Chapter 9 Remnants of Rock and Ice. Asteroids, Comets, and Pluto
|
|
- Camron Harrison
- 10 months ago
- Views:
Transcription
1 Chapter 9 Remnants of Rock and Ice Asteroids, Comets, and Pluto
2 9.1 Asteroids and Meteorites Our Goals for Learning Why is there an asteroid belt? How are meteorites related to asteroids?
3 Asteroid Facts Asteroids are rocky leftovers of planet formation. Largest is Ceres, diameter ~1,000 km 150,000 in catalogs, and probably over a million with diameter >1 km. Small asteroids are more common than large asteroids. All the asteroids in the solar system wouldn t add up to even a small terrestrial planet.
4 Asteroids are cratered and not round
5 Why is there an asteroid belt?
6 More than 150,000 asteroids at their predicted locations for Jan On this scale, asteroids are much smaller than the dots used to represent them
7 Which explanation seems to be the most plausible? A. The belt is where all the asteroids happened to form. B. The belt is the remnant of a large terrestrial planet that used to be between Mars and Jupiter. C. The belt is where all the asteroids happened to survive.
8 Which explanation seems to be the most plausible? A. The belt is where all the asteroids happened to form. B. The belt is the remnant of a large terrestrial planet that used to be between Mars and Jupiter. C. The belt is where all the asteroids happened to survive. But WHY didn t they form a little planet?
9 Rocky planetesimals survived in the asteroid belt between Mars and Jupiter because they did not accrete into a planet. Jupiter s gravity, stirs up the asteroid orbits and prevents their planet formation.
10 How are meteorites related to asteroids?
11 How are meteorites related to asteroids? Meteorites are pieces of asteroids - or sometimes planets or the Moon.
12 Meteor: The bright tail of hot debris from the rock Meteorite: A rock from space that reaches Earth s surface
13 Peekskill, NY: October 9, 1992
14 Pieces of Asteroids:Meteorite Types 1) Primitive: Unchanged in composition since they first formed 4.6 billion years ago. 2) Processed: Younger, have experienced processes like volcanism or differentiation.
15 Primitive Meteorites: simple, all ingredients mixed together
16 Volcanic rock from a crus or mantle Processed Meteorites: shattered fragments of larger objects Iron from a core
17 What do we learn from meteorites? primitive meteorites tell us when solar system formation began. Processed meteorites tell us what asteroids are like on the inside. Processed meteorites provide direct proof that differentiation and volcanism happened on asteroids.
18 Meteorites from Moon and Mars A few meteorites arrive from the Moon and Mars Composition differs from the asteroid fragments. A cheap (but slow) way to acquire moon rocks and Mars rocks. One Mars meteorite generated a stir when scientists claimed evidence for microscopic life in it.
19 9.2 Comets Our Goals for Learning How do comets get their tails? Where do comets come from?
20 How do comets get their tails?
21 Comet Facts Formed beyond the frostline, comets are icy counterparts to asteroids. Dirty snowballs = the nucleus Most comets do not have tails. Most comets remain perpetually frozen in the outer solar system. Only a few enter the inner solar system, where they can grow tails.
22 When a comet nears the Sun, its ices can sublimate into gas and carry off dust, creating a coma and long tails.
23 Draw This Picture
24 Comets eject small particles that follow the comet around in its orbit This can cause meteor showers when Earth crosses the comet s orbit.
25 Meteors in a shower appear to emanate from the same area of sky because of Earth s motion through space
26 Where do comets come from?
27 Only a tiny number of comets enter the inner solar system - most stay far from the Sun Oort cloud: On random orbits extending to about 50,000 AU Kuiper belt: On orderly orbits from AU in disk of solar system
28 How did they get there? Kuiper belt comets align with the plane of planet orbits Oort Cloud Comets were kicked out of the solar system by the gravity from jovian planets: random orbits
29 9.3 Pluto: Lone Dog or Part of a Pack? Our Goals for Learning What is Pluto like? Is Pluto a planet or a Kuiper belt comet?
30 Pluto: the exception Not a gas giant like the other outer planets. Has a very elliptical, inclined orbit. By far the smallest planet, and smaller than several moons. Has a surprisingly large moon Charon, probably formed by a huge comet collision with Pluto.
31 Pluto will never collide with Neptune because of a 3:2 orbital resonance.
32 What is Pluto like? 1978 discovery of Pluto s moon Charon: Pluto s mass from Newton s orbital law. It has a thin nitrogen atmosphere that will refreeze onto the surface as Pluto s orbit takes it farther from the Sun. Pluto is the largest Solar System object that has not been visited by spacecraft.
33 HST s view of Pluto & Charon
34 Brightness variations during eclipsing orbits showed dirty ice - like comets.
35 Is Pluto a planet or a Kuiper Belt comet?
36 Is Pluto a planet or a Kuiper Belt comet? Pluto is well beyond Neptune, in the Kuiper Belt. Inclined orbit is typical of Kuiper Belt comets. Composition is typical of Kuiper Belt comets, but not any of the other planets.
37 Is Pluto a planet or a Kuiper Belt comet? Kuiper Belt objects have been found that approach Pluto s size. Kuiper Belt comets have similar orbital resonances with Neptune. Kuiper Belt comets can have moons. Triton (a captured moon) is even larger than Pluto.
38 Have we ever witnessed a major impact?
39 Comet SL9 caused a string of violent impacts on Jupiter in 1994, reminding us that catastrophic collisions still happen. Tidal forces tore it apart during previous encounter with Jupiter
40
41
42 Impact plume rises high above Jupiter s surface
43
44
45
46
47 Did an impact kill the dinosaurs?
48 Mass Extinctions Large dips in total species diversity in the fossil record. The most recent was 65 million years ago, ending the reign of the dinosaurs. Was it caused by an impact? How would it have happened?
49 No dinosaur fossils in these rock layers Thin layer containing iridium from impactor Dinosaur fossils in lower rock layers
50 Iridium - evidence of an impact Iridium is very rare in Earth surface rocks but often found in meteorites. Luis and Walter Alvarez found a worldwide layer containing iridium, laid down 65 million years ago.
51 Comet or asteroid about 10km in diameter approaches Earth
52
53
54
55
56 An iridium-rich sediment layer and an impact crater on the Mexican coast 65 million years ago. shows that a large impact occurred at the time the dinosaurs died out,
57 The Impact Threat: Real danger or media hype?
58 Facts Asteroids and comets have hit the Earth. A major impact is only a matter of time: not IF but WHEN. Major impact are very rare. Extinction level events ~ millions of years. Major damage ~ tens-hundreds of years.
59 Tunguska, Siberia: June 30, 1908 The ~40 meter object disintegrated and exploded in the atmosphere
60 Meteor Crater, Arizona: 50,000 years ago (50 meter object)
61 Impacts will certainly occur in the future, and while the chance of a major impact in our lifetimes is small, the effects could be devastating.
62 The asteroid with our name on it We haven t seen it yet. Deflection is more probable with years of advance warning. Control is critical: breaking a big asteroid into a bunch of little asteroids is unlikely to help. We get less advance warning of a killer comet
The Cosmic Perspective Seventh Edition. Asteroids, Comets, and Dwarf Planets: Their Nature, Orbits, and Impacts. Chapter 12 Lecture
Chapter 12 Lecture The Cosmic Perspective Seventh Edition Asteroids, Comets, and Dwarf Planets: Their Nature, Orbits, and Impacts Asteroids, Comets, and Dwarf Planets: Their Nature, Orbits, and Impacts
The Little Things. Today. Rings, meteorites. Asteroids & Comets. Dwarf Planets Events. Homework 5. Due
Today The Little Things Rings, meteorites Asteroids & Comets Dwarf Planets Events Homework 5 Due geysers on Triton Rocky Planets versus Icy Moons Rock melts at higher temperatures. Only large rocky planets
The Cosmic Perspective Seventh Edition. Asteroids, Comets, and Dwarf Planets: Their Natures, Orbits, and Impacts. Chapter 12 Review Clickers
Review Clickers The Cosmic Perspective Seventh Edition Asteroids, Comets, and Dwarf Planets: Their Natures, Orbits, and Impacts Asteroids a) are rocky and small typically the size of a grain of rice or
1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids
The Solar System 1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids The distances to planets are known from Kepler s Laws (once calibrated with radar ranging to Venus) How are planet
Astronomy 150: Killer Skies Lecture 6, January 30
Astronomy 150: Killer Skies Lecture 6, January 30 Last time: Meteors Today: Asteroids and Comets Homework: HW 1 last chance! cutoff at 5pm today. HW 2 due this Friday at 1pm http://near.jhuapl.edu/iod/20000222/20000222.jpg
Unit 12 Lesson 1 What Objects Are Part of the Solar System?
Unit 12 Lesson 1 What Objects Are Part of the Solar System? The Solar System Earth, other planets, and the moon are part of a solar system. A solar system is made up of a star and the planets and other
Which of the following statements best describes the general pattern of composition among the four jovian
Part A Which of the following statements best describes the general pattern of composition among the four jovian planets? Hint A.1 Major categories of ingredients in planetary composition The following
Asteroids: Introduction
Asteroids: Introduction Name Read through the information below. Then complete the Fill-Ins at the bottom of page. Asteroids are rocky objects that orbit the Sun in our solar system. Also known as minor
Unit 3 Lesson 6 Small Bodies in the Solar System. Copyright Houghton Mifflin Harcourt Publishing Company
Florida Benchmarks SC.8.N.1.1 Define a problem from the eighth grade curriculum using appropriate reference materials to support scientific understanding, plan and carry out scientific investigations of
The Formation of the Solar System
The Formation of the Solar System Basic Facts to be explained : 1. Each planet is relatively isolated in space. 2. Orbits nearly circular. 3. All roughly orbit in the same plane. 4. Planets are all orbiting
Contents of the Solar System
The Solar System Contents of the Solar System Sun Planets 9 known (now: 8) Mercury, Venus, Earth, Mars ( Terrestrials ) Jupiter, Saturn, Uranus, Neptune ( Jovians ) Pluto (a Kuiper Belt object?) Natural
9. Formation of the Solar System
9. Formation of the Solar System The evolution of the world may be compared to a display of fireworks that has just ended: some few red wisps, ashes, and smoke. Standing on a cool cinder, we see the slow
Exam# 2 Review. Exam #2 is Wednesday November 8th at 10:40 AM in room FLG-280
Exam# 2 Review Exam #2 is Wednesday November 8th at 10:40 AM in room FLG-280 Bring Gator 1 ID card Bring pencil #2 with eraser No use of calculator or any electronic device during the exam We provide the
9/22/ A Brief Tour of the Solar System. Chapter 6: Formation of the Solar System. What does the solar system look like?
9/22/17 Lecture Outline 6.1 A Brief Tour of the Solar System Chapter 6: Formation of the Solar System What does the solar system look like? Our goals for learning: What does the solar system look like?
Unit 2 Lesson 1 What Objects Are Part of the Solar System? Copyright Houghton Mifflin Harcourt Publishing Company
Unit 2 Lesson 1 What Objects Are Part of the Solar System? Florida Benchmarks SC.5.E.5.2 Recognize the major common characteristics of all planets and compare/contrast the properties of inner and outer
Small Bodies in our Solar System. Comets, Asteroids & Meteoroids
Small Bodies in our Solar System Comets, Asteroids & Meteoroids * A Small Body is any object in the solar system that is smaller than a planet or moon, such as a comet, an asteroid, or a meteoroid. Compiled
Making a Solar System
Making a Solar System Learning Objectives! What are our Solar System s broad features? Where are asteroids, comets and each type of planet? Where is most of the mass? In what direction do planets orbit
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
ASTRO 102/104 Prelim #3 Name Section MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) This is version A of the exam. Please fill in (A) A) This
Starting from closest to the Sun, name the orbiting planets in order.
Chapter 9 Section 1: Our Solar System Solar System: The solar system includes the sun, planets and many smaller structures. A planet and its moon(s) make up smaller systems in the solar system. Scientist
23.1 The Solar System. Orbits of the Planets. Planetary Data The Solar System. Scale of the Planets The Solar System
23.1 The Solar System Orbits of the Planets The Planets: An Overview The terrestrial planets are planets that are small and rocky Mercury, Venus, Earth, and Mars. The Jovian planets are the huge gas giants
Survey of the Solar System. The Sun Giant Planets Terrestrial Planets Minor Planets Satellite/Ring Systems
Survey of the Solar System The Sun Giant Planets Terrestrial Planets Minor Planets Satellite/Ring Systems Definition of a dwarf planet 1. Orbits the sun 2. Is large enough to have become round due to the
STUDENT RESOURCE 1.1 INFORMATION SHEET. Vocabulary
Vocabulary STUDENT RESOURCE 1.1 INFORMATION SHEET asteroids thousands of rocky objects that orbit the Sun Most asteroids orbit in a belt between the orbits of Mars and Jupiter. More than 9, asteroids have
Astronomy. physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am. Page 1
Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Planetology I Terrestrial and Jovian planets Similarities/differences between planetary satellites Surface and atmosphere
Chapter 15 The Formation of Planetary Systems
Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Formation of the Solar System 15.3 Terrestrial and Jovian Planets 15.4 Interplanetary Debris 15.5 Solar
OUR SOLAR SYSTEM. James Martin. Facebook.com/groups/AstroLSSC Twitter.com/AstroLSSC
OUR SOLAR SYSTEM James Martin Facebook.com/groups/AstroLSSC Twitter.com/AstroLSSC It s time for the human race to enter the solar system. -Dan Quayle Structure of the Solar System Our Solar System contains
Solar System Debris. Asteroids 11/28/2010. Large rocky debris orbiting the Sun. Ceres, the largest asteroid. Discovering Asteroids
Solar System Debris Material leftover from the formation of the Solar System Gives important clues about its origin Composition: Asteroids and Meteoroids: rock and iron Comets: ice and dust The basic building
How did it come to be this way? Will I stop sounding like the
Chapter 06 Let s Make a Solar System How did it come to be this way? Where did it come from? Will I stop sounding like the Talking Heads? What does the solar system look like? Big picture. The solar system
Images of Planets 11/18/08. Cassini Movie
Announce: Look at Essay 4 for next week Thursday is Einstein Movie Images of Planets Cassini Movie Review of Ch. 9 Ch. 10 Errors in Crab Lab. 11/18/08 Images of Planets Cassini Movie Ch. 9 Questions Second
Notes: The Solar System
Notes: The Solar System The Formation of the Solar System 1. A gas cloud collapses under the influence of gravity. 2. Solids condense at the center, forming a protostar. 3. A falttened disk of matter surrounds
Bit of Administration.
Bit of Administration. Washburn Observatory Thursday, 8:30-9:30 Portfolios Due Thursday, April 29,, because of possible TAA strike Put in box outside 6522 Sterling All 5 must be securely bound together,
Celestial Objects. Background Questions. 1. What was invented in the 17 th century? How did this help the study of our universe? 2. What is a probe?
Background Questions Celestial Objects 1. What was invented in the 17 th century? How did this help the study of our universe? 2. What is a probe? 3. Describe the Galileo probe mission. 4. What are scientists
3. The moon with the most substantial atmosphere in the Solar System is A) Iapetus B) Io C) Titan D) Triton E) Europa
Spring 2013 Astronomy - Test 2 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as
Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006
Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006 Instructor: L. M. Khandro 10/19/06 Please Note: the following test derives from a course and text that covers the entire topic of
Comets. Ancient Ideas about comets. Draft Dec 11, Edmund Halley ( ) Great Comet of 1680
Comets Ancient Ideas about comets kometes = `the hairy one (hairy star) 550 BC Pythagoreans thought they were wandering planets. Draft Dec 11, 2006 Aristotle (350 BC) thought that, like meteors, they were
Comparative Planetology I: Our Solar System. Chapter Seven
Comparative Planetology I: Our Solar System Chapter Seven ASTR 111 003 Fall 2006 Lecture 07 Oct. 16, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17)
Regular Features of the Solar System
1 Regular Features of the Solar System All of the planets orbit the Sun in the same plane All planetary orbits are nearly circular All planets orbit the Sun in the same direction Most planets rotate in
Astronomy Unit Notes Name:
Astronomy Unit Notes Name: (DO NOT LOSE!) To help with the planets order 1 My = M 2 V = Venus 3 Eager = E 4 M = Mars 5 Just = J 6 Served = Saturn 7 Us = Uranus 8 N = N 1 Orbit: The path (usually elliptical)
What is the Solar System?
What is the Solar System? Our Solar System is one of many planetary systems. It consists of: The Sun Eight planets with their natural satellites Five dwarf planets Billions of asteroids, comets and meteors
The Outer Planets. Video Script: The Outer Planets. Visual Learning Company
11 Video Script: 1. For thousands of years people have looked up at the night sky pondering the limits of our solar system. 2. Perhaps you too, have looked up at the evening stars and planets, and wondered
Solar System revised.notebook October 12, 2016 Solar Nebula Theory
Solar System revised.notebook The Solar System Solar Nebula Theory Solar Nebula was a rotating disk of dust and gas w/ a dense center dense center eventually becomes the sun start to condense b/c of gravity
Solar System Formation
Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities
Our Planetary System. Chapter 7
Our Planetary System Chapter 7 Key Concepts for Chapter 7 and 8 Inventory of the Solar System Origin of the Solar System What does the Solar System consist of? The Sun: It has 99.85% of the mass of the
Asteroids. Titius-Bode Law (1766) updated May 16, Orbit of 1 Ceres. Ceres Discovered Structure of Ceres. Ceres (Hubble Space Telescope)
Asteroids Titius-Bode Law (1766) 2 The distances between the planets gets bigger as you go out. Johann Daniel Titius ( 1729 1796) Johann Elert Bode (1747-1826) updated May 16, 2013 Titius & Bode came up
What s in our solar system?
What s in our solar system? *Sun *Planets Terrestrial Jovian Dwarf Smaller objects *Meteoroids *Comets Dust http://www.techastronomy.com/userfiles/2007/7/22/solar_system4(1).jpg *Sun a. Most of mass (>99%)
Biodiversity Through Earth History
Chapter 13 Biodiversity Through Earth History Underlying assumption is that the process of evolution is occurring evolution: creation of new species random mutation: genetic changes natural selection:
Astronomy 1140 Quiz 4 Review
Astronomy 1140 Quiz 4 Review Anil Pradhan December 6, 2016 I The Outer Planets in General 1. How do the sizes, masses and densities of the outer planets compare with the inner planets? The outer planets
Why are Saturn s rings confined to a thin plane? 1. Tidal forces 2. Newton s 1st law 3. Conservation of energy 4. Conservation of angular momentum
Announcements Astro 101, 12/2/08 Formation of the Solar System (text unit 33) Last OWL homework: late this week or early next week Final exam: Monday, Dec. 15, 10:30 AM, Hasbrouck 20 Saturn Moons Rings
Pluto, the Kuiper Belt, and Trans- Neptunian Objects
Pluto, the Kuiper Belt, and Trans- Neptunian Objects 1 What about Pluto? Pluto used to be considered a planet Pluto is one of a large number of Trans-Neptunian Objects, not even the largest one! Discovery
Learning About Our Solar System
Learning About Our Solar System By debbie Routh COPYRIGHT 2004 Mark Twain Media, Inc. ISBN 978-1-58037-876-5 Printing No. 404007-EB Mark Twain Media, Inc., Publishers Distributed by Carson-Dellosa Publishing
Earth, Uranus, Neptune & Pluto
14a. Uranus, Neptune & Pluto The discovery of Uranus & Neptune Uranus is oddly tilted & nearly featureless Neptune is cold & blue Uranus & Neptune are like yet dislike Jupiter The magnetic fields of Uranus
Unit 6 Lesson 4 What Are the Planets in Our Solar System? Copyright Houghton Mifflin Harcourt Publishing Company
Unit 6 Lesson 4 What Are the Planets in Our Solar System? What other objects are near Earth in this part of space? Earth and millions of other objects make up our solar system. In Our Corner of Space A
28-Aug-17. A Tour of Our Solar System and Beyond. The Sun
A Tour of Our Solar System and Beyond The Sun diameter = 1,390,000 km = 864,000 mi >99.8% of the mass of the entire solar system surface temperature 5800 C 600 x 10 6 tons H -> 596 x 10 6 tons He per second
Planets. Chapter 5 5-1
Planets Chapter 5 5-1 The Solar System Terrestrial Planets: Earth-Like Jovian Planets: Gaseous Sun Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto Inferior Planets Superior Planets Inferior
Comets, Asteroids, and Meteorites. Clues to the Origin of the Solar System
Comets, Asteroids, and Meteorites Clues to the Origin of the Solar System Is Pluto a Planet? Introduction There is evidence that the small amounts of debris that we observe in our Solar System is a remnant
Which of the following planets are all made up of gas? When a planets orbit around the Sun looks like an oval, it s called a(n)
When a planets orbit around the Sun looks like an oval, it s called a(n) - ellipse - circle - axis - rotation Which of the following planets are all made up of gas? - Venus, Mars, Saturn and Pluto - Jupiter,
Asteroids February 23
Asteroids February 23 Test 2 Mon, Feb 28 Covers 6 questions from Test 1. Added to score of Test 1 Telescopes Solar system Format similar to Test 1 Missouri Club Fri 9:00 1415 Fri, last 10 minutes of class
Astronomy I Exam 2 Sample
NAME: Part I: Multiple Choice (2 points. ea.) Read carefully, choose the best answer 1. Which of the following occurs because of the orbital motion of the Earth about the Sun and cannot be accounted for
ASTR 150. Homework 2 due Monday. Planetarium shows this week Next Monday/ Wednesday no lectures
ASTR 150 Homework 2 due Monday Office hour today Planetarium shows this week Next Monday/ Wednesday no lectures Time for asteroid lab Last time: Asteroids and Comets Today: Solar System Formation Music:
Solar System Formation
Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities
Comets and Meteors. Sp a ce - Level 1 and 2. Concept This lesson introduces the students to comets and meteors.
Concept This lesson introduces the students to comets and meteors. Comets From nineplanets.org Comets are a mixture of ices (both water and frozen gases) and dust that did not get incorporated into planets
Inner and Outer Planets
Inner and Outer Planets SPI 0607.6.2 Explain how the relative distance of objects from the earth affects how they appear. Inner Planets Terrestrial planets are those that are closest to the Sun. Terrestrial
Astronomy Ch. 6 The Solar System: Comparative Planetology
Name: Period: Date: Astronomy Ch. 6 The Solar System: Comparative Planetology MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The largest asteroid,
Currently, the largest optical telescope mirrors have a diameter of A) 1 m. B) 2 m. C) 5 m. D) 10 m. E) 100 m.
If a material is highly opaque, then it reflects most light. absorbs most light. transmits most light. scatters most light. emits most light. When light reflects off an object, what is the relation between
Solar System Formation/The Sun
Solar System Formation/The Sun Objective 4 Examine the orbital paths of planets and other astronomical bodies (comets and asteroids). Examine the theories of geocentric and heliocentric models and Kepler
A Survey of the Planets Earth Mercury Moon Venus
A Survey of the Planets [Slides] Mercury Difficult to observe - never more than 28 degree angle from the Sun. Mariner 10 flyby (1974) Found cratered terrain. Messenger Orbiter (Launch 2004; Orbit 2009)
Earth, Uranus, Neptune & Pluto. 14a. Uranus & Neptune. The Discovery of Uranus. Uranus Data: Numbers. Uranus Data (Table 14-1)
14a. Uranus & Neptune The discovery of Uranus & Neptune Uranus is oddly tilted & nearly featureless Neptune is cold & blue Uranus & Neptune are like yet dislike Jupiter The magnetic fields of Uranus &
Solar System Formation
Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities
4 Decoding the Arecibo Message
4 Decoding the Arecibo Message In 1974, the Arecebo radio telescope was used to send a message into space. The message was directed at the globular cluster M13, which is an assembly of hundreds of thousands
JOVIAN VS. TERRESTRIAL PLANETS. To begin lets start with an outline of the solar system.
JOVIAN VS. TERRESTRIAL PLANETS To begin lets start with an outline of the solar system. JOVIAN VS. TERRESTRIAL PLANETS What are Jovian and Terrestrial planets? Terrestrial planets are Earth like planets,
Comets and Kuiper Belt Objects 4/24/07
and Kuiper Belt Objects Announcements Reading Assignment -- Chapter 30 quiz today In-class activity and course evaluations on Thursday Public lecture tonight 7:30PM, this room Prof. Alfed McEwan, Mars
ASTRONOMY. S6E1 a, b, c, d, e, f S6E2 a, b, c,
ASTRONOMY S6E1 a, b, c, d, e, f S6E2 a, b, c, UNIVERSE Age 13.7 billion years old The Big Bang Theory Protons and Neutrons formed hydrogen and helium. This created heat that formed the stars. Other elements
29. Meteors, meteorites, asteroids and comets 1
29. Meteors, meteorites, asteroids and comets 1 The solar system contains one star, 8 or 9 planets (depending on whether we count Pluto as a "real planet"), some hundreds of thousands of minor planets
Earth, the Moon & Ceres to Scale. 15. Asteroids & Comets
15. Asteroids & Comets The discovery of the asteroid belt Jupiter s gravity shapes the asteroid belt Asteroids occasionally hit one another Some asteroids orbit the Sun outside the asteroid belt Stony,
2. Which of the following planets has exactly two moons? A) Venus B) Mercury C) Uranus D) Mars E) Neptune
Summer 2015 Astronomy - Test 2 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as
CVtpf 2-1. Section 1 Review. 3. Describe How did the process of outgassing help shape Earth's atmosphere?
----------------------------- ---------- ------ Section 1 Review CVtpf 2-1 -- SECTION VOCABULARY planet a celestial body that orbits the sun, is round because of its own gravity, and has cleared the neighborhood
Astronomy Study Guide Answer Key
Astronomy Study Guide Answer Key Section 1: The Universe 1. Cosmology is the study of how the universe is arranged. 2. Identify the type of cosmology a. The sun is the center of the Universe Heliocentric
Which of the following correctly describes the meaning of albedo?
Which of the following correctly describes the meaning of albedo? A) The lower the albedo, the more light the surface reflects, and the less it absorbs. B) The higher the albedo, the more light the surface
Formation of the Solar System Chapter 8
Formation of the Solar System Chapter 8 To understand the formation of the solar system one has to apply concepts such as: Conservation of angular momentum Conservation of energy The theory of the formation
26. Introduction to the Solar System page 1
26. Introduction to the Solar System page 1 A. To get a sense of scale: Here is a "scale model for the Solar System" illustrating the relative sizes of, and distances between, the planets and the Sun.
The Main Points. Asteroids. Lecture #22: Asteroids 3/14/2008
Lecture #22: Asteroids Discovery/Observations Where are they? How many are there? What are they like? Where did they come from? Reading: Chapter 12.1 Astro 102/104 1 The Main Points Asteroids are small,
Chapter 11 Jovian Planet Systems
Chapter 11 Jovian Planet Systems 11.1 A Different Kind of Planet Our goals for learning: Are jovian planets all alike? What are jovian planets like on the inside? What is the weather like on jovian planets?
1. thought the earth was at the center of the solar system and the planets move on small circles that move on bigger circles
Earth Science Chapter 20: Observing the Solar System Match the observations or discoveries with the correct scientist. Answers may be used more than once. Answers that cannot be read will be counted as
Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999
Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999 Reminder: When I write these questions, I believe that there is one one correct answer. The questions consist of all parts a e. Read the entire
Lecture: Planetology. Part II: Solar System Planetology. Orbits of Planets. Rotational Oddities. A. Structure of Solar System. B.
Part II: Solar System Planetology 2 A. Structure of Solar System B. Planetology Lecture: Planetology C. The Planets and Moons Updated: 2012Feb10 A. Components of Solar System 3 Orbits of Planets 4 1. Planets
Star. Planet. Chapter 1 Our Place in the Universe. 1.1 A Modern View of the Universe Our goals for learning: What is our place in the universe?
Chapter 1 Our Place in the Universe 1.1 A Modern View of the Universe Our goals for learning: What is our place in the universe? How did we come to be? How can we know what the universe was like in the
Asteroids/Meteorites 4/17/07
Asteroids and Meteorites Announcements Reading Assignment Read Chapter 16 Term Paper Due Today Details of turnitin.com Go to www.turnitin.com Click on new users usertype student Class ID: 1868418 Password:
Chapter 11 Jovian Planet Systems. Comparing the Jovian Planets. Jovian Planet Composition 4/10/16. Spacecraft Missions
Chapter 11 Jovian Planet Systems Jovian Planet Interiors and Atmospheres How are jovian planets alike? What are jovian planets like on the inside? What is the weather like on jovian planets? Do jovian
Unit 3 Lesson 2 Gravity and the Solar System. Copyright Houghton Mifflin Harcourt Publishing Company
Florida Benchmarks SC.8.N.1.4 Explain how hypotheses are valuable if they lead to further investigations, even if they turn out not to be supported by the data. SC.8.N.1.5 Analyze the methods used to develop
Chapter 11 Jovian Planet Systems. Jovian Planet Composition. Are jovian planets all alike? Density Differences. Density Differences
Chapter 11 Jovian Planet Systems 11.1 A Different Kind of Planet Our goals for learning Are jovian planets all alike? What are jovian planets like on the inside? What is the weather like on jovian planets?
ASTR 1050: Survey of Astronomy Fall 2012 PRACTICE Exam #2 Instructor: Michael Brotherton Covers Solar System and Exoplanet Topics
ASTR 1050: Survey of Astronomy Fall 2012 PRACTICE Exam #2 Instructor: Michael Brotherton Covers Solar System and Exoplanet Topics Instructions This exam is closed book and closed notes, although you may
Chapter 8 Jovian Planet Systems
Chapter 8 Jovian Planet Systems How do jovian planets differ from terrestrials? They are much larger than terrestrial planets They do not have solid surfaces The things they are made of are quite different
Formation of the Solar System
Formation of the Solar System Most of our knowledge of the formation of the Solar System has emerged from: studies of interstellar gas clouds, fallen meteorites, the Earth s Moon, the various planets observed
Lecture 2: The Solar System
Lecture 2: The Solar System 1) WileyPLUS (online) registration? homework? 2) Final Exam scheduled Tuesday, December 15 (12-2) 3) iclickers assigned on Tuesday 4) Big Island Field Trip Fall 2015 Big Island
Inner Planets (Part II)
Inner Planets (Part II) Sept. 18, 2002 1) Atmospheres 2) Greenhouse Effect 3) Mercury 4) Venus 5) Mars 6) Moon Announcements Due to technical difficulties, Monday s quiz doesn t count An extra credit problem
The Solar System. From the Big Bang to Planets, Asteroids, Moons. and eventually humans!
The Solar System From the Big Bang to Planets, Asteroids, Moons. and eventually humans! SOLAR SYSTEM A SUN, AND ALL THE OBJECTS ORBITING IT But First! The Uncertainty Clause Big Bang! First Generation
The Planets and Scale
The Planets and Scale Elementary grades Lesson Summary Students practice reading data about the planets from a table and making numerical comparisons. Prior Knowledge & Skills Comparing numbers Reading
Assessment Vocabulary Instructional Strategies
Inner Planets and the similarities for each of the inner planets? (Mercury, Venus, Earth, and Mars - such as Size, atmosphere, moons/rings, ) What are the unique characteristics and details of each of
AST Section 2: Test 2
AST1002 - Section 2: Test 2 Date: 11/05/2009 Name: Equations: E = m c 2 Question 1: The Sun is a stable star because 1. gravity balances forces from pressure. (!) Miniquiz 7, Q3 2. the rate of fusion equals