Making a Solar System
|
|
- Claire Hardy
- 3 years ago
- Views:
Transcription
1 Making a Solar System
2 Learning Objectives! What are our Solar System s broad features? Where are asteroids, comets and each type of planet? Where is most of the mass? In what direction do planets orbit and rotate?! How does the Nebular Theory explain our Solar System?! If the Solar System forms from a ball (sphere) of gas, why do the planets orbit in a flat plane (the ecliptic)?! What is the source of energy of the protosun? What key factor in the Nebular Theory guides which planets form at different distances from the Sun? What is the Frost Line?! How do planets form from planetesimals? How do planetesimals relate to the Kuiper and Asteroid Belts? The Oort Cloud? The Period of Heavy Bombardment?! Are there problems with the Nebular Theory?
3 What is the Age of the Solar System?! Earth: oldest rocks are 4.4 billion years!moon: oldest rocks are 4.5 billion years! Meteorites: oldest are 4.6 billion years!sun: fusion models based on energy output and how much of the Sun s hydrogen has been fused so far estimate an age of 4.6 billion years (next lectures)!the age of the Solar System is around 4.6 billion years
4 Solar Nebular Theory! Proposed by the German philosopher Immanuel Kant! The Solar System formed from a spinning cloud of gas, dust, and ice! Mostly hydrogen and helium! 4.6 billion years ago
5 Solar Nebular Theory! In these clouds are small clumps that become gravitationally unstable! The gas and dust has mass (thus gravity)! Gravitational attraction between all particles pull them towards the center of the cloud, and the cloud contracts
6 But..! Not all of the mass falls in directly. Why?! The gas cloud (which is three-dimensional, of course so think of it as a ball) is spinning slightly. This causes the formation of a flattened structure as it collapses! Forms a pancake-like disk, concentrated at the center, with a rotation in the original direction of spin
7 At the center of this mess! the Sun begins to form! As gas and dust collapse into the cloud s middle, the energy from the gravitational fall turns to heat! Stuff at the center starts to give off light and heat! This is the protosun Protosun forms in first 2-3 images
8 But we re not finished yet! This is not yet the Sun as we know it. Its energy is still coming entirely from gravitational contraction! The protosun becomes so hot and dense that nuclear fusion begins...the Sun! Initial contraction to fusion starting takes about 100 million years Protosun forms in first 2-3 images
9 Planet Formation in the Disk! Heavy elements clump! Form dust grains! Dust grains collide, stick together! Form planetesimals! Like asteroids & comets! Big planetesimals attract small ones! Collisions build up inner planets, outer planet cores
10 Why are the planets different, according to the Nebular Theory? Temperature (and so distance from the protosun) is the key factor in the Nebular Theory
11 Why are the Planets Different?! Temperature is the key factor! Inner Solar System: Hot! Light elements (H, He) and ices vaporized! Blown out of the inner Solar System by the solar wind! Only heavy elements (iron etc.) left! Outer Solar System: Cold! Too cold to evaporate ices to space! Rock & ice seeds grew large enough to pull gasses (H, He) onto themselves
12 Formation of the Inner Planets! The inner Solar System was too hot for ices and light gases to exist. Thus, planetesimals consisted entirely of heavy elements (they were just rocks)! Planetesimals run into each other, then coalesce to form protoplanets! Protoplanets accrete (attract) more planetesimals until most of the matter in the inner Solar System is swept up
13 Formation of the Inner Planets! Computer models show it takes a few hundred million years to form ~four inner planets! The Sun would have begun fusion by then
14 Formation of the Outer Planets! The process is initially very similar to the formation of the inner planets! Since it is colder at this distance, ices can exist, and planetesimals consist of rock and ices. This leads to larger protoplanets, which ultimately become the rocky, icy cores of the outer planets! Finally, because hydrogen and helium haven t been cleared from the area, the outer planets gravitationally attract huge amounts of these gases. The outer planets become much bigger than the inner planets
15 Heavy Bombardment! There were billions of planetesimals in the early Solar System! Many collided with the young planets! Look at the craters on the Moon and Mercury! The period of heavy bombardment! Lasted for about the first 800 million years of the Solar System (after which most planetesimals had hit something or gone into stable orbits)
16 Fates of the Planetesimals! Between Mars and Jupiter! Remain as the asteroids! Near Jupiter & Saturn!Ejected from the Solar System! Near Uranus & Neptune!Ejected to the Oort Cloud! Beyond Neptune!Remain in the Kuiper Belt
17 Results! Planetesimals collect to become the planets! Asteroids and comets are left-over planetesimals! The fossils of Solar System birth! The Solar System continues to change, but more slowly! The outer planets are still contracting! Earth and Venus are still volcanically active! Some impacts from left-over planetesimals continue
18 The The Constellation Orion Orion Nebula
19 Disks around Young Stars are Common
20 Discovered Exoplanets Mass (MJupiter) J S U N Me V E Ma Distance of Orbit from Parent Star (AU)
21 An example of an extrasolar multi-planet system - Kepler 90 Mercury Venus Earth Mars
22 Next Time Our Beacon: The Sun
Astronomy. physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am
Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Planetology II Key characteristics Chemical elements and planet size Radioactive dating Solar system formation Solar nebula
The History of the Solar System. From cloud to Sun, planets, and smaller bodies
The History of the Solar System From cloud to Sun, planets, and smaller bodies The Birth of a Star Twenty years ago, we knew of only one star with planets the Sun and our understanding of the birth of
Where did the solar system come from?
Chapter 06 Part 2 Making the Planetary Donuts Where did the solar system come from? Galactic Recycling Elements that formed planets were made in stars and then recycled through interstellar space. Evidence
Chapter 15: The Origin of the Solar System
Chapter 15: The Origin of the Solar System The Solar Nebula Hypothesis Basis of modern theory of planet formation: Planets form at the same time from the same cloud as the star. Planet formation sites
1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids
The Solar System 1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids The distances to planets are known from Kepler s Laws (once calibrated with radar ranging to Venus) How are planet
Radioactive Dating. U238>Pb206. Halflife: Oldest earth rocks. Meteors and Moon rocks. 4.5 billion years billion years
U238>Pb206 Halflife: 4.5 billion years Oldest earth rocks 3.96 billion years Meteors and Moon rocks 4.6 billion years This is the time they solidified The solar system is older than this. Radioactive Dating
Brooks Observatory telescope observing this week
Brooks Observatory telescope observing this week Mon. - Thurs., 7:30 9:15 PM MW, 7:30 8:45 PM TR See the class web page for weather updates. This evening s session is cancelled. Present your blue ticket
Solar System Formation
Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities
Chapter 8 Lecture. The Cosmic Perspective Seventh Edition. Formation of the Solar System
Chapter 8 Lecture The Cosmic Perspective Seventh Edition Formation of the Solar System Formation of the Solar System 8.1 The Search for Origins Our goals for learning: Develop a theory of solar system
HW #2. Solar Nebular Theory. Predictions: Young stars have disks. Disks contain gas & dust. Solar System should contain disk remnants
Astronomy 330: Extraterrestrial Life This class (Lecture 9): Next Class: Planet Formation Zachary Brewer Quinn Calvert Exoplanets Itamar Allali Brian Campbell-Deem HW #3 due Sunday night. Music: Another
What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1
What is it like? When did it form? How did it form The Solar System Fall, 2005 Astronomy 110 1 Fall, 2005 Astronomy 110 2 The planets all orbit the sun in the same direction. The Sun spins in the same
Astronomy 210 Midterm #2
Astronomy 210 Midterm #2 This Class (Lecture 27): Birth of the Solar System II Next Class: Exam!!!! 2 nd Hour Exam on Friday!!! Review Session on Thursday 12-1:30 in room 236 Solar Observing starts on
The Coriolis effect. Why does the cloud spin? The Solar Nebula. Origin of the Solar System. Gravitational Collapse
Origin of the Solar System Our theory must explain the data 1. Large bodies in the Solar System have orderly motions. 2. There are two types of planets. small, rocky terrestrial planets large, hydrogen-rich
9. Formation of the Solar System
9. Formation of the Solar System The evolution of the world may be compared to a display of fireworks that has just ended: some few red wisps, ashes, and smoke. Standing on a cool cinder, we see the slow
Chapter 19 The Origin of the Solar System
Chapter 19 The Origin of the Solar System Early Hypotheses catastrophic hypotheses, e.g., passing star hypothesis: Star passing closely to the the sun tore material out of the sun, from which planets could
Comparative Planetology II: The Origin of Our Solar System. Chapter Eight
Comparative Planetology II: The Origin of Our Solar System Chapter Eight ASTR 111 003 Fall 2007 Lecture 06 Oct. 09, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6)
Comparative Planetology II: The Origin of Our Solar System. Chapter Eight
Comparative Planetology II: The Origin of Our Solar System Chapter Eight ASTR 111 003 Fall 2007 Lecture 07 Oct. 15, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6)
Formation of the Solar System Chapter 8
Formation of the Solar System Chapter 8 To understand the formation of the solar system one has to apply concepts such as: Conservation of angular momentum Conservation of energy The theory of the formation
Astronomy 230 Section 1 MWF B6 Eng Hall. Outline. Star Formation. The Protostar Stage. Gravity, Spin, & Magnetic Fields
Astronomy 230 Section 1 MWF 1400-1450 106 B6 Eng Hall This Class (Lecture 7): Planet Formation and Next Class: Extrasolar Planets Oral Presentation Decisions! Deadline is Feb 6 th. Outline Star formation
Solar System Formation
Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities
What does the solar system look like?
What does the solar system look like? The solar system exhibits clear patterns of composition and motion. These patterns are far more important and interesting than numbers, names, and other trivia. Relative
1 A Solar System Is Born
CHAPTER 16 1 A Solar System Is Born SECTION Our Solar System California Science Standards 8.2.g, 8.4.b, 8.4.c, 8.4.d BEFORE YOU READ After you read this section, you should be able to answer these questions:
Solar System Formation
Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities
9/22/ A Brief Tour of the Solar System. Chapter 6: Formation of the Solar System. What does the solar system look like?
9/22/17 Lecture Outline 6.1 A Brief Tour of the Solar System Chapter 6: Formation of the Solar System What does the solar system look like? Our goals for learning: What does the solar system look like?
-Melissa Greenberg, Arielle Hoffman, Zachary Feldmann, Ryan Pozin, Elizabeth Weeks, Christopher Pesota, & Sara Pilcher
-Melissa Greenberg, Arielle Hoffman, Zachary Feldmann, Ryan Pozin, Elizabeth Weeks, Christopher Pesota, & Sara Pilcher Formation Overview All explanations as to how the solar system was formed are only
Comparative Planetology I: Our Solar System
Comparative Planetology I: Our Solar System Guiding Questions 1. Are all the other planets similar to Earth, or are they very different? 2. Do other planets have moons like Earth s Moon? 3. How do astronomers
Test 2 Result: Sec 1. To see the scantron & problem set, contact the TA: Mr. He Gao
Test 2 Result: Sec 1 Column Statistics for: Test2 Count: 103 Average: 31.4 Median: 32.0 Maximum: 46.0 Minimum: 10.0 Standard Deviation: 7.94 To see the scantron & problem set, contact the TA: Mr. He Gao
Formation of the Solar System. What We Know. What We Know
Formation of the Solar System Many of the characteristics of the planets we discussed last week are a direct result of how the Solar System formed Until recently, theories for solar system formation were
The History of the Earth
The History of the Earth We have talked about how the universe and sun formed, but what about the planets and moons? Review: Origin of the Universe The universe began about 13.7 billion years ago The Big
How Our Solar System Formed: A Close Look at the Planets Orbiting Our Sun
How Our Solar System Formed: A Close Look at the Planets Orbiting Our Sun By Cynthia Stokes Brown, Big History Project, adapted by Newsela staff on 06.15.16 Word Count 1,730 TOP: Illustration of a fledging
4 HOW OUR SOLAR SYSTEM FORMED 750L
4 HOW OUR SOLAR SYSTEM FORMED 750L HOW OUR SOLAR SYSTEM FORMED A CLOSE LOOK AT THE PLANETS ORBITING OUR SUN By Cynthia Stokes Brown, adapted by Newsela Planets come from the clouds of gas and dust that
Astro 1: Introductory Astronomy
Astro 1: Introductory Astronomy David Cohen Class 16: Thursday, March 20 Spring 2014 large cloud of interstellar gas and dust - giving birth to millions of stars Hubble Space Telescope: Carina Nebula
Today. Solar System Formation. a few more bits and pieces. Homework due
Today Solar System Formation a few more bits and pieces Homework due Pluto Charon 3000 km Asteroids small irregular rocky bodies Comets icy bodies Formation of the Solar System How did these things come
ET: Astronomy 230 Section 1 MWF Astronomy Building. Outline. Presentations. Presentations. HW #2 is due on Friday First Presentations on
This Class (Lecture 8): Planet Formation Next Class: ET: Astronomy 230 Section 1 MWF 1400-1450 134 Astronomy Building Nature of Solar Systems HW #2 is due on Friday First Presentations on 19 th and 23
! Group project! a)! 65% b)! 70% c)! 75% d)! 80% e)! 85%
This Class (Lecture 6): More Asteroids Next Class: Dino-Killers HW1 due on Sun. Last day to go to the Nat History Building before deadline. Music: The Day Lassie Went to the Moon Camper van Beethoven!
The Big Bang Theory (page 854)
Name Class Date Space Homework Packet Homework #1 Hubble s Law (pages 852 853) 1. How can astronomers use the Doppler effect? 2. The shift in the light of a galaxy toward the red wavelengths is called
Chapter 8 Formation of the Solar System
Chapter 8 Formation of the Solar System SUMMARY OF STAGES IN FORMATION OF SOLAR SYSTEM STARTING POINT: A ROTATING SPHERICAL NEBULA with atoms made by Galactic recycling 1-GRAVITATIONAL CONTRACTION AND
WHAT WE KNOW. Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So..
ASTRONOMY THE BIG BANG THEORY WHAT WE KNOW Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So.. WHAT DOES THIS MEAN? If
Moon Obs #1 Due! Moon visible: early morning through afternoon. 6 more due June 13 th. 15 total due June 25 th. Final Report Due June 28th
Moon Obs #1 Due! Moon visible: early morning through afternoon 6 more due June 13 th 15 total due June 25 th Final Report Due June 28th Our Solar System Objectives Overview of what is in our solar system
Origins and Formation of the Solar System
Origins and Formation of the Solar System 312-1 Describe theories on the formation of the solar system Smash, crash and bang The solar system is big, and big things have big origins A history of ideas
The Solar Nebula Theory
Reading: Chap. 21, Sect.21.1, 21.3 Final Exam: Tuesday, December 12; 4:30-6:30PM Homework 10: Due in recitation Dec. 1,4 Astro 120 Fall 2017: Lecture 25 page 1 Astro 120 Fall 2017: Lecture 25 page 2 The
Chapter 23: Touring Our Solar System
Chapter 23: Touring Our Solar System The Sun The is the center of our solar system. The Sun makes up of all the mass of our solar system. The Sun s force holds the planets in their orbits around the Sun.
Chapter 4 The Solar System
Chapter 4 The Solar System Comet Tempel Chapter overview Solar system inhabitants Solar system formation Extrasolar planets Solar system inhabitants Sun Planets Moons Asteroids Comets Meteoroids Kuiper
9.2 - Our Solar System
9.2 - Our Solar System Scientists describe our solar system as the Sun and all the planets and other celestial objects, such as moons, comets, and asteroids, that are held by the Sun s gravity and orbit
Clicker Question: Clicker Question: Clicker Question:
Test results Last day to drop without a grade is Feb 29 Grades posted in cabinet and online F D C B A In which direction would the Earth move if the Sun s gravitational force were suddenly removed from
The Formation of the Solar System
The Formation of the Solar System Basic Facts to be explained : 1. Each planet is relatively isolated in space. 2. Orbits nearly circular. 3. All roughly orbit in the same plane. 4. Planets are all orbiting
Initial Conditions: The temperature varies with distance from the protosun.
Initial Conditions: The temperature varies with distance from the protosun. In the outer disk it is cold enough for ice to condense onto dust to form large icy grains. In the inner solar system ice can
Bell Work. Why are solar eclipses so rare? What are scale models?
Daily Routine Sit in your appropriate seat quietly All back packs on the floor All cell phones away All IPods off and headphones out of your ears Have all necessary materials out No food or drink except
AST 301 Introduction to Astronomy
AST 301 Introduction to Astronomy John Lacy RLM 16.332 471-1469 lacy@astro.as.utexas.edu Myoungwon Jeon RLM 16.216 471-0445 myjeon@astro.as.utexas.edu Bohua Li RLM 16.212 471-8443 bohuali@astro.as.utexas.edu
Astronomy 210 Section 1 MWF Astronomy Building. Outline. Comets. What is a Comet? 2 nd Hour Exam This Friday!
This Class (Lecture 26): Astronomy 210 Section 1 MWF 1500-1550 134 Astronomy Building Debris/ Birth of the Solar System Next Class: Birth of the Solar System II 2 nd Hour Exam This Friday! Outline Comets
The Solar Nebula Theory. This lecture will help you understand: Conceptual Integrated Science. Chapter 28 THE SOLAR SYSTEM
This lecture will help you understand: Hewitt/Lyons/Suchocki/Yeh Conceptual Integrated Science Chapter 28 THE SOLAR SYSTEM Overview of the Solar System The Nebular Theory The Sun Asteroids, Comets, and
Why are Saturn s rings confined to a thin plane? 1. Tidal forces 2. Newton s 1st law 3. Conservation of energy 4. Conservation of angular momentum
Announcements Astro 101, 12/2/08 Formation of the Solar System (text unit 33) Last OWL homework: late this week or early next week Final exam: Monday, Dec. 15, 10:30 AM, Hasbrouck 20 Saturn Moons Rings
8. Solar System Origins
8. Solar System Origins Chemical composition of the galaxy The solar nebula Planetary accretion Extrasolar planets Our Galaxy s Chemical Composition es Big Bang produced hydrogen & helium Stellar processes
Overview of the Solar System. Solar system contents one star, several planets, lots of debris.
Overview of the Solar System Solar system contents one star, several planets, lots of debris. Most of it is the Sun! 99.8% of the mass of the Solar System resides in the Sun. A hot ball of mostly hydrogen
Origin of the Solar System
Origin of the Solar System and Solar System Debris 1 Debris comets meteoroids asteroids gas dust 2 Asteroids irregular, rocky hunks small in mass and size Ceres - largest, 1000 km in diameter (1/3 Moon)
Astronomy 1 Winter Lecture 11; January
Astronomy 1 Winter 2011 Lecture 11; January 31 2011 Previously on Astro-1 Properties of the Planets: Orbits in the same plane and direction Inner planets are small and made of heavy elements Outer planets
Astronomy 103: First Exam
Name: Astronomy 103: First Exam Stephen Lepp October 27, 2010 Each question is worth 2 points. Write your name on this exam and on the scantron. 1 Short Answer A. What is the largest of the terrestrial
Dating the Universe. But first... Lecture 6: Formation of the Solar System. Observational Constraints. How did the Solar System Form?
Dating the Universe Lecture 6: Formation of the Solar System Astro 202 Prof. Jim Bell (jfb8@cornell.edu) Spring 2008 But first... Graded Paper 1 returned today... Paper 2 is due at beginning of class on
Ch 23 Touring Our Solar System 23.1 The Solar System 23.2 The Terrestrial Planet 23.3 The Outer Planets 23.4 Minor Members of the Solar System
Ch 23 Touring Our Solar System 23.1 The Solar System 23.2 The Terrestrial Planet 23.3 The Outer Planets 23.4 Minor Members of the Solar System Ch 23.1 The Solar System Terrestrial planets- Small Rocky
Cosmology Vocabulary
Cosmology Vocabulary Vocabulary Words Terrestrial Planets The Sun Gravity Galaxy Lightyear Axis Comets Kuiper Belt Oort Cloud Meteors AU Nebula Solar System Cosmology Universe Coalescence Jovian Planets
Currently, the largest optical telescope mirrors have a diameter of A) 1 m. B) 2 m. C) 5 m. D) 10 m. E) 100 m.
If a material is highly opaque, then it reflects most light. absorbs most light. transmits most light. scatters most light. emits most light. When light reflects off an object, what is the relation between
Introduction to the Solar System
Introduction to the Solar System Sep. 11, 2002 1) Introduction 2) Angular Momentum 3) Formation of the Solar System 4) Cowboy Astronomer Review Kepler s Laws empirical description of planetary motion Newton
see disks around new stars in Orion nebula where planets are probably being formed 3
Planet Formation contracting cloud forms stars swirling disk of material around forming star (H, He, C, O, heavier elements, molecules, dust ) form planets New born star heats up material, blows away solar
Chapter Outline. Earth and Other Planets. The Formation of the Solar System. Clue #1: Planetary Orbits. Clues to the Origin of the Solar System
Chapter Outline Earth and Other Planets The Formation of the Solar System Exploring the Solar System Chapter 16 Great Idea: Earth, one of the planets that orbit the Sun, formed 4.5 billion years ago from
Exploring Our Solar System
Exploring Our Solar System Our Solar System What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with the statement
Asteroids February 23
Asteroids February 23 Test 2 Mon, Feb 28 Covers 6 questions from Test 1. Added to score of Test 1 Telescopes Solar system Format similar to Test 1 Missouri Club Fri 9:00 1415 Fri, last 10 minutes of class
Earth Science 11 Learning Guide Unit Complete the following table with information about the sun:
Earth Science 11 Learning Guide Unit 2 Name: 2-1 The sun 1. Complete the following table with information about the sun: a. Mass compare to the Earth: b. Temperature of the gases: c. The light and heat
A star is a massive sphere of gases with a core like a thermonuclear reactor. They are the most common celestial bodies in the universe are stars.
A star is a massive sphere of gases with a core like a thermonuclear reactor. They are the most common celestial bodies in the universe are stars. They radiate energy (electromagnetic radiation) from a
FCAT Review Space Science
FCAT Review Space Science The Law of Universal Gravitation The law of universal gravitation states that ALL matter in the universe attracts each other. Gravity is greatly impacted by both mass and distance
Formation of the Solar System
Formation of the Solar System What theory best explains the features of our solar system? The nebular theory states that our solar system formed from the gravitational collapse of a giant interstellar
The Solar System consists of
The Universe The Milky Way Galaxy, one of billions of other galaxies in the universe, contains about 400 billion stars and countless other objects. Why is it called the Milky Way? Welcome to your Solar
Ag Earth Science Chapter 23
Ag Earth Science Chapter 23 Chapter 23.1 Vocabulary Any of the Earth- like planets, including Mercury, Venus, and Earth terrestrial planet Jovian planet The Jupiter- like planets: Jupiter, Saturn, Uranus,
Announcements. HW #3 is Due on Thursday (September 22) as usual. Chris will be in RH111 on that day.
Announcements The Albuquerque Astronomical Society (TAAS) is hosting a public lecture SATURDAY, SEPTEMBER 17TH - 7:00pm SCIENCE AND MATH LEARNING CENTER, UNM CAMPUS Free and open to the public USA Total
The Solar System. Sun. Rotates and revolves around the Milky Way galaxy at such a slow pace that we do not notice any effects.
The Solar System Sun Center of the solar system About 150,000,000 km from the Earth An averaged sized, yellow star Spherical in shape due to gravity Made of about ¾ hydrogen and ¼ helium, both of which
Which of the following correctly describes the meaning of albedo?
Which of the following correctly describes the meaning of albedo? A) The lower the albedo, the more light the surface reflects, and the less it absorbs. B) The higher the albedo, the more light the surface
Formation of the Solar System and Other Planetary Systems
Formation of the Solar System and Other Planetary Systems 1 Questions to Ponder 1. Are all the other planets similar to Earth, or are they very different? 2. Do other planets have moons like Earth s Moon?
m V Density Formation of the Solar System and Other Planetary Systems Questions to Ponder
Formation of the Solar System and Other Planetary Systems Questions to Ponder 1. Are all the other planets similar to Earth, or are they very different? 2. Do other planets have moons like Earth s Moon?
Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.
Lecture Outlines Chapter 15 Astronomy Today 7th Edition Chaisson/McMillan Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Terrestrial and Jovian Planets
m V Formation of the Solar System and Other Planetary Systems Questions to Ponder about Solar System
Formation of the Solar System and Other Planetary Systems Questions to Ponder about Solar System 1 1. Are all the other planets similar to Earth, or are they very different? 2. Do other planets have moons
Planets: Name Distance from Sun Satellites Year Day Mercury 0.4AU yr 60 days Venus yr 243 days* Earth 1 1 yr 1 day Mars 1.
The Solar System (Ch. 6 in text) We will skip from Ch. 6 to Ch. 15, only a survey of the solar system, the discovery of extrasolar planets (in more detail than the textbook), and the formation of planetary
4 HOW DID THE EARTH FORM?
4 HOW DID THE EARTH FORM? New stars and space debris spinning like pizza dough are a couple of the things that explain the formation of solar systems like ours. In this three-part lecture, David Christian
Meteorites. A Variety of Meteorite Types. Ages and Compositions of Meteorites. Meteorite Classification
Meteorites A meteor that survives its fall through the atmosphere is called a meteorite Hundreds fall on the Earth every year Meteorites do not come from comets First documented case in modern times was
Test Name: 09.LCW.0352.SCIENCE.GR Q1.S.THEUNIVERSE-SOLARSYSTEMHONORS Test ID: Date: 09/21/2017
Test Name: 09.LCW.0352.SCIENCE.GR7.2017.Q1.S.THEUNIVERSE-SOLARSYSTEMHONORS Test ID: 243920 Date: 09/21/2017 Section 1.1 - According to the Doppler Effect, what happens to the wavelength of light as galaxies
The Cosmic Perspective Seventh Edition. Asteroids, Comets, and Dwarf Planets: Their Natures, Orbits, and Impacts. Chapter 12 Review Clickers
Review Clickers The Cosmic Perspective Seventh Edition Asteroids, Comets, and Dwarf Planets: Their Natures, Orbits, and Impacts Asteroids a) are rocky and small typically the size of a grain of rice or
Which of the following statements best describes the general pattern of composition among the four jovian
Part A Which of the following statements best describes the general pattern of composition among the four jovian planets? Hint A.1 Major categories of ingredients in planetary composition The following
Science Skills Station
Science Skills Station Objective 1. Describe the relationship between the distance from the sun and temperature. 2. Make inferences about how temperature impacted the solar system formation. 3. Explain
Origin of the Solar System
Solar nebula Formation of planetismals Formation of terrestrial planets Origin of the Solar System Announcements There will be another preceptor-led study group Wednesday at 10:30AM in room 330 of Kuiper
Unit 3 Lesson 2 Gravity and the Solar System. Copyright Houghton Mifflin Harcourt Publishing Company
Florida Benchmarks SC.8.N.1.4 Explain how hypotheses are valuable if they lead to further investigations, even if they turn out not to be supported by the data. SC.8.N.1.5 Analyze the methods used to develop
Chapter 15 The Formation of Planetary Systems
Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Formation of the Solar System 15.3 Terrestrial and Jovian Planets 15.4 Interplanetary Debris 15.5 Solar
on it, can still ripen a bunch of grapes as though it had nothing else in the Universe to do. Galileo Galilei
The Sun, with all the planets revolving around it, and depending on it, can still ripen a bunch of grapes as though it had nothing else in the Universe to do. Galileo Galilei What We Will Learn Today Where
Unit 12 Lesson 1 What Objects Are Part of the Solar System?
Unit 12 Lesson 1 What Objects Are Part of the Solar System? The Solar System Earth, other planets, and the moon are part of a solar system. A solar system is made up of a star and the planets and other
Notes: The Solar System
Notes: The Solar System The Formation of the Solar System 1. A gas cloud collapses under the influence of gravity. 2. Solids condense at the center, forming a protostar. 3. A falttened disk of matter surrounds
Physics Homework 5 Fall 2015
1) Long period comets are thought to reside mainly in the 1) A) Interstellar Medium. B) asteroid belt. C) Oort Cloud. D) Kirkwood gaps. E) Kuiper Belt. 2) Pluto is most similar to 2) A) Mercury. B) Triton.
Physics Homework 5 Fall 2015
1) As the solar nebula contracts it 1) A) cools due to condensation. B) spins faster due to conservation of angular momentum. C) flattens out into the ecliptic plane around the Sun's poles. D) loses angular
Astronomy Wed. Oct. 6
Astronomy 301 - Wed. Oct. 6 Guest lectures, Monday and today: Prof. Harriet Dinerstein Monday: The outer planets & their moons Today: asteroids, comets, & the Kuiper Belt; formation of the Solar System
ASTR 150. Homework 2 due Monday. Planetarium shows this week Next Monday/ Wednesday no lectures
ASTR 150 Homework 2 due Monday Office hour today Planetarium shows this week Next Monday/ Wednesday no lectures Time for asteroid lab Last time: Asteroids and Comets Today: Solar System Formation Music:
Our Planetary System & the Formation of the Solar System
Our Planetary System & the Formation of the Solar System Chapters 7 & 8 Comparative Planetology We learn about the planets by comparing them and assessing their similarities and differences Similarities
Vagabonds of the Solar System
Vagabonds of the Solar System Guiding Questions 1. How and why were the asteroids first discovered? 2. Why didn t the asteroids coalesce to form a single planet? 3. What do asteroids look like? 4. How
12/3/14. Guiding Questions. Vagabonds of the Solar System. A search for a planet between Mars and Jupiter led to the discovery of asteroids
Guiding Questions Vagabonds of the Solar System 1. How and why were the asteroids first discovered? 2. Why didn t the asteroids coalesce to form a single planet? 3. What do asteroids look like? 4. How
Lecture: Planetology. Part II: Solar System Planetology. A. Components of Solar System. B. Formation of Solar System. C. Xtra Solar Planets
Part II: Solar System Planetology A. Components of Solar System 2 Lecture: Planetology B. Formation of Solar System C. Xtra Solar Planets Updated: Oct 31, 2006 A. Components of Solar System 3 The Solar