 > 5.5º as day-time condition. Either, in partly illuminated images. No semitransparent (ice) cloudiness check and removal is applied in MSGicing as is in ICECAP, since it could hide a lower (icing) cloud layer, but CT product detailed information on cirrus or semi transparency is displayed. Basic MSGicing display is CTTH flight-level for potentially icing cloud tops, plus fairly too cold (< -30º) cloudiness. Buttons for interactive display of complementary information are available: < -12º cloudiness, semitransparent clouds, NWP information (isotherms 0º and -12º, liquid water content in range 0º to -12º at different levels), other satellite data. It is computed hourly and a 5h sequence is available to ensure continuity (e.g. through day and night transitions).

7 Figure 7: 16/07/08 at 8:45. MSGicing product in flight-level (vertical colour scale) with some options activated: cloud tops colder than -12º (in grey), opaque, plus CT semi transparent cloudiness (3 blue classes, the darker the more transparent, plus daytime- Ci with other cloudiness underneath, turquoise). Isolines for NWP icing product at flightlevels 130 (yellow) and 180 (green), HIRLAM model, 0:00z run valid at 9:00z. Interpretation: most of the icing is certainly hidden below great part of the <-12º large cloudiness. But not over south of France and Gulf of Lion, semi transparent Ci/Cs for the most, as are spots in Spain and the SE image corner, where icing is less probable. NWP fields support icing over the Mediterranean, not in Africa nor in left to right cloudiness top of the image, where its possible presence has in consequence to be taken in mind. In theory, MSGicing tops masked by <-12º but not by <29º opaque cloudiness (part of the basic display not shown here as it is hidden by the <-12º overlay, but it was in fact the case in the frontal edge north of France, and in other smaller zones), would not represent significant icing since cloud reaches very cold temperatures, thus important presence of ice nuclei, known to strongly reduce cloud super-cooled content. Multilevel cloudiness (e.g. left-upper corner) is similar to opaque (but this class only available day-time, this cloudiness could have been confused with other types night-time, making the diagnostic more subject to error). 0º and -12º isotherms (not displayed) could provide some information on icing thickness. It has to be reminded that only potential icing at cloud top level is known, not actual depth, and just outside hidden (rather opaque or multilayer) too-cold tops; nor the icing intensity. And as no PIREP observations are by now available at AEMet, the product is not validated, or quite indirectly, see hereafter. MSGicing is kept close to GOES ICECAP: an ICECAP clone, and MSGicing, are being computed for comparison purposes in an MSG and GOES overlapping region over the Atlantic. And, PIREP observations being part of the display in ICECAP web page over the USA 3, some subjective, short verification was tried (2 periods of 30 days) and will certainly we repeated, more detailed, in the next future. Results by now (see also Ellrod, 2007), deemed also of some validity for Spain, were:

8 More than one half of the cases (and almost 2/3 in the warm season) of observed icing were correctly diagnosed by ICECAP. While only around 10% missed but the rest were doubtful (too cold cloudiness for MSGicing). The false alarm ratio was found to be large, more than 1/3 of cases. But observations of no icing are scarce, likely only transmitted when favourable conditions were expected. FINAL CONSIDERATIONS User oriented applications, as shown for fog and icing monitoring purposes are needed, but also new products and improvement in existing ones, for the SAFNWC products to be found fully useful in nowcasting. Other data, mainly observations, are needed for integration in the applications and also for validation and verification of products. Actions are started at AEMet to get more observations on visibility, and icing reports. In the fog applications, the replacement or complement at twilight of the IR8.7 channel difference (sometimes problematic) by the (improved) CT or CTlow product, to get a more complete overview, is being studied. As MSGicing product is too simple, and other products of interest are now possible from MSG, suggestions for new ones have been addressed to the SAFNWC on the occasion of its 2008 Survey. In the meantime, are also studied at AEMet the use of NIR1.6 channel daytime, and RGB adequate displays. REFERENCES Ellrod, G.P. and A.A. Bailey, 2007: Assessment of aircraft icing potential and maximum icing altitude from geostationary meteorological satellite data. Weather and Forecasting, 22, February 2007, pp Minnis, P., L. Nguyen, W. Smith Jr., J.J. Murray, R. Palikonda, M. Khaiyer, D.A. Spangenberg, P.W. Heck and Q.Z. Trepte, 2005: Near real-time satellite cloud products for nowcasting applications. Proceedings of WWRP Symposium on Nowcasting & Very Short Range Forecasting, Toulouse, France, 5-9 September SAFNWC web page: 2. NASA-Langley products web page: 3. NOAA/NESDIS ICECAP web page:

OBJECTIVE USE OF HIGH RESOLUTION WINDS PRODUCT FROM HRV MSG CHANNEL FOR NOWCASTING PURPOSES

OBJECTIVE USE OF HIGH RESOLUTION WINDS PRODUCT FROM HRV MSG CHANNEL FOR NOWCASTING PURPOSES OBJECTIVE USE OF HIGH RESOLUTION WINDS PRODUCT FROM HRV MSG CHANNEL FOR NOWCASTING PURPOSES José Miguel Fernández Serdán, Javier García Pereda Servicio de Técnicas de Análisis y Predicción, Servicio de

More information

USE OF SATELLITE INFORMATION IN THE HUNGARIAN NOWCASTING SYSTEM

USE OF SATELLITE INFORMATION IN THE HUNGARIAN NOWCASTING SYSTEM USE OF SATELLITE INFORMATION IN THE HUNGARIAN NOWCASTING SYSTEM Mária Putsay, Zsófia Kocsis and Ildikó Szenyán Hungarian Meteorological Service, Kitaibel Pál u. 1, H-1024, Budapest, Hungary Abstract The

More information

SAFNWC/MSG SEVIRI CLOUD PRODUCTS

SAFNWC/MSG SEVIRI CLOUD PRODUCTS SAFNWC/MSG SEVIRI CLOUD PRODUCTS M. Derrien and H. Le Gléau Météo-France / DP / Centre de Météorologie Spatiale BP 147 22302 Lannion. France ABSTRACT Within the SAF in support to Nowcasting and Very Short

More information

Improving real time observation and nowcasting RDT. E de Coning, M Gijben, B Maseko and L van Hemert Nowcasting and Very Short Range Forecasting

Improving real time observation and nowcasting RDT. E de Coning, M Gijben, B Maseko and L van Hemert Nowcasting and Very Short Range Forecasting Improving real time observation and nowcasting RDT E de Coning, M Gijben, B Maseko and L van Hemert Nowcasting and Very Short Range Forecasting Introduction Satellite Application Facilities (SAFs) are

More information

Validation Report for Precipitation products from Cloud Physical Properties (PPh-PGE14: PCPh v1.0 & CRPh v1.0)

Validation Report for Precipitation products from Cloud Physical Properties (PPh-PGE14: PCPh v1.0 & CRPh v1.0) Page: 1/26 Validation Report for Precipitation SAF/NWC/CDOP2/INM/SCI/VR/15, Issue 1, Rev. 0 15 July 2013 Applicable to SAFNWC/MSG version 2013 Prepared by AEMET Page: 2/26 REPORT SIGNATURE TABLE Function

More information

INTERPRETATION OF MSG IMAGES, PRODUCTS AND SAFNWC OUTPUTS FOR DUTY FORECASTERS

INTERPRETATION OF MSG IMAGES, PRODUCTS AND SAFNWC OUTPUTS FOR DUTY FORECASTERS INTERPRETATION OF MSG IMAGES, PRODUCTS AND SAFNWC OUTPUTS FOR DUTY FORECASTERS M. Putsay, M. Rajnai, M. Diószeghy, J. Kerényi, I.G. Szenyán and S. Kertész Hungarian Meteorological Service, H-1525 Budapest,

More information

SAFNWC/MSG Dust flag.

SAFNWC/MSG Dust flag. SAFNWC/MSG Dust flag. Dust Week 1-5 March 2010 Hervé LE GLEAU, Marcel DERRIEN Centre de météorologie Spatiale. Lannion Météo-France 1 Plan SAFNWC context Dust flag in SAFNWC/MSG Cma product Algorithm description

More information

Satellite-based Convection Nowcasting and Aviation Turbulence Applications

Satellite-based Convection Nowcasting and Aviation Turbulence Applications Satellite-based Convection Nowcasting and Aviation Turbulence Applications Kristopher Bedka Cooperative Institute for Meteorological Satellite Studies (CIMSS), University of Wisconsin-Madison In collaboration

More information

Applications of the SEVIRI window channels in the infrared.

Applications of the SEVIRI window channels in the infrared. Applications of the SEVIRI window channels in the infrared jose.prieto@eumetsat.int SEVIRI CHANNELS Properties Channel Cloud Gases Application HRV 0.7 Absorption Scattering

More information

CTTH Cloud Top Temperature and Height

CTTH Cloud Top Temperature and Height CTTH Cloud Top Temperature and Height 15 th June 2004 Madrid Hervé Le Gléau and Marcel Derrien Météo-France / CMS lannion 1 Plan of CTTH presentation Algorithms short description Some examples Planned

More information

Combined and parallel use of MSG composite images and SAFNWC/MSG products at the Hungarian Meteorological Service

Combined and parallel use of MSG composite images and SAFNWC/MSG products at the Hungarian Meteorological Service Combined and parallel use of MSG composite images and SAFNWC/MSG products at the Hungarian Meteorological Service Mária Putsay, Kornél Kolláth and Ildikó Szenyán Hungarian Meteorological Service H-1525

More information

Comparison of cloud statistics from Meteosat with regional climate model data

Comparison of cloud statistics from Meteosat with regional climate model data Comparison of cloud statistics from Meteosat with regional climate model data R. Huckle, F. Olesen, G. Schädler Institut für Meteorologie und Klimaforschung, Forschungszentrum Karlsruhe, Germany (roger.huckle@imk.fzk.de

More information

DESCRIPTION AND VALIDATION RESULTS OF THE HIGH RESOLUTION WIND PRODUCT FROM HRVIS MSG CHANNEL, AT EUMETSAT NOWCASTING SAF (SAFNWC)

DESCRIPTION AND VALIDATION RESULTS OF THE HIGH RESOLUTION WIND PRODUCT FROM HRVIS MSG CHANNEL, AT EUMETSAT NOWCASTING SAF (SAFNWC) DESCRIPTION AND VALIDATION RESULTS OF THE HIGH RESOLUTION WIND PRODUCT FROM HRVIS MSG CHANNEL, AT EUMETSAT NOWCASTING SAF (SAFNWC) Javier García Pereda, José Miguel Fernández Serdán Servicio de Teledetección,

More information

McIDAS Activities Within The NASA Langley Research Center Clouds And Radiation Group

McIDAS Activities Within The NASA Langley Research Center Clouds And Radiation Group McIDAS Activities Within The NASA Langley Research Center Clouds And Radiation Group Kristopher Bedka Science Systems and Applications Inc @ NASA LaRC In Collaboration With (in alphabetical order) J. K.

More information

VALIDATION RESULTS OF THE OPERATIONAL LSA-SAF SNOW COVER MAPPING

VALIDATION RESULTS OF THE OPERATIONAL LSA-SAF SNOW COVER MAPPING VALIDATION RESULTS OF THE OPERATIONAL LSA-SAF SNOW COVER MAPPING Niilo Siljamo, Otto Hyvärinen Finnish Meteorological Institute, Erik Palménin aukio 1, P.O.Box 503, FI-00101 HELSINKI Abstract Hydrological

More information

Satellite Cloud & Icing Products at NASA Langley Research Center

Satellite Cloud & Icing Products at NASA Langley Research Center Satellite Cloud & Icing Products at NASA Langley Research Center Patrick Minnis NASA Langley Research Center Hampton, VA patrick.minnis-1@nasa.gov Friends/Partner in Aviation Weather Forum NBAA Convention,

More information

Nowcasting thunderstorms for aeronautical end-users

Nowcasting thunderstorms for aeronautical end-users Nowcasting thunderstorms for aeronautical end-users Jean-Marc Moisselin Météo-France, Nowcasting Department co-authors: Céline Jauffret (Météo-France) Overview Introduction SAT RADAR NWP image crédit:

More information

MSGVIEW: AN OPERATIONAL AND TRAINING TOOL TO PROCESS, ANALYZE AND VISUALIZATION OF MSG SEVIRI DATA

MSGVIEW: AN OPERATIONAL AND TRAINING TOOL TO PROCESS, ANALYZE AND VISUALIZATION OF MSG SEVIRI DATA MSGVIEW: AN OPERATIONAL AND TRAINING TOOL TO PROCESS, ANALYZE AND VISUALIZATION OF MSG SEVIRI DATA Aydın Gürol Ertürk Turkish State Meteorological Service, Remote Sensing Division, CC 401, Kalaba Ankara,

More information

Basic cloud Interpretation using Satellite Imagery

Basic cloud Interpretation using Satellite Imagery Basic cloud Interpretation using Satellite Imagery Introduction Recall that images from weather satellites are actually measurements of energy from specified bands within the Electromagnetic (EM) spectrum.

More information

LANDSAF SNOW COVER MAPPING USING MSG/SEVIRI DATA

LANDSAF SNOW COVER MAPPING USING MSG/SEVIRI DATA LANDSAF SNOW COVER MAPPING USING MSG/SEVIRI DATA Niilo Siljamo and Otto Hyvärinen Finnish Meteorological Institute, Erik Palménin aukio 1, P.O.Box 503, FI-00101 Helsinki, Finland Abstract Land Surface

More information

New applications using real-time observations and ECMWF model data

New applications using real-time observations and ECMWF model data New applications using real-time observations and ECMWF model data 12 th Workshop on Meteorological Operational Systems Wim van den Berg [senior meteorological researcher, project coordinator] Overview

More information

Product User Manual for Cloud. Products (CMa-PGE01 v3.2, CT-

Product User Manual for Cloud. Products (CMa-PGE01 v3.2, CT- Page: 1/34 Product User Manual for Cloud SAF/NWC/CDOP2/MFL/SCI/PUM/01, Issue 3, Rev. 2.3 4 December 2014 Applicable to SAFNWC/MSG version 2013 Prepared by Météo-France / Centre de Météorologie Spatiale

More information

P6.10 COMPARISON OF SATELLITE AND AIRCRAFT MEASUREMENTS OF CLOUD MICROPHYSICAL PROPERTIES IN ICING CONDITIONS DURING ATREC/AIRS-II

P6.10 COMPARISON OF SATELLITE AND AIRCRAFT MEASUREMENTS OF CLOUD MICROPHYSICAL PROPERTIES IN ICING CONDITIONS DURING ATREC/AIRS-II P6.10 COMPARISON OF SATELLITE AND AIRCRAFT MEASUREMENTS OF CLOUD MICROPHYSICAL PROPERTIES IN ICING CONDITIONS DURING ATREC/AIRS-II Louis Nguyen*, Patrick Minnis NASA Langley Research Center, Hampton, VA,

More information

Climatologies of ultra-low clouds over the southern West African monsoon region

Climatologies of ultra-low clouds over the southern West African monsoon region Climatologies of ultra-low clouds over the southern West African monsoon region Andreas H. Fink 1, R. Schuster 1, R. van der Linden 1, J. M. Schrage 2, C. K. Akpanya 2, and C. Yorke 3 1 Institute of Geophysics

More information

THE ATMOSPHERIC MOTION VECTOR RETRIEVAL SCHEME FOR METEOSAT SECOND GENERATION. Kenneth Holmlund. EUMETSAT Am Kavalleriesand Darmstadt Germany

THE ATMOSPHERIC MOTION VECTOR RETRIEVAL SCHEME FOR METEOSAT SECOND GENERATION. Kenneth Holmlund. EUMETSAT Am Kavalleriesand Darmstadt Germany THE ATMOSPHERIC MOTION VECTOR RETRIEVAL SCHEME FOR METEOSAT SECOND GENERATION Kenneth Holmlund EUMETSAT Am Kavalleriesand 31 64293 Darmstadt Germany ABSTRACT The advent of the Meteosat Second Generation

More information

Rapidly Developing Thunderstorm (RDT)

Rapidly Developing Thunderstorm (RDT) Rapidly Developing Thunderstorm (RDT) Jean-Marc Moisselin, Frédéric Autones Météo-France Nowcasting Department 42, av. Gaspard Coriolis 31057 Toulouse France jean-marc.moisselin@meteo.fr EUMETRAIN Convection

More information

Cloud analysis from METEOSAT data using image segmentation for climate model verification

Cloud analysis from METEOSAT data using image segmentation for climate model verification Cloud analysis from METEOSAT data using image segmentation for climate model verification R. Huckle 1, F. Olesen 2 Institut für Meteorologie und Klimaforschung, 1 University of Karlsruhe, 2 Forschungszentrum

More information

22nd-26th February th International Wind Workshop Tokyo, Japan

22nd-26th February th International Wind Workshop Tokyo, Japan New developments in the High Resolution Winds Product (HRW), at the Satellite Application Facility on support to Nowcasting and Very short range forecasting (NWCSAF) 22nd-26th February 2010 10th International

More information

CHARACTERISATION OF STORM SEVERITY BY USE OF SELECTED CONVECTIVE CELL PARAMETERS DERIVED FROM SATELLITE DATA

CHARACTERISATION OF STORM SEVERITY BY USE OF SELECTED CONVECTIVE CELL PARAMETERS DERIVED FROM SATELLITE DATA CHARACTERISATION OF STORM SEVERITY BY USE OF SELECTED CONVECTIVE CELL PARAMETERS DERIVED FROM SATELLITE DATA Piotr Struzik Institute of Meteorology and Water Management, Satellite Remote Sensing Centre

More information

Judit Kerényi. OMSZ-Hungarian Meteorological Service P.O.Box 38, H-1525, Budapest Hungary Abstract

Judit Kerényi. OMSZ-Hungarian Meteorological Service P.O.Box 38, H-1525, Budapest Hungary Abstract Comparison of the precipitation products of Hydrology SAF with the Convective Rainfall Rate of Nowcasting-SAF and the Multisensor Precipitation Estimate of EUMETSAT Judit Kerényi OMSZ-Hungarian Meteorological

More information

P3.24 EVALUATION OF MODERATE-RESOLUTION IMAGING SPECTRORADIOMETER (MODIS) SHORTWAVE INFRARED BANDS FOR OPTIMUM NIGHTTIME FOG DETECTION

P3.24 EVALUATION OF MODERATE-RESOLUTION IMAGING SPECTRORADIOMETER (MODIS) SHORTWAVE INFRARED BANDS FOR OPTIMUM NIGHTTIME FOG DETECTION P3.24 EVALUATION OF MODERATE-RESOLUTION IMAGING SPECTRORADIOMETER (MODIS) SHORTWAVE INFRARED BANDS FOR OPTIMUM NIGHTTIME FOG DETECTION 1. INTRODUCTION Gary P. Ellrod * NOAA/NESDIS/ORA Camp Springs, MD

More information

MSG/SEVIRI CHANNEL 4 Short-Wave IR 3.9 m IR3.9 Tutorial

MSG/SEVIRI CHANNEL 4 Short-Wave IR 3.9 m IR3.9 Tutorial MSG/SEVIRI CHANNEL 4 Short-Wave IR Channel @ 3.9 m IR3.9 Tutorial HansPeter Roesli EUMETSAT satmet.hp@ticino.com Contributions: D Rosenfeld (HUJ) J Kerkmann (EUM), M Koenig (EUM), J Prieto (EUM), HJ Lutz

More information

Updated 12 Sep 2002 Talking Points for VISITview Lesson Fog Detection and Analysis With Satellite Data Gary Ellrod (NOAA/NESDIS) 1.

Updated 12 Sep 2002 Talking Points for VISITview Lesson Fog Detection and Analysis With Satellite Data Gary Ellrod (NOAA/NESDIS) 1. Updated 12 Sep 2002 Talking Points for VISITview Lesson Fog Detection and Analysis With Satellite Data Gary Ellrod (NOAA/NESDIS) 1. Title 2. Fog has a major impact on air safety and efficiency, and may

More information

Applications of multi-spectral satellite data

Applications of multi-spectral satellite data Applications of multi-spectral satellite data Jochen Kerkmann EUMETSAT, Satellite Meteorologist, Training Officer Adjusted by E de Coning South African Weather Service Content 1. Why should we use RGBs?

More information

Satellites, Weather and Climate Module 1: Introduction to the Electromagnetic Spectrum

Satellites, Weather and Climate Module 1: Introduction to the Electromagnetic Spectrum Satellites, Weather and Climate Module 1: Introduction to the Electromagnetic Spectrum What is remote sensing? = science & art of obtaining information through data analysis, such that the device is not

More information

HOMOGENEOUS VALIDATION SCHEME OF THE OSI SAF SEA SURFACE TEMPERATURE PRODUCTS

HOMOGENEOUS VALIDATION SCHEME OF THE OSI SAF SEA SURFACE TEMPERATURE PRODUCTS HOMOGENEOUS VALIDATION SCHEME OF THE OSI SAF SEA SURFACE TEMPERATURE PRODUCTS Pierre Le Borgne, Gérard Legendre, Anne Marsouin, Sonia Péré Météo-France/DP/Centre de Météorologie Spatiale BP 50747, 22307

More information

Large-Scale Cloud Properties and Radiative Fluxes over Darwin during Tropical Warm Pool International Cloud Experiment

Large-Scale Cloud Properties and Radiative Fluxes over Darwin during Tropical Warm Pool International Cloud Experiment Large-Scale Cloud Properties and Radiative Fluxes over Darwin during Tropical Warm Pool International Cloud Experiment P. Minnis, L. Nguyen, and W.L. Smith, Jr. National Aeronautics and Space Administration/Langley

More information

NEW OSI SAF SST GEOSTATIONARY CHAIN VALIDATION RESULTS

NEW OSI SAF SST GEOSTATIONARY CHAIN VALIDATION RESULTS NEW OSI SAF SST GEOSTATIONARY CHAIN VALIDATION RESULTS Anne Marsouin, Pierre Le Borgne, Gérard Legendre, Sonia Péré Météo-France/DP/Centre de Météorologie Spatiale BP 50747, 22307 Lannion, France Abstract

More information

Page 1/8 Long duration validation of PGE11. SAF - Nowcasting Product Assessment Review Worshop (Madrid ctober 2005

Page 1/8 Long duration validation of PGE11. SAF - Nowcasting Product Assessment Review Worshop (Madrid ctober 2005 Page 1/8 Plan Research activity (visiting scientist: Oleksiy Kryvobok) Use of other PGEs and HRVis for RDT improvement Tuning PGE11 satellite-based discrimination using SEVIRI data Long duration validation

More information

MSG system over view

MSG system over view MSG system over view 1 Introduction METEOSAT SECOND GENERATION Overview 2 MSG Missions and Services 3 The SEVIRI Instrument 4 The MSG Ground Segment 5 SAF Network 6 Conclusions METEOSAT SECOND GENERATION

More information

RGB Products: an easy and practical way to display multispectral satellite data (in combination with derived products)

RGB Products: an easy and practical way to display multispectral satellite data (in combination with derived products) RGB Products: an easy and practical way to display multispectral satellite data (in combination with derived products) Dr. Jochen Kerkmann Training Officer EUMETSAT Multi-channel GEO satellites today Him-08

More information

SAF NWC CLOUD PRODUCTS

SAF NWC CLOUD PRODUCTS SAF NWC CLOUD PRODUCTS USER EXPERIENCES AND RESULTS FROM EVALUATION 2003-2005 By Pia Hultgren SWEDEN Evaluation of SAF NWC PPS Objectives Background Method Results Exemples Conclusions Experiences using

More information

Scientific and Validation Report for the Extrapolated Imagery Processor of the NWC/GEO

Scientific and Validation Report for the Extrapolated Imagery Processor of the NWC/GEO Page: 1/95 the Extrapolated Imagery Processor of the NWC/GEO NWC/CDOP2/GEO/ZAMG/SCI/VR/EXIM, Issue 1.0 22 May 2017 Applicable to GEO-EXIM-v1.0 (NWC-043) Prepared by ZAMG Page: 2/95 REPORT SIGNATURE TABLE

More information

ADL110B ADL120 ADL130 ADL140 How to use radar and strike images. Version

ADL110B ADL120 ADL130 ADL140 How to use radar and strike images. Version ADL110B ADL120 ADL130 ADL140 How to use radar and strike images Version 1.00 22.08.2016 How to use radar and strike images 1 / 12 Revision 1.00-22.08.2016 WARNING: Like any information of the ADL in flight

More information

Day Microphysics RGB Nephanalysis in daytime. Meteorological Satellite Center, JMA

Day Microphysics RGB Nephanalysis in daytime. Meteorological Satellite Center, JMA Day Microphysics RGB Nephanalysis in daytime Meteorological Satellite Center, JMA What s Day Microphysics RGB? R : B04 (N1 0.86) Range : 0~100 [%] Gamma : 1.0 G : B07(I4 3.9) (Solar component) Range :

More information

PRECONVECTIVE SOUNDING ANALYSIS USING IASI AND MSG- SEVIRI

PRECONVECTIVE SOUNDING ANALYSIS USING IASI AND MSG- SEVIRI PRECONVECTIVE SOUNDING ANALYSIS USING IASI AND MSG- SEVIRI Marianne König, Dieter Klaes EUMETSAT, Eumetsat-Allee 1, 64295 Darmstadt, Germany Abstract EUMETSAT operationally generates the Global Instability

More information

INTERPRETATION GUIDE TO MSG WATER VAPOUR CHANNELS

INTERPRETATION GUIDE TO MSG WATER VAPOUR CHANNELS INTERPRETATION GUIDE TO MSG WATER VAPOUR CHANNELS C.G. Georgiev1 and P. Santurette2 1 National Institute of Meteorology and Hydrology, Tsarigradsko chaussee 66, 1784 Sofia, Bulgaria 2 Météo-France, 42,

More information

SNOW COVER MAPPING USING METOP/AVHRR AND MSG/SEVIRI

SNOW COVER MAPPING USING METOP/AVHRR AND MSG/SEVIRI SNOW COVER MAPPING USING METOP/AVHRR AND MSG/SEVIRI Niilo Siljamo, Markku Suomalainen, Otto Hyvärinen Finnish Meteorological Institute, P.O.Box 503, FI-00101 Helsinki, Finland Abstract Weather and meteorological

More information

On the Satellite Determination of Multilayered Multiphase Cloud Properties. Science Systems and Applications, Inc., Hampton, Virginia 2

On the Satellite Determination of Multilayered Multiphase Cloud Properties. Science Systems and Applications, Inc., Hampton, Virginia 2 JP1.10 On the Satellite Determination of Multilayered Multiphase Cloud Properties Fu-Lung Chang 1 *, Patrick Minnis 2, Sunny Sun-Mack 1, Louis Nguyen 1, Yan Chen 2 1 Science Systems and Applications, Inc.,

More information

For the operational forecaster one important precondition for the diagnosis and prediction of

For the operational forecaster one important precondition for the diagnosis and prediction of Initiation of Deep Moist Convection at WV-Boundaries Vienna, Austria For the operational forecaster one important precondition for the diagnosis and prediction of convective activity is the availability

More information

Judit Kerényi. OMSZ - Hungarian Meteorological Service, Budapest, Hungary. H-1525 Budapest, P.O.Box 38, Hungary.

Judit Kerényi. OMSZ - Hungarian Meteorological Service, Budapest, Hungary. H-1525 Budapest, P.O.Box 38, Hungary. SATELLITE-DERIVED PRECIPITATION ESTIMATIONS DEVELOPED BY THE HYDROLOGY SAF PROJECT CASE STUDIES FOR THE INVESTIGATION OF THEIR ACCURACY AND FEATURES IN HUNGARY Judit Kerényi OMSZ - Hungarian Meteorological

More information

HARMONISING SEVIRI RGB COMPOSITES FOR OPERATIONAL FORECASTING

HARMONISING SEVIRI RGB COMPOSITES FOR OPERATIONAL FORECASTING HARMONISING SEVIRI RGB COMPOSITES FOR OPERATIONAL FORECASTING HansPeter Roesli (1), Jochen Kerkmann (1), Daniel Rosenfeld (2) (1) EUMETSAT, Darmstadt DE, (2) The Hebrew University of Jerusalem, Jerusalem

More information

GEOMETRIC CLOUD HEIGHTS FROM METEOSAT AND AVHRR. G. Garrett Campbell 1 and Kenneth Holmlund 2

GEOMETRIC CLOUD HEIGHTS FROM METEOSAT AND AVHRR. G. Garrett Campbell 1 and Kenneth Holmlund 2 GEOMETRIC CLOUD HEIGHTS FROM METEOSAT AND AVHRR G. Garrett Campbell 1 and Kenneth Holmlund 2 1 Cooperative Institute for Research in the Atmosphere Colorado State University 2 EUMETSAT ABSTRACT Geometric

More information

YELLOW SPOT IN THE CONVECTIVE STORMS RGB IMAGE CAUSED BY A PILEUS CLOUD

YELLOW SPOT IN THE CONVECTIVE STORMS RGB IMAGE CAUSED BY A PILEUS CLOUD YELLOW SPOT IN THE CONVECTIVE STORMS RGB IMAGE CAUSED BY A PILEUS CLOUD André Simon, Mária Putsay, Ildikó Szenyán and Ákos Horváth Hungarian Meteorological Service, Kitaibel Pál u. 1, H-1024 Budapest,

More information

QUALITY OF MPEF DIVERGENCE PRODUCT AS A TOOL FOR VERY SHORT RANGE FORECASTING OF CONVECTION

QUALITY OF MPEF DIVERGENCE PRODUCT AS A TOOL FOR VERY SHORT RANGE FORECASTING OF CONVECTION QUALITY OF MPEF DIVERGENCE PRODUCT AS A TOOL FOR VERY SHORT RANGE FORECASTING OF CONVECTION C.G. Georgiev 1, P. Santurette 2 1 National Institute of Meteorology and Hydrology, Bulgarian Academy of Sciences

More information

PRECIPITATION ESTIMATION FROM INFRARED SATELLITE IMAGERY

PRECIPITATION ESTIMATION FROM INFRARED SATELLITE IMAGERY PRECIPITATION ESTIMATION FROM INFRARED SATELLITE IMAGERY A.M. BRASJEN AUGUST 2014 1 2 PRECIPITATION ESTIMATION FROM INFRARED SATELLITE IMAGERY MASTER S THESIS AUGUST 2014 A.M. BRASJEN Department of Geoscience

More information

Introduction to the NWC SAF

Introduction to the NWC SAF Introduction to the NWC SAF NWC SAF Event Week EUMeTrain course 18-22 November, online P. Fernández 1 Where are you listening from? Contents SAF Network scope NWC SAF Overview Products Next versions 2014

More information

A closer look at fog, clouds in cold conditions and precipitation in HARMONIE-AROME

A closer look at fog, clouds in cold conditions and precipitation in HARMONIE-AROME A closer look at fog, clouds in cold conditions and precipitation in HARMONIE-AROME A joint presentation by: Lisa Bengtsson, Karl-Ivar Ivarsson, Daniel Martin, Javier Calvo, Gema Morales, Wim de Rooy,

More information

PROBA-V CLOUD MASK VALIDATION

PROBA-V CLOUD MASK VALIDATION Version: 1 Page 1 PROBA-V CLOUD MASK VALIDATION Validation Report Version 1.0 Kerstin Stelzer, Michael Paperin, Grit Kirches, Carsten Brockmann 25.04.2016 Version: 1 Page 2 Table of content Abbreviations

More information

MAGLA. (Fog) Basic processes and societal impacts. Joan Cuxart. University of the Balearic Islands Department of Physics.

MAGLA. (Fog) Basic processes and societal impacts. Joan Cuxart. University of the Balearic Islands Department of Physics. MAGLA (Fog) Basic processes and societal impacts Joan Cuxart University of the Balearic Islands Department of Physics Palma, Mallorca Challenges in meteorology 3 EXTREME WEATHER AND IMPACT ON SOCIETY Zagreb,

More information

Detection and Monitoring Convective Storms by. Using MSG SEVIRI Image. Aydın Gürol ERTÜRK. Contents

Detection and Monitoring Convective Storms by. Using MSG SEVIRI Image. Aydın Gürol ERTÜRK. Contents Detection and Monitoring Convective Storms by 1 Using MSG SEVIRI Image Contents MSGView Software Cold U/V and Ring Shape Storm Tops Case Study, 2nd April 2011 Antalya, Türkiye Conclusion Aydın Gürol ERTÜRK

More information

MAIN ATTRIBUTES OF THE PRECIPITATION PRODUCTS DEVELOPED BY THE HYDROLOGY SAF PROJECT RESULTS OF THE VALIDATION IN HUNGARY

MAIN ATTRIBUTES OF THE PRECIPITATION PRODUCTS DEVELOPED BY THE HYDROLOGY SAF PROJECT RESULTS OF THE VALIDATION IN HUNGARY MAIN ATTRIBUTES OF THE PRECIPITATION PRODUCTS DEVELOPED BY THE HYDROLOGY SAF PROJECT RESULTS OF THE VALIDATION IN HUNGARY Eszter Lábó OMSZ-Hungarian Meteorological Service, Budapest, Hungary labo.e@met.hu

More information

Nowcasting of Severe Weather from Satellite Images (for Southern

Nowcasting of Severe Weather from Satellite Images (for Southern Nowcasting of Severe Weather from Satellite Images (for Southern Europe) Petra Mikuš Jurković Forecasting/ nowcasting of convective storms NWP models cannot well predict the exact location and intesity

More information

EUMETSAT SAF NETWORK. Lothar Schüller, EUMETSAT SAF Network Manager

EUMETSAT SAF NETWORK. Lothar Schüller, EUMETSAT SAF Network Manager 1 EUMETSAT SAF NETWORK Lothar Schüller, EUMETSAT SAF Network Manager EUMETSAT ground segment overview METEOSAT JASON-2 INITIAL JOINT POLAR SYSTEM METOP NOAA SATELLITES CONTROL AND DATA ACQUISITION FLIGHT

More information

MICROPHYSICAL ANALYSIS OF SNOWFALL EPISODES THROUGH THE DISPERSION PROFILES

MICROPHYSICAL ANALYSIS OF SNOWFALL EPISODES THROUGH THE DISPERSION PROFILES MICROPHYSICAL ANALYSIS OF SNOWFALL EPISODES THROUGH THE DISPERSION PROFILES Laura López (1), José Prieto (2), J.L. Sánchez (1), E. García-Ortega (1), Rafael Posada (1) (1) Group for Atmospheric Physics,

More information

MSG FOR NOWCASTING - EXPERIENCES OVER SOUTHERN AFRICA

MSG FOR NOWCASTING - EXPERIENCES OVER SOUTHERN AFRICA MSG FOR NOWCASTING - EXPERIENCES OVER SOUTHERN AFRICA Estelle de Coning and Marianne König South African Weather Service, Private Bag X097, Pretoria 0001, South Africa EUMETSAT, Am Kavalleriesand 31, D-64295

More information

Cloud detection using SEVIRI IR channels

Cloud detection using SEVIRI IR channels Cloud detection using SEVIRI IR channels Alessandro.Ipe@oma.be & Luis Gonzalez Sotelino Royal Meteorological Institute of Belgium GERB Science Team Meeting @ London September 9 10 2009 1 / 19 Overview

More information

Satellite Meteorology. Protecting Life and Property Around the World

Satellite Meteorology. Protecting Life and Property Around the World Satellite Meteorology Protecting Life and Property Around the World The Value of Forecasting Severe Weather Flooding events across Europe in August 2002 cost in the region of 20 billion; 20,000 people

More information

The Climatology of Clouds using surface observations. S.G. Warren and C.J. Hahn Encyclopedia of Atmospheric Sciences.

The Climatology of Clouds using surface observations. S.G. Warren and C.J. Hahn Encyclopedia of Atmospheric Sciences. The Climatology of Clouds using surface observations S.G. Warren and C.J. Hahn Encyclopedia of Atmospheric Sciences Gill-Ran Jeong Cloud Climatology The time-averaged geographical distribution of cloud

More information

TEMPORAL-DIFFERENCING AND REGION-GROWING TECHNIQUES TO IMPROVE TWILIGHT LOW CLOUD DETECTION FROM SEVIRI DATA

TEMPORAL-DIFFERENCING AND REGION-GROWING TECHNIQUES TO IMPROVE TWILIGHT LOW CLOUD DETECTION FROM SEVIRI DATA TEMPORAL-DIFFERENCING AND REGION-GROWING TECHNIQUES TO IMPROVE TWILIGHT LOW CLOUD DETECTION FROM SEVIRI DATA Marcel Derrien, Hervé Le Gléau Météo-France / DP / Centre de Météorologie Spatiale. BP 50747.

More information

WMO Aeronautical Meteorology Scientific Conference 2017

WMO Aeronautical Meteorology Scientific Conference 2017 Session 1 Science underpinning meteorological observations, forecasts, advisories and warnings 1.6 Observation, nowcast and forecast of future needs 1.6.1 Advances in observing methods and use of observations

More information

Satellite-Based Sunshine Duration for Europe

Satellite-Based Sunshine Duration for Europe Remote Sens. 2013, 5, 2943-2972; doi:10.3390/rs5062943 Article OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Satellite-Based Sunshine Duration for Europe Steffen Kothe 1,

More information

METEOSAT CONVECTIVE INITIATION PRODUCT WITH AND WITHOUT CLOUD TRACKING - EXPERIENCES

METEOSAT CONVECTIVE INITIATION PRODUCT WITH AND WITHOUT CLOUD TRACKING - EXPERIENCES METEOSAT CONVECTIVE INITIATION PRODUCT WITH AND WITHOUT CLOUD TRACKING - EXPERIENCES Mária Putsay 1, Zsófia Kocsis 1, Marianne König 2, Ildikó Szenyán 1, Márta Diószeghy 1, André Simon 1 and Márk Rajnai

More information

Remote Sensing Seminar 8 June 2007 Benevento, Italy. Lab 5 SEVIRI and MODIS Clouds and Fires

Remote Sensing Seminar 8 June 2007 Benevento, Italy. Lab 5 SEVIRI and MODIS Clouds and Fires Remote Sensing Seminar 8 June 2007 Benevento, Italy Lab 5 SEVIRI and MODIS Clouds and Fires Table: SEVIRI Channel Number, Wavelength (µm), and Primary Application Reflective Bands 1,2 0.635, 0.81 land/cld

More information

GOES-R AWG Aviation Team: Flight Icing Threat

GOES-R AWG Aviation Team: Flight Icing Threat GOES-R AWG Aviation Team: Flight Icing Threat William L. Smith Jr. NASA Langley Research Center Collaborators: Patrick Minnis, Louis Nguyen NASA Langley Research Center Cecilia Fleeger, Doug Spangenberg,

More information

eport Nataša Strelec Mahović Meteorological and Hydrological Service, Grič 3, Zagreb, Croatia EUMeTrain project Abstract

eport Nataša Strelec Mahović Meteorological and Hydrological Service, Grič 3, Zagreb, Croatia EUMeTrain project Abstract eport Nataša Strelec Mahović Meteorological and Hydrological Service, Grič 3, Zagreb, Croatia EUMeTrain project Abstract The paper presents the concept of eport, an interface enabling the combined analysis

More information

How to display RGB imagery by SATAID

How to display RGB imagery by SATAID How to display RGB imagery by SATAID Akihiro SHIMIZU Meteorological Satellite Center (MSC), Japan Meteorological Agency (JMA) Ver. 2015110500 RGB imagery on SATAID SATAID software has a function of overlapping

More information

Title Slide: AWIPS screengrab of AVHRR data fog product, cloud products, and POES sounding locations.

Title Slide: AWIPS screengrab of AVHRR data fog product, cloud products, and POES sounding locations. Title Slide: AWIPS screengrab of AVHRR data fog product, cloud products, and POES sounding locations. Slide 2: 3 frames: Global tracks for NOAA19 (frame 1); NOAA-19 tracks over CONUS (frame 2); NOAA-19

More information

Joseph Kagenyi Principal Meteorologist (RS/GIS) IMTR-NAIROBI 13 th UFA September 2018

Joseph Kagenyi Principal Meteorologist (RS/GIS) IMTR-NAIROBI 13 th UFA September 2018 Joseph Kagenyi Principal Meteorologist (RS/GIS) IMTR-NAIROBI 13 th UFA 24-28 September 2018 kagenyijn@gmail.com 1. PUMA WorkStation structure 2. Data Available on PUMA Station 3. PUMA Nowcasting Applications

More information

IMPACT OF IN-LINE CLEAR-SKY SIMULATIONS EXPECTED FOR THE NWCSAF GEO CLOUD MASK

IMPACT OF IN-LINE CLEAR-SKY SIMULATIONS EXPECTED FOR THE NWCSAF GEO CLOUD MASK IMPACT OF IN-LINE CLEAR-SKY SIMULATIONS EXPECTED FOR THE NWCSAF GEO CLOUD MASK Marcel Derrien, Hervé Le Gléau, Marie-Paule Raoul Météo-France / DP / Centre de Météorologie Spatiale. BP 50747. 22307 Lannion.

More information

Nerushev A.F., Barkhatov A.E. Research and Production Association "Typhoon" 4 Pobedy Street, , Obninsk, Kaluga Region, Russia.

Nerushev A.F., Barkhatov A.E. Research and Production Association Typhoon 4 Pobedy Street, , Obninsk, Kaluga Region, Russia. DETERMINATION OF ATMOSPHERIC CHARACTERISTICS IN THE ZONE OF ACTION OF EXTRA-TROPICAL CYCLONE XYNTHIA (FEBRUARY 2010) INFERRED FROM SATELLITE MEASUREMENT DATA Nerushev A.F., Barkhatov A.E. Research and

More information

SNOW COVER MAPPING USING METOP/AVHRR DATA

SNOW COVER MAPPING USING METOP/AVHRR DATA SNOW COVER MAPPING USING METOP/AVHRR DATA Niilo Siljamo, Markku Suomalainen, Otto Hyvärinen Finnish Meteorological Institute, Erik Palménin Aukio 1, FI-00101 Helsinki, Finland Abstract LSA SAF snow cover

More information

1. COLD FRONT - CLOUD STRUCTURE IN SATELLITE IMAGES

1. COLD FRONT - CLOUD STRUCTURE IN SATELLITE IMAGES 1. COLD FRONT - CLOUD STRUCTURE IN SATELLITE IMAGES The satellite image shows a cyclonically curved synoptic scale cloud band usually a few hundred kilometres wide; in the VIS image the cloud band mostly

More information

SATELLITE MONITORING OF THE CONVECTIVE STORMS

SATELLITE MONITORING OF THE CONVECTIVE STORMS SATELLITE MONITORING OF THE CONVECTIVE STORMS FORECASTERS POINT OF VIEW Michaela Valachová, EUMETSAT Workshop at ECMWF User Meeting Reading, 13 June 2017 Central Forecasting Office, Prague michaela.valachova@chmi.cz

More information

STUDY OF CIRRUS CLOUD WINDS : ANALYSIS OF I.C.E. DATA

STUDY OF CIRRUS CLOUD WINDS : ANALYSIS OF I.C.E. DATA STUDY OF CIRRUS CLOUD WINDS : ANALYSIS OF I.C.E. DATA R.W.Lunnon, D.A.Lowe, J.A.Barnes and I.Dharssi Meteorological Office, London Road, Bracknell, Berkshire RG12 2SZ, U.K. ABSTRACT High level satellite

More information

CONTRAILS FROM (A)ATSR(2) DATA

CONTRAILS FROM (A)ATSR(2) DATA CONTRAILS FROM (A)ATSR(2) DATA Hermann Mannstein and Rüdiger Büll Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, 82230 Wessling, Germany ABSTRACT/RESUME The DLR contrail detection algorithm

More information

Use of Nowcasting tools, developed in SAF for the diagnosis of fogs in the South Plateau of the Iberian Peninsula.

Use of Nowcasting tools, developed in SAF for the diagnosis of fogs in the South Plateau of the Iberian Peninsula. Use of Nowcasting tools, developed in SAF for the diagnosis of fogs in the Darío Cano and Ignacio Palacios Meteorological Regional Centre in Madrid and Castilla-La Mancha Objective: To obtain a vision

More information

MSG/SEVIRI AND METOP/AVHRR SNOW EXTENT PRODUCTS IN H-SAF

MSG/SEVIRI AND METOP/AVHRR SNOW EXTENT PRODUCTS IN H-SAF MSG/SEVIRI AND METOP/AVHRR SNOW EXTENT PRODUCTS IN H-SAF Niilo Siljamo, Otto Hyvärinen Finnish Meteorological Institute, Erik Palménin aukio 1, Helsinki, Finland Abstract Weather and meteorological processes

More information

Satellite-based thunderstorm tracking, monitoring and nowcasting over South Africa

Satellite-based thunderstorm tracking, monitoring and nowcasting over South Africa Satellite-based thunderstorm tracking, monitoring and nowcasting over South Africa Caroline Forster 1, Estelle de Coning 2, Sebastian Diebel 1, Tobias Zinner 3 EUMETSAT Meteorological Satellite Conference

More information

EUMETSAT SAF NETWORK. Lothar Schüller, EUMETSAT SAF Network Manager

EUMETSAT SAF NETWORK. Lothar Schüller, EUMETSAT SAF Network Manager 1 EUMETSAT SAF NETWORK Lothar Schüller, EUMETSAT SAF Network Manager EUMETSAT ground segment overview METEOSAT JASON-2 INITIAL JOINT POLAR SYSTEM METOP NOAA SATELLITES CONTROL AND DATA ACQUISITION FLIGHT

More information

Validation of 2-meters temperature forecast at cold observed conditions by different NWP models

Validation of 2-meters temperature forecast at cold observed conditions by different NWP models Validation of 2-meters temperature forecast at cold observed conditions by different NWP models Evgeny Atlaskin Finnish Meteorological Institute / Russian State Hydrometeorological University OUTLINE Background

More information

Day Snow-Fog RGB Detection of low-level clouds and snow/ice covered area

Day Snow-Fog RGB Detection of low-level clouds and snow/ice covered area JMA Day Snow-Fog RGB Detection of low-level clouds and snow/ice covered area Meteorological Satellite Center, JMA What s Day Snow-Fog RGB? R : B04 (N1 0.86) Range : 0~100 [%] Gamma : 1.7 G : B05 (N2 1.6)

More information

RDT-CW: TOWARD A MULTIDIMENSIONAL DESCRIPTION OF CONVECTION

RDT-CW: TOWARD A MULTIDIMENSIONAL DESCRIPTION OF CONVECTION RDT-CW: TOWARD A MULTIDIMENSIONAL DESCRIPTION OF CONVECTION Jean-Marc Moisselin, Frederic Autonès Météo-France, DPREVI/PI, 42 avenue G. Coriolis 31057 Toulouse, France Abstract RDT-CW (Rapid Development

More information

Cloud Top Height Product: Product Guide

Cloud Top Height Product: Product Guide Cloud Top Height Product: Product Guide Doc.No. Issue : : EUM/TSS/MAN/14/786420 v1a EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 21 August 2015

More information

Atmospheric Motion Vectors: Product Guide

Atmospheric Motion Vectors: Product Guide Atmospheric Motion Vectors: Product Guide Doc.No. Issue : : EUM/TSS/MAN/14/786435 v1a EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 9 April 2015

More information

Cloud detection in Meteosat Second Generation imagery at the Met Office

Cloud detection in Meteosat Second Generation imagery at the Met Office METEOROLOGICAL APPLICATIONS Meteorol. Appl. 18: 307 323 (2011) Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/met.239 Cloud detection in Meteosat Second Generation imagery

More information

A SEVERE WEATHER EVENT IN ROMANIA DUE TO MEDITERRANEAN CYCLONIC ACTIVITY

A SEVERE WEATHER EVENT IN ROMANIA DUE TO MEDITERRANEAN CYCLONIC ACTIVITY A SEVERE WEATHER EVENT IN ROMANIA DUE TO MEDITERRANEAN CYCLONIC ACTIVITY Florinela Georgescu, Gabriela Bancila, Viorica Dima National Meteorological Administration, Bucharest, Romania Abstract Mediterranean

More information

NWC-SAF Satellite Application Facility in Support to Nowcasting and Very Short Range Forecasting

NWC-SAF Satellite Application Facility in Support to Nowcasting and Very Short Range Forecasting NWC-SAF Satellite Application Facility in Support to Nowcasting and Very Short Range Forecasting Marianne König Slide 1 Satellite Application Facilities (SAFs) in Europe Member State Cooperating State

More information

Algorithm Theoretical Basis Document for Cloud Products (CMa-PGE01 v3.2, CT-PGE02 v2.2 & CTTH-PGE03 v2.2)

Algorithm Theoretical Basis Document for Cloud Products (CMa-PGE01 v3.2, CT-PGE02 v2.2 & CTTH-PGE03 v2.2) Page: 1/87 Document for Cloud Products (CMa-PGE01 v3.2, CT-PGE02 v2.2 & CTTH-PGE03 v2.2) SAF/NWC/CDOP2/MFL/SCI/ATBD/01, Issue 3, Rev. 2.1 15 July 2013 Applicable to SAFNWC/MSG version 2013 Prepared by

More information

OBSERVING CIRRUS FORMATION AND DECAY WITH METEOSAT

OBSERVING CIRRUS FORMATION AND DECAY WITH METEOSAT OBSERVING CIRRUS FORMATION AND DECAY WITH METEOSAT Hermann Mannstein, Kaspar Graf, Stephan Kox, Bernhard Mayer and Ulrich Schumann Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt,

More information