Baryonic Antimatter in Cosmic Rays

Size: px
Start display at page:

Download "Baryonic Antimatter in Cosmic Rays"

Transcription

1 Baryonic Antimatter in Cosmic Rays Context & propagation Antiprotons Antideuterons [USINE & CLUMPY ] David Maurin (LPNHE) dmaurin@lpnhe.in2p3.fr PPC 2010 Torino, 15th July 2010

2 (Still) open questions in CR physics 1. Do we understand the standard galactic fluxes? - Sources (SN, pulsars, SB...) - Nucleosynthesis (r and s-process for heavy nuclei) - Acceleration mechanisms (injection, B amplification) - Propagation mechanisms (link to turbulence, spatial dependence, isotropy) - Magneto-cosmico-gaseo properties of the Galaxy (MHD description) i) GCRs here/in the whole Galaxy (linked to diffuse emissions) ii) GCRs now/in the past/future (linked with massive extinctions?) 2. Do we understand Solar Modulation? 3. Are GCRs a good laboratory to search for new physics? - Dark matter/new physics? - Just standard astrophysics? I. Context & propagation

3 ~ Milestones ~ Measurements AMS, CREAM, FERMI, PAMELA, TRACER,... Acceleration 2000 Non-linear magnetic field amplification in diffusive shocks (à la Bell & Lucek) Transport 2000's Necessity to take into account time-dependent effects and local sources? 2010's Inhomogeneous transport, MHD self-consistent approaches? I. Context & propagation

4 Cosmic Ray journey in 3 steps: Requirement: consistent description of all fluxes (electrons, nuclei and gamma) 1. Synthesis and acceleration 2. Transport (diffusion & interactions) 3. Solar modulation+detection HESS 1 FERMI, AMS-γ 2 ν _ d ν ANTARES km3 3 Adapted from Moskalenko et al. (2004) AMS GAPS AMS, CREAM, PAMELA => Search for DM where standard production is rare (secondary) => Use LiBeB to calibrate the transport coefficients I. Context & propagation

5 Basics on transport: diffusion and source slope Steady-state: 1D Diffusion Model vs LeakyBox Model D => Link between LBM and diffusion models Degeneracy: Models with the same D0/L are equivalent (secondary-to-primary production) Simple case: secondary-to-primary ratio High energy: I. Context & propagation

6 Phenomenology of the DM signal Maurin et al., 2006a [arxiv:astro-ph/ ] Maurin et al., 2006b [ arxiv:astro-ph/ ] Taillet & Maurin, A&A 402, 971 (2003) Maurin & Taillet, A&A 404, 949 (2003) 1) Good approximation to neglect: energy losses, spallations 2) In 1D model (only z-dependence): 3) Breaks Do/L degeneracy: 2D => signal uncertainty scales as L => signal not very sensitive to (r) near the GC (if L 10 kpc) [pbar and dbar PBH] Barrau et al., A&A 388, 676 (2002) Barrau et al., A&A 398, 403 (2003) [pbar and dbar SUSY & KK] Donato et al., PRD 69, (2004) Barrau et al., PRD 72, (2005) Donato et al., PRD 78, (2008) N.B.: effect of Vc or Vl (at low energy) can also be addressed I. Context & propagation

7 Transport parameter determination: status => already tricky in a given configuration Automated parameter scan Maurin et al., ApJ 555, 596 (2001) Maurin, Taillet & Donato, A&A 394, 1039 (2002) => δ [ ] Markov Chain Monte Carlo scan [+ local bubble (determination of L)] Donato, Maurin & Taillet, A&A 381, 539 (2002) Putze et al., A&A 497, 991 (2009) Putze, Derome & Maurin, A&A 516, A66 (2010) Systematic uncertainties Maurin, Putze & Derome, A&A 516, A67 (2010) => L [1-50] kpc => ingredients yield Sys.Unc.>Stat.Unc. => But definitively no standard propagation model yet... Bloemen et al. A&A 267, 372 (1993) Erlykin & Wolfendale, J. Phys. G 28, 2329 (2002) Jones et al., ApJ 547, 264 (2001) Ptuskin & Soutoul, A&A 337, 859 (1998) Shibata et al., ApJ 642, 882 (2006) Berezhko et al., A&A 410, 189 (2003) Breitschwerdt et al., A&A 385, 216 (2002) Evoli et al. JCAP 10, 18 (2008) Farahat et al., ApJ 681, 1334 (2008) Strong & Moskalenko, ApJ 509, 212 (1998) => Semi-analytical (homogeneous D, linear wind) => Semi-analytical (use (r), linked to turbulence level) => Semi-analytical (homogeneous D, constant wind) => Semi-analytical (radioactive nuc. and LISM) => Semi-analytical (inhomog. D, no V) => Secondary production in source => Numerical (homog. D, but V(r,z)) => Numerical (inhomogeneous D, no V, no E losses) => Numerical (backward Markov stochastic processes) => Numerical (cst + linear wind) + anisotropic diffusion (e.g., to explain the knee) + time-dependent effects (HE leptons) + MHD couplings of magnetic fields, CRs and gas... I. Context & propagation

8 Context & propagation Antiprotons Antideuterons [USINE & CLUMPY ]

9 Current measurements: interpretation PAMELA, arxiv 1007:0821 BESS, PRD 95, (2005) => Antiprotons: consistent with secondary production => Antideuterons: only upper limit II. Antiprotons

10 Primary signal: boost for antinuclei? Lavalle et al., A&A 479, 427 (2008) Donato et al., PRL 102, (2009) + Via Lactea II simulation ~O (1) [Diemand et al.,nature 454, 735 (2008)] => No boost from substructures => typical constraint on signal enhancement from PAMELA data => high precision measurement of antiprotons helpful => triggered useful multi-messenger analysis of DM candidates... II. Antiprotons

11 Context & propagation Antiprotons Antideuterons [USINE & CLUMPY ]

12 Antideuteron & detection (1) 1997 The Production of Anti-Matter in our Galaxy Chardonnet, Orloff & Salati, Phys.Lett. B 409, 313 (1997) [...] AMS should detect a few cosmic ray anti-deuterons. [...] a single anti-helium would be a smoking gun for the presence of anti-matter in the universe and for the existence of anti-stars and antigalaxies Antideuterons as a Signature of Supersymmetric Dark Matter Donato, Fornengo & Salati, Phys. Rev. D 62, (2000) If a few low energy antideuterons are measured [by the future AMS experiment on board ISSA], this should be seriously taken as a clue for the existence of massive neutralinos in the Milky Way 2002 A Novel Antimatter Detector Based on X-Ray Deexcitation of Exotic Atoms Mori et al. (GAPS collab.), ApJ 566, 604 (2002) We propose a novel antiparticle detector [...].This space-based search for the neutralino is capable of achieving comparable sensitivity to as yet unrealized third-generation, underground DM experiments 2005 Flux of light antimatter nuclei by CRs in the Galaxy and in the atmosphere Duperray et al., Phys. Rev. D 71, (2005) The hadronic production cross section is based on a recent parametrization of a wide set of accelerator data. The non annihilating inelastic scattering process is taken into account for the first time 2005 Search for Cosmic-Ray Antideuterons Fuke et al. (BESS collab.), Phys. Rev. D 95, (2005) We derived, for the first time, an upper limit of (m2s sr GeV/nuc)-1 for the differential flux of CR antideuterons, at the 95% conf. level, between GeV/nuc at the top of the atmosphere. III. Antideuterons

13 Antideuteron & detection (2) 2006 Accelerator testing of the general antiparticle spectrometer; a novel approach to indirect dark matter detection Hailey et al. (GAPS collab.), Phys. Rev. D 01, 007 (2006) GAPS captures antideuterons into a target with the subsequent formation of exotic atoms. The latter decay with the emission of x-rays[...]. This signature uniquely characterizes the antideuterons Antideuteron fluxes from dark matter annihilation in diffusion models Donato, Fornengo & Maurin, Phys. Rev. D 78, (2008) updated calculation of both the secondary and primary dbar fluxes. GAPS and AMS-02 provide exciting perspectives for a positive measurement in the near future 2009 An indirect search for dark matter using antideuterons: the GAPS experiment Hailey et al. (GAPS collab.), New Journal of Physics 11, (2009) GAPS is funded for a prototype flight in 2011, to be followed by a long duration balloon flight to execute its science program Enhanced anti-deuteron Dark Matter signal and the implications of PAMELA Kadastik, Raidal & Strumia, Phys. Lett. B 683, 248 (2010) Jet structure of DM annihilation enhances the dbar production rate by orders of magnitude w.r.t. the spherically symmetric coalescence mode. Searches become sensitive to heavy DM above O(1) GeV scale [my apologies for unquoted studies] III. Antideuterons

14 Antideuteron secondary flux Donato et al., PRD 78, (2008) ph phe Total HeH HeHe -p H -p He => Transport uncertainty (<40%), as for pbar [should decrease soon: PAMELA, AMS] => Nuclear uncertainty ~ factor of 10 [more nuclear data required] III. Antideuterons

15 Primary flux: promising prospects for detection ULDM = Ultra Long Duration Flight ( days) LDB = Long Duration Flight Kadastik et al., PLB 683, 248 (2010) Donato et al., PRD 78, (2008) => Spherical cow or more realistic coalescence scheme (dbar from pbar-nbar pairs), very good perspectives for the near future III. Antideuterons

16 Conclusions 1. Background are mostly under control - propagation uncertainties will further decrease with PAMELA & AMS-02 - nuclear uncertainties still O(1) for antideuterons => production in source expected at some energy, but level unknown 2. Signal still plagued by many uncertain uncertainties - transport in the diffusion halo not really constrained - boost #1 inefficient, boost #2 natural? What's next? => cross-constrained may be helpful, but as well be useless Antideuterons definitely look promising - AMS on ISS in 2010 ( new magnet still OK for dbar?) - GAPS prototype flight in 2011 => Dbar may be one of the most sensitive probe for DM indirect detection

17 Context & propagation Antiprotons Antideuterons [USINE & CLUMPY ]

18 USINE: a propagation code We are working hard to make it public (~September 2010) - V1.0 public release - Online Database (data + weblinks + macros) - Website (simple model online calculation) USINE-core (+ root-like documentation): D.M. (LPNHE) Database: R. Taillet (LAPTh) GUI: F. Barao (LIP) Fit +MCMC tools: A. Putze (KTH), L. Derome (LPSC) and expected for subsequent releases e+/e-: T. Delahaye, F. Donato, J. Lavalle, R. Lineros, P. Salati Fiasson & others Z>30: C. Combet & others More tools (genetic algo. + model comp.): A. Putze & L. Derome N'USINE (N'umerical USINE): B. Coste & others Better Solar modulation: discussions in progress... => to be thought as a toolbox to implement your own models

19 CLUMPY: a code for DM annihilations in the Galaxy Charbonnier, Combet & Maurin (submitted soon) [public code: smooth/dsphs/(sub)clumps, Doxygen documentation] J for a Dsph: 2 2 [core profile + NFW/B01 subclumps] [d=100 kpc, no gal. bkgd] Skymap slice toward = (-120,20) [ (r) + dp/dv(r) + clump profiles = Einasto] res. = 0.1 res. = 0.05 Charbonnier, Combet, Daniel, Hinton, Maurin, Power, Read, Sarkar, Walker, & Wilkinson Dsphs & γ-ray observatories (submitted soon) => 2nd release to include more messengers

Astrophysical issues in the cosmic ray e spectra: Have we seen dark matter annihilation?

Astrophysical issues in the cosmic ray e spectra: Have we seen dark matter annihilation? Astrophysical issues +/ in the cosmic ray e spectra: Have we seen dark matter annihilation? Julien Lavalle Department of Theoretical Physics University of Torino and INFN Collab: Torino: R. Lineros, F.

More information

Galactic Cosmic Ray Propagation in the AMS 02 Era

Galactic Cosmic Ray Propagation in the AMS 02 Era Galactic Cosmic Ray Propagation in the AMS 02 Era I Science case 1. Galactic Cosmic Rays 2. AMS 02 II Collaboration LAPP/LAPTh/LPSC 1. Teams and context 2. Support asked for the project III Conclusions

More information

Galactic cosmic rays phenomenology: nuclei, antimatter, dark matter

Galactic cosmic rays phenomenology: nuclei, antimatter, dark matter Galactic cosmic rays phenomenology: nuclei, antimatter, dark matter Fiorenza Donato Torino University and INFN NPQCD 1st Workshop Cortona, April 20, 2015 1. What are cosmic rays (CRs) 2. Searches for dark

More information

Topics. 1. Towards a unified picture of CRs production and propagation: 2. AMS-02 good candidates for Dark Matter space search

Topics. 1. Towards a unified picture of CRs production and propagation: 2. AMS-02 good candidates for Dark Matter space search Nicolò Masi Bologna University and INFN - 31 May 2016 Topics 1. Towards a unified picture of CRs production and propagation: Astrophysical uncertainties with GALPROP Local Interstellar Spectra: AMS-02

More information

Astrophysical issues in indirect DM detection

Astrophysical issues in indirect DM detection Astrophysical issues in indirect DM detection Julien Lavalle CNRS Lab. Univers & Particules de Montpellier (LUPM), France Université Montpellier II CNRS-IN2P3 (UMR 5299) Service de Physique Théorique Université

More information

The USINE propagation code and recent results from an MCMC analysis

The USINE propagation code and recent results from an MCMC analysis The USINE propagation code and recent results from an MCMC analysis Antje Putze B. Coste (LPSC), L. Derome (LPSC), F. Donato (INFN Torino), & D. Maurin (LPSC) The Oskar Klein Centre for Cosmoparticle Physics

More information

Cosmic ray electrons from here and there (the Galactic scale)

Cosmic ray electrons from here and there (the Galactic scale) Cosmic ray electrons from here and there (the Galactic scale) Julien Lavalle Department of Theoretical Physics Torino University and INFN Outline: (i) local electrons (ii) comments on synchrotron [based

More information

Indirect Search for Dark Matter with AMS-02

Indirect Search for Dark Matter with AMS-02 Indirect Search for Dark Matter with AMS-02 A. Malinin, UMD For the AMS Collaboration SUSY06, UC Irvine, June 14, 2006 Alpha Magnetic Spectrometer science The AMS is a particle physics experiment in space.

More information

² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical

² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical ² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical observations ² Dark matter: relic particles ² Dark matter:

More information

ANTIMATTER FROM PRIMORDIAL BLACK HOLES

ANTIMATTER FROM PRIMORDIAL BLACK HOLES ANTIMATTER FROM PRIMORDIAL BLACK HOLES Aurélien Barrau Institut des Sciences Nucléaires & UJF 53, av des Martyrs, 38026 Grenoble cedex, France XIVth RENCONTRES DE BLOIS, MATTER-ANTIMATTER ASYMMETRY Antiprotons

More information

DARK MATTER SEARCHES WITH AMS-02 EXPERIMENT

DARK MATTER SEARCHES WITH AMS-02 EXPERIMENT DARK MATTER SEARCHES WITH AMS-02 EXPERIMENT A.Malinin a, For AMS Collaboration IPST, University of Maryland, MD-20742, College Park, USA Abstract. The Alpha Magnetic Spectrometer (AMS), to be installed

More information

Cosmic rays and the diffuse gamma-ray emission

Cosmic rays and the diffuse gamma-ray emission Cosmic rays and the diffuse gamma-ray emission Dipartimento di Fisica, Torino University and INFN Sezione di Torino via P. Giuria 1, 10125 Torino, Italy E-mail: donato@to.infn.it The diffuse γ-ray emission

More information

Astrophysical issues in indirect DM detection

Astrophysical issues in indirect DM detection Astrophysical issues in indirect DM detection Julien Lavalle CNRS Lab. Univers & Particules de Montpellier (LUPM), France Université Montpellier II CNRS-IN2P3 (UMR 5299) Max-Planck-Institut für Kernphysik

More information

PoS(ICRC2015)540. Uncertainties on propagation parameters: impact on the interpretation of the positron fraction

PoS(ICRC2015)540. Uncertainties on propagation parameters: impact on the interpretation of the positron fraction Uncertainties on propagation parameters: impact on the interpretation of the positron fraction Mathieu Boudaud a, Sandy Aupetit a, Sami Caroff b, Antje Putze a, Geneviève Bélanger a, a, Corine Goy b, Vincent

More information

Impact of substructures on predictions of dark matter annihilation signals

Impact of substructures on predictions of dark matter annihilation signals Impact of substructures on predictions of dark matter annihilation signals Julien Lavalle Institute & Dept. of Theoretical Physics, Madrid Aut. Univ. & CSIC DESY Theory Astroparticle, Hamburg 16 V 2011

More information

a cosmic- ray propagation and gamma-ray code

a cosmic- ray propagation and gamma-ray code GALPROP: a cosmic- ray propagation and gamma-ray code A. Strong, MPE Garching Tools for SUSY, Annecy, June 28 2006 The basis: cosmic-ray production & propagation in the Galaxy intergalactic space HALO

More information

GAPS: A Novel Indirect Search for Dark Mater

GAPS: A Novel Indirect Search for Dark Mater GAPS: A Novel Indirect Search for Dark Mater S. A. Isaac Mognet UCLA May 2, 2011 1 Introduction Indirect Detection of Dark Matter Antideuterons as a DM Signature 2 The General Antiparticle Spectrometer

More information

AMS-02 Antiprotons Reloaded

AMS-02 Antiprotons Reloaded AMS-02 Antiprotons Reloaded Martin W. Winkler in collaboration with R. Kappl and A. Reinert based on JCAP 09/2014 and arxiv:1506.04145 TAUP 2015 Torino September 9 2015 Martin W. Winkler (Bonn University)

More information

Galactic cosmic nuclei and leptons with USINE

Galactic cosmic nuclei and leptons with USINE Galactic cosmic nuclei and leptons with USINE a, David Maurin b a LPTHE, CNRS & UPMC, 4 Place Jussieu, F-75252 Paris France b LPSC, UGA & CNRS/IN2P3, 53 avenue des Martyrs, 38026 Grenoble France E-mail:

More information

Enhancement of Antimatter Signals from Dark Matter Annihilation

Enhancement of Antimatter Signals from Dark Matter Annihilation Enhancement of Antimatter Signals from Dark Matter Annihilation around Intermediate Mass Black Holes Pierre Brun Laboratoire d Annecy-le-vieux de Physique des Particules CNRS/IN2P3/Université de Savoie

More information

DIETRICH MÜLLER University of Chicago SLAC SUMMER INSTITUTE 2011

DIETRICH MÜLLER University of Chicago SLAC SUMMER INSTITUTE 2011 SEARCHES FOR ANTIMATTER DIETRICH MÜLLER University of Chicago SLAC SUMMER INSTITUTE 2011 OUTLINE Early History Baryon Asymmetry of the Universe? Current Limits on Antimatter Nuclei from Distant Galaxies

More information

Dark matter annihilation and decay factors in the Milky Way s dwarf spheroidal galaxies

Dark matter annihilation and decay factors in the Milky Way s dwarf spheroidal galaxies Dark matter annihilation and decay factors in the Milky Way s dwarf spheroidal galaxies Vincent Bonnivard bonnivard@lpsc.in2p3.fr TAUP 2015 07/09/15 Collaborators: D. Maurin, C. Combet, M. G. Walker, A.

More information

Indirect Dark Matter search in cosmic rays. F.S. Cafagna, INFN Bari

Indirect Dark Matter search in cosmic rays. F.S. Cafagna, INFN Bari Indirect Dark Matter search in cosmic rays F.S. Cafagna, INFN Bari Indirect Dark Matter search in cosmic rays With PAMELA experiment An experimentalist point of view F.S. Cafagna, INFN Bari Why Anti(particle)matter

More information

Antimatter in Space. Mirko Boezio INFN Trieste, Italy. PPC Torino July 14 th 2010

Antimatter in Space. Mirko Boezio INFN Trieste, Italy. PPC Torino July 14 th 2010 Antimatter in Space Mirko Boezio INFN Trieste, Italy PPC 2010 - Torino July 14 th 2010 Astrophysics and Cosmology compelling Issues Apparent absence of cosmological Antimatter Nature of the Dark Matter

More information

Cosmic Ray panorama. Pamela.roma2.infn.it PAMELA (2012) Experimental challenges : e + /p ~ 10-3 e + /e - ~ 10-1

Cosmic Ray panorama.  Pamela.roma2.infn.it PAMELA (2012) Experimental challenges : e + /p ~ 10-3 e + /e - ~ 10-1 1912 1932 Cosmic Ray panorama http::// Pamela.roma2.infn.it PAMELA (2012) Experimental challenges : e + /p ~ 10-3 e + /e - ~ 10-1 Pamela : < 0.1 evt year/gev Flux E α α 2.7 / 3.3 Statistical precision

More information

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.: PHY326/426 Dark Matter and the Universe Dr. Vitaly Kudryavtsev F9b, Tel.: 0114 2224531 v.kudryavtsev@sheffield.ac.uk Indirect searches for dark matter WIMPs Dr. Vitaly Kudryavtsev Dark Matter and the Universe

More information

Implication of AMS-02 positron fraction measurement. Qiang Yuan

Implication of AMS-02 positron fraction measurement. Qiang Yuan Implication of AMS-02 positron fraction measurement Qiang Yuan (yuanq@ihep.ac.cn) Institute of High Energy Physics, Chinese Academy of Sciences Collaborated with Xiaojun Bi, Guo-Ming Chen, Yi-Qing Guo,

More information

Dark matter in split extended supersymmetry

Dark matter in split extended supersymmetry Dark matter in split extended supersymmetry Vienna 2 nd December 2006 Alessio Provenza (SISSA/ISAS) based on AP, M. Quiros (IFAE) and P. Ullio (SISSA/ISAS) hep ph/0609059 Dark matter: experimental clues

More information

GeV-TeV Galactic Cosmic Rays (GCRs)

GeV-TeV Galactic Cosmic Rays (GCRs) GeV-TeV Galactic Cosmic Rays (GCRs) Julien Lavalle CNRS Lab. Univers & Particules de Montpellier (LUPM) Theory group Université Montpellier II & CNRS/IN2P3 France 16t Lomonosov Conference on Elementary

More information

Subir Sarkar

Subir Sarkar Trinity 2016 Oxford ² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical observations ² Dark matter: relic particles

More information

CTA as a γ-ray probe for dark matter structures: Searching for the smallest clumps & the largest clusters

CTA as a γ-ray probe for dark matter structures: Searching for the smallest clumps & the largest clusters CTA as a γ-ray probe for dark matter structures: Searching for the smallest clumps & the largest clusters Moritz Hütten (MPP Munich) for the CTA consortium "The extreme Universe viewed in very-highenergy

More information

EGRET Excess of diffuse Galactic Gamma Rays as a Trace of the Dark Matter Halo

EGRET Excess of diffuse Galactic Gamma Rays as a Trace of the Dark Matter Halo EGRET Excess of diffuse Galactic Gamma Rays as a Trace of the Dark Matter Halo Indirect Search for Dark Matter W. de Boer 1, I. Gebauer 1, A.V. Gladyshev 2, D. Kazakov 2, C. Sander 1, V. Zhukov 1 1 Institut

More information

Latest Results on Dark Matter and New Physics Searches with Fermi. Simona Murgia, SLAC-KIPAC on behalf of the Fermi-LAT Collaboration

Latest Results on Dark Matter and New Physics Searches with Fermi. Simona Murgia, SLAC-KIPAC on behalf of the Fermi-LAT Collaboration Latest Results on Dark Matter and New Physics Searches with Fermi Simona Murgia, SLAC-KIPAC on behalf of the Fermi-LAT Collaboration TeV Particle Astrophysics 2009 SLAC, July 13-16 2009 DM and New Physics

More information

GAPS: An Indirect DM Search Using Anti-Deuterons

GAPS: An Indirect DM Search Using Anti-Deuterons GAPS: An Indirect DM Search Using Anti-Deuterons positrons? anti-deuterons? CDM MACS J0025.4-1222 γ rays? GAPS Rene A. Ong TeVPA 2011 01 August 2011 (UCLA / LLR-Ecole Polytechnique) Outline Astrophysical

More information

Monthly Proton Flux. Solar modulation with AMS. Veronica Bindi, AMS Collaboration

Monthly Proton Flux. Solar modulation with AMS. Veronica Bindi, AMS Collaboration Solar modulation with AMS Monthly Proton Flux Veronica Bindi, AMS Collaboration Physics and Astronomy Department University of Hawaii at Manoa Honolulu, Hawaii, US 1 AMS on the ISS May 19, 2011 and for

More information

Spectra of Cosmic Rays

Spectra of Cosmic Rays Spectra of Cosmic Rays Flux of relativistic charged particles [nearly exactly isotropic] Particle density Power-Law Energy spectra Exponent (p, Nuclei) : Why power laws? (constraint on the dynamics of

More information

Cosmic Ray Excess From Multi-Component Dark Matter

Cosmic Ray Excess From Multi-Component Dark Matter Cosmic Ray Excess From Multi-Component Dark Matter Da Huang Physics Department, NTHU @ LeCosPA PRD89, 055021(2014) [arxiv: 1312.0366] PRD91, 095006 (2015) [arxiv: 1411.4450] Mod. Phys. Lett. A 30 (2015)

More information

M. Lattanzi. 12 th Marcel Grossmann Meeting Paris, 17 July 2009

M. Lattanzi. 12 th Marcel Grossmann Meeting Paris, 17 July 2009 M. Lattanzi ICRA and Dip. di Fisica - Università di Roma La Sapienza In collaboration with L. Pieri (IAP, Paris) and J. Silk (Oxford) Based on ML, Silk, PRD 79, 083523 (2009) and Pieri, ML, Silk, MNRAS

More information

Silicon Detectors for the Search of Cosmic Antimatter and Dark Matter

Silicon Detectors for the Search of Cosmic Antimatter and Dark Matter Silicon Detectors for the Search of Cosmic Antimatter and Dark Matter Piergiorgio Picozza INFN and University of Rome Tor Vergata From e + /e - Colliders to High Energy Astrophysics Trieste, September

More information

Signals from Dark Matter Indirect Detection

Signals from Dark Matter Indirect Detection Signals from Dark Matter Indirect Detection Indirect Search for Dark Matter Christian Sander Institut für Experimentelle Kernphysik, Universität Karlsruhe, Germany 2nd Symposium On Neutrinos and Dark Matter

More information

AMS-02 Antiprotons Reloaded

AMS-02 Antiprotons Reloaded AMS-02 Antiprotons Reloaded Rolf Kappl Bethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn based on RK, Annika Reinert, Martin Wolfgang Winkler JCAP 10 (2015) 034, arxiv:1506.04145

More information

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

A New View of the High-Energy γ-ray Sky with the Fermi Telescope A New View of the High-Energy γ-ray Sky with the Fermi Telescope Aurelien Bouvier KIPAC/SLAC, Stanford University On behalf of the Fermi collaboration SNOWPAC, 2010 The Fermi observatory Launch: June 11

More information

Introduction History of Cosmic Ray Studies: Origin, Propagation, Spectrum, Composition

Introduction History of Cosmic Ray Studies: Origin, Propagation, Spectrum, Composition Etat actuel et Perspectives de la Physique d'astro-particule Daniel Haas DPNC Geneva Introduction History of Cosmic Ray Studies: Origin, Propagation, Spectrum, Composition Selected Experiments & Results

More information

Antiparticle detection in space for dark matter search: the PAMELA experiment.

Antiparticle detection in space for dark matter search: the PAMELA experiment. Antiparticle detection in space for dark matter search: the PAMELA experiment. Piergiorgio Picozza INFN and University of Rome Tor Vergata XCVI Congresso Nazionale della Società Italiana di Fisica Bologna

More information

Cosmic-ray propagation in the light of the Myriad model

Cosmic-ray propagation in the light of the Myriad model Cosmic-ray propagation in the light of the Myriad model Y. Genolini,, P. Serpico and R. Taillet LAPTh & Université Savoie Mont Blanc E-mail: genolini@lapth.cnrs.fr, salati@lapth.cnrs.fr A hardening of

More information

Cosmic rays in the local interstellar medium

Cosmic rays in the local interstellar medium Cosmic rays in the local interstellar medium Igor V. Moskalenko Igor V. Moskalenko/NASA-GSFC 1 LMC (Magellanic Cloud Emission Nuclear Data-2004/09/28, Line Survey: Smith, Points) Santa Fe R - H G - [S

More information

Dark Matter Models. Stephen West. and. Fellow\Lecturer. RHUL and RAL

Dark Matter Models. Stephen West. and. Fellow\Lecturer. RHUL and RAL Dark Matter Models Stephen West and Fellow\Lecturer RHUL and RAL Introduction Research Interests Important Experiments Dark Matter - explaining PAMELA and ATIC Some models to explain data Freeze out Sommerfeld

More information

Antimatter and DM search in space with AMS Introduction. 2 Cosmology with Cosmic Rays

Antimatter and DM search in space with AMS Introduction. 2 Cosmology with Cosmic Rays Antimatter and DM search in space with AMS-02 Francesca R. Spada Istituto Nazionale di Fisica Nucleare Piazzale Aldo Moro, 5 I-00185, Rome, ITALY 1 Introduction AMS-02 is a space-borne magnetic spectrometer

More information

Cosmic Antimatter. Stéphane. Coutu The Pennsylvania State University. 3 rd. Astrophysics Arequipa,, Peru August 28-29, 29, 2008

Cosmic Antimatter. Stéphane. Coutu The Pennsylvania State University. 3 rd. Astrophysics Arequipa,, Peru August 28-29, 29, 2008 Cosmic Antimatter Stéphane Coutu The Pennsylvania State University 3 rd rd School on Cosmic Rays and Astrophysics Arequipa,, Peru August 28-29, 29, 2008 Outline Cosmic Rays Antimatter: Positrons, Antiprotons

More information

Properties of Elementary Particle Fluxes in Cosmic Rays. TeVPA Aug. 7, Yuan-Hann Chang National Central University, Taiwan

Properties of Elementary Particle Fluxes in Cosmic Rays. TeVPA Aug. 7, Yuan-Hann Chang National Central University, Taiwan Properties of Elementary Particle Fluxes in Cosmic Rays TeVPA Aug. 7, 2017 Yuan-Hann Chang National Central University, Taiwan Elementary Particles in Space There are hundreds of different kinds of charged

More information

A new look at the cosmic ray positron fraction

A new look at the cosmic ray positron fraction A new look at the cosmic ray positron fraction a, Sandy Aupetit a, Sami Caroff b, Antje Putze a, Geneviève Bélanger a, Yoann Genolini a, Corrine Goy b, Vincent Poireau b, Vivian Poulin a, Sylvie Rosier

More information

PAMELA satellite: fragmentation in the instrument

PAMELA satellite: fragmentation in the instrument PAMELA satellite: fragmentation in the instrument Alessandro Bruno INFN, Bari (Italy) for the PAMELA collaboration Nuclear Physics for Galactic CRs in the AMS-02 era 3-4 Dec 2012 LPSC, Grenoble The PAMELA

More information

Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars

Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars Thematic Areas: Planetary Systems Star and Planet Formation Formation and Evolution of Compact Objects

More information

CLUMPY: A public code for γ-ray and ν signals from dark matter structures.

CLUMPY: A public code for γ-ray and ν signals from dark matter structures. CLUMPY: A public code for γ-ray and ν signals from dark matter structures. Moritz Hütten, DESY Zeuthen for the CLUMPY developers: Vincent Bonnivard, Moritz Hütten, Emmanuel Nezri, Aldée Charbonnier, Céline

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION 1. Selecting electrons in ATIC ATIC is a calorimetric instrument and, as such, relies upon the difference in the development of the cascades (showers) initiated by protons and electrons. Moreover, the

More information

The Egret Excess, an Example of Combining Tools

The Egret Excess, an Example of Combining Tools The Egret Excess, an Example of Combining Tools Institut für Experimentelle Kernphysik, Universität Karlsruhe TOOLS 2006-26th - 28th June 2006 - Annecy Outline Spectral Fit to EGRET data Problems: Rotation

More information

The High-Energy Interstellar Medium

The High-Energy Interstellar Medium The High-Energy Interstellar Medium Andy Strong MPE Garching on behalf of Fermi-LAT collaboration Cosmic Ray Interactions: Bridging High and Low Energy Astrophysics Lorentz Centre Workshop March 14-18

More information

Dark Matter searches with astrophysics

Dark Matter searches with astrophysics Marco Taoso IPhT CEA-Saclay Dark Matter searches with astrophysics IAP 24 February 2013 The cosmological pie Non baryonic Dark Matter dominates the matter content of the Universe Motivation to search for

More information

Dark matter annihilations and decays after the AMS-02 positron measurements

Dark matter annihilations and decays after the AMS-02 positron measurements Dark matter annihilations and decays after the AMS-02 positron measurements Anna S. Lamperstorfer Technische Universität München SISSA - International School for Advanced Studies of Trieste Workshop The

More information

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006 PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY Paolo Lipari Vulcano 27 may 2006 High Energy Neutrino Astrophysics will CERTAINLY become an essential field in a New Multi-Messenger Astrophysics What is

More information

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays Simona Murgia, SLAC-KIPAC for the Fermi LAT Collaboration UCLA Dark Matter 2012 Marina del Rey 22-24 February 2012 arxiv:0908.0195 Gamma

More information

Current and Future balloon and space experiments L. Derome (LPSC Grenoble) Tango, May 4-6th, 2009

Current and Future balloon and space experiments L. Derome (LPSC Grenoble) Tango, May 4-6th, 2009 Current and Future balloon and space experiments L. Derome (LPSC Grenoble) Tango, May 4-6th, 2009 L. Derome, Tango, May 4-6th 2009 1 Plan I will focus on: Future experiments which are going to measure

More information

Measuring Dark Matter Properties with High-Energy Colliders

Measuring Dark Matter Properties with High-Energy Colliders Measuring Dark Matter Properties with High-Energy Colliders The Dark Matter Problem The energy density of the universe is mostly unidentified Baryons: 5% Dark Matter: 20% Dark Energy: 75% The dark matter

More information

Antimatter and dark matter: lessons from ballooning.

Antimatter and dark matter: lessons from ballooning. Mem. S.A.It. Vol. 79, 823 c SAIt 2008 Memorie della Antimatter and dark matter: lessons from ballooning. P. Picozza and L. Marcelli INFN and Dept. of Physics, University of Rome Tor Vergata, Italy e-mail:

More information

The PAMELA Satellite Experiment: An Observatory in Space for Particles, Antiparticles and Nuclei in the Cosmic Rays

The PAMELA Satellite Experiment: An Observatory in Space for Particles, Antiparticles and Nuclei in the Cosmic Rays : An Observatory in Space for Particles, Antiparticles and Nuclei in the Cosmic Rays M. Ricci 1 on behalf of the PAMELA Collaboration INFN, Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044

More information

Indirect Dark Matter Detection

Indirect Dark Matter Detection Indirect Dark Matter Detection Martin Stüer 11.06.2010 Contents 1. Theoretical Considerations 2. PAMELA 3. Fermi Large Area Telescope 4. IceCube 5. Summary Indirect Dark Matter Detection 1 1. Theoretical

More information

Probing Dark Matter with Cosmic Messengers

Probing Dark Matter with Cosmic Messengers Probing Dark Matter with Cosmic Messengers Andrea Albert Los Alamos National Lab 3rd KMI International Symposium January 6, 2017 Outline Indirect Detection Overview evidence for dark matter dark matter

More information

Lecture 14 Cosmic Rays

Lecture 14 Cosmic Rays Lecture 14 Cosmic Rays 1. Introduction and history 2. Locally observed properties 3. Interactions 4. Demodulation and ionization rate 5. Midplane interstellar pressure General Reference MS Longair, High

More information

Dark Matter in the Universe

Dark Matter in the Universe Dark Matter in the Universe NTNU Trondheim [] Experimental anomalies: WMAP haze: synchrotron radiation from the GC Experimental anomalies: WMAP haze: synchrotron radiation from the GC Integral: positron

More information

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays Simona Murgia, SLAC-KIPAC for the Fermi LAT Collaboration Dark Matter Signatures in the Gamma-ray Sky Austin, Texas 7-8 May 2012 arxiv:0908.0195

More information

The positron and antiproton fluxes in Cosmic Rays

The positron and antiproton fluxes in Cosmic Rays The positron and antiproton fluxes in Cosmic Rays Paolo Lipari INFN Roma Sapienza Seminario Roma 28th february 2017 Preprint: astro-ph/1608.02018 Author: Paolo Lipari Interpretation of the cosmic ray positron

More information

Cosmic Ray Transport (in the Galaxy) Luke Drury. Dublin Institute for Advanced Studies Institiúid Ard-Léinn Bhaile Átha Cliath

Cosmic Ray Transport (in the Galaxy) Luke Drury. Dublin Institute for Advanced Studies Institiúid Ard-Léinn Bhaile Átha Cliath Cosmic Ray Transport (in the Galaxy) Luke Drury Dublin Institute for Advanced Studies Institiúid Ard-Léinn Bhaile Átha Cliath 1 A few disclaimers and preliminary remarks! Not my main field of research

More information

Cosmic Positron Signature from Dark Matter in the Littlest Higgs Model with T-parity

Cosmic Positron Signature from Dark Matter in the Littlest Higgs Model with T-parity Cosmic Positron Signature from Dark Matter in the Littlest Higgs Model with T-parity Masaki Asano The Graduate University for Advanced Studies Collaborated with Shigeki Matsumoto Nobuchika Okada Yasuhiro

More information

Fundamental Physics with GeV Gamma Rays

Fundamental Physics with GeV Gamma Rays Stefano Profumo UC Santa Cruz Santa Cruz Institute for Particle Physics T.A.S.C. [Theoretical Astrophysics, Santa Cruz] Fundamental Physics with GeV Gamma Rays Based on: Kamionkowski & SP, 0810.3233 (subm.

More information

PoS(IDM2010)013. Antiproton and Electron Measurements and Dark Matter Searches in Cosmic Rays. Piergiorgio Picozza.

PoS(IDM2010)013. Antiproton and Electron Measurements and Dark Matter Searches in Cosmic Rays. Piergiorgio Picozza. Antiproton and Electron Measurements and Dark Matter Searches in Cosmic Rays University of Rome Tor Vergata and INFN, Rome, Italy E-mail: piergiorgio.picozza@roma2.infn.it Roberta Sparvoli University of

More information

99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park

99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park 99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park #5 How do Cosmic Rays gain their energy? I. Acceleration mechanism of CR

More information

Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV

Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV (with spatial dependent CR transport) D. Grasso (INFN, Pisa) with D. Gaggero, A. Marinelli, A. Urbano, M. Valli IceCube recent results

More information

New results from the AMS experiment on the International Space Station. Henning Gast RWTH Aachen

New results from the AMS experiment on the International Space Station. Henning Gast RWTH Aachen New results from the AMS experiment on the International Space Station Henning Gast RWTH Aachen 1 Questions to AMS-02: Are there galaxies made of anti-matter in the Universe? What is the nature of Dark

More information

COSMIC RAYS DAY INTRODUCTION TO COSMIC RAYS WINDWARD COMMUNITY COLLEGE - SEPTEMBER 26, 2015 VERONICA BINDI - UNIVERSITY OH HAWAII

COSMIC RAYS DAY INTRODUCTION TO COSMIC RAYS WINDWARD COMMUNITY COLLEGE - SEPTEMBER 26, 2015 VERONICA BINDI - UNIVERSITY OH HAWAII COSMIC RAYS DAY WINDWARD COMMUNITY COLLEGE - SEPTEMBER 26, 2015 VERONICA BINDI - UNIVERSITY OH HAWAII INTRODUCTION TO COSMIC RAYS MAJOR QUESTIONS: Are there forms of matter in the Universe that do not

More information

Eun-Suk Seo Inst. for Phys. Sci. & Tech. and Department of Physics University of Maryland. Cosmic Rays Eun-Suk Seo

Eun-Suk Seo Inst. for Phys. Sci. & Tech. and Department of Physics University of Maryland. Cosmic Rays Eun-Suk Seo Eun-Suk Seo Inst. for Phys. Sci. & Tech. and Department of Physics University of Maryland Cosmic Rays Eun-Suk Seo 1 Cosmic Rays Eun-Suk Seo 2 How do cosmic accelerators work? BESS ATIC CREAM, TRACER Elemental

More information

arxiv: v2 [astro-ph.co] 7 Nov 2012

arxiv: v2 [astro-ph.co] 7 Nov 2012 arxiv:1210.0806v2 [astro-ph.co] 7 Nov 2012 Producing baryons from neutralinos in small H2 clumps over cosmological ages Laboratoire Univers et Particules, UMR5299 CNRS-In2p3/Montpellier University, F-34095

More information

University of California, Los Angeles, CA 90095, USA

University of California, Los Angeles, CA 90095, USA GAPS Dark matter search using low-energy antimatter Rene A. Ong, for the GAPS Collaboration University of California, Los Angeles, CA 90095, USA Cosmic Ray Anomalies There are a variety of puzzles in cosmic

More information

Dark Matter on the Smallest Scales Annika Peter, 7/20/09

Dark Matter on the Smallest Scales Annika Peter, 7/20/09 Dark Matter on the Smallest Scales Annika Peter, 7/20/09 Things I would like to address: Using stars and planets to constrain dark matter models. What I think is the biggest uncertainty with these things

More information

arxiv: v2 [hep-ph] 4 Apr 2016

arxiv: v2 [hep-ph] 4 Apr 2016 Review of the theoretical and experimental status of dark matter identification with cosmic-ray antideuterons arxiv:1505.07785v2 [hep-ph] 4 Apr 2016 T. Aramaki a,b, S. Boggs c, S. Bufalino d, L. Dal e,

More information

GAPS: A Dedicated Search for

GAPS: A Dedicated Search for GAPS: A Dedicated Search for Anti-Deuterons in the Cosmic Rays anti-deuterons t? CDM positrons? BESS dark matter LSP 100 GeV secondary/tertiary background pgaps GAPS Rene A. Ong (UCLA), Snowmass 2013 SLAC

More information

The Search for Dark Matter. Jim Musser

The Search for Dark Matter. Jim Musser The Search for Dark Matter Jim Musser Composition of the Universe Dark Matter There is an emerging consensus that the Universe is made of of roughly 70% Dark Energy, (see Stu s talk), 25% Dark Matter,

More information

Project Paper May 13, A Selection of Dark Matter Candidates

Project Paper May 13, A Selection of Dark Matter Candidates A688R Holly Sheets Project Paper May 13, 2008 A Selection of Dark Matter Candidates Dark matter was first introduced as a solution to the unexpected shape of our galactic rotation curve; instead of showing

More information

Particle Acceleration in the Universe

Particle Acceleration in the Universe Particle Acceleration in the Universe Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology on behalf of SLAC GLAST team June 7, 2006 SLAC DOE HEP Program

More information

Sep. 13, JPS meeting

Sep. 13, JPS meeting Recent Results on Cosmic-Rays by Fermi-LAT Sep. 13, 2010 @ JPS meeting Tsunefumi Mizuno (Hiroshima Univ.) On behalf of the Fermi-LAT collaboration 1 Outline Introduction Direct measurement of CRs CRs in

More information

Precision measurements of nuclear CR energy spectra and composition with the AMS-02 experiment

Precision measurements of nuclear CR energy spectra and composition with the AMS-02 experiment Journal of Physics: Conference Series PAPER OPEN ACCESS Precision measurements of nuclear CR energy spectra and composition with the AMS-02 experiment To cite this article: E Fiandrini 2016 J. Phys.: Conf.

More information

Lecture 14. Dark Matter. Part IV Indirect Detection Methods

Lecture 14. Dark Matter. Part IV Indirect Detection Methods Dark Matter Part IV Indirect Detection Methods WIMP Miracle Again Weak scale cross section Produces the correct relic abundance Three interactions possible with DM and normal matter DM Production DM Annihilation

More information

Indirect Searches for Gravitino Dark Matter

Indirect Searches for Gravitino Dark Matter Indirect Searches for Gravitino Dark Matter Michael Grefe Departamento de Física Teórica Instituto de Física Teórica UAM/CSIC Universidad Autónoma de Madrid PLANCK 202 From the Planck Scale to the Electroweak

More information

Diffuse γ-ray emission: lessons and perspectives

Diffuse γ-ray emission: lessons and perspectives Diffuse γ-ray emission: lessons and perspectives Igor V. Moskalenko, and Andrew W. Strong Astroparticle Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 New address: Hansen Experimental

More information

Dark Matter Annihilation, Cosmic Rays and Big-Bang Nucleosynthesis

Dark Matter Annihilation, Cosmic Rays and Big-Bang Nucleosynthesis Dark Matter Annihilation, Cosmic Rays and Big-Bang Nucleosynthesis Institute for Cosmic Ray Research, University of Tokyo Kazunori Nakayama J.Hisano, M.Kawasaki, K.Kohri and KN, arxiv:0810.1892 J.Hisano,

More information

Emmanuel Moulin! on behalf of the CTA Consortium!!! Rencontres de Moriond 2013! Very High Energy Phenomena in the Universe! March 9-16, La Thuile,

Emmanuel Moulin! on behalf of the CTA Consortium!!! Rencontres de Moriond 2013! Very High Energy Phenomena in the Universe! March 9-16, La Thuile, Emmanuel Moulin! on behalf of the CTA Consortium!!! Rencontres de Moriond 2013! Very High Energy Phenomena in the Universe! March 9-16, La Thuile, Italy Emmanuel Moulin CTA meeting, Zürich 2009 1 Core-energy

More information

Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics. PAMELA MissioN 17 December 2010 Prepared by FatiH KAYA

Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics. PAMELA MissioN 17 December 2010 Prepared by FatiH KAYA Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics PAMELA MissioN 17 December 2010 Prepared by FatiH KAYA Astropartical Physics İssue To inform. What Powered the Big Bang? Inflation

More information

Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges

Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges Simona Murgia University of California, Irvine Debates on the Nature of Dark Matter Sackler 2014 19-22 May 2014 arxiv:0908.0195

More information

Seeing the moon shadow in CRs

Seeing the moon shadow in CRs Seeing the moon shadow in CRs and using the Earth field as a spectrometer Tibet III Amenomori et al. arxiv:0810.3757 see also ARGO-YBJ results Bartoli et. al, arxiv:1107.4887 Milargo: 100% coverage r owe

More information

PAMELA Five Years of Cosmic Ray Observation from Space

PAMELA Five Years of Cosmic Ray Observation from Space PAMELA Five Years of Cosmic Ray Observation from Space Emiliano Mocchiutti INFN Trieste, Italy On behalf of the PAMELA collaboration Ajdovščina, University of Nova Gorica June 8, 2011 Emiliano Mocchiutti,

More information

Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies. Present status and future prospects

Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies. Present status and future prospects Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies. Present status and future prospects Aldo Morselli INFN Roma Tor Vergata CTA in the quest for Dark Matter and exotic phenomena

More information