The two main types of FETs are the junction field effect transistor (JFET) and the metal oxide field effect transistor (MOSFET).

Size: px
Start display at page:

Download "The two main types of FETs are the junction field effect transistor (JFET) and the metal oxide field effect transistor (MOSFET)."

Transcription

1 Mcrelectrncs Chapter three: Feld Effect Transstr sall snal analyss Intrductn: Feld-effect transstr aplfers prde an excellent ltae an wth the added feature f hh nput pedance. They are als lw-pwercnsuptn cnfuratns wth d frequency rane and nal sze and weht. Just as there are npn and pnp bplar transstrs there are n-channel and p-channel feld effect transstrs. Hweer t s prtant t keep n nd that the BJT transstr s a bplar dece the prefx b ndcates that the cnductn leel s a functn f tw chare carrers electrns and hles. The FET s a unplar dece dependn slely n ether electrn (n - channel) r hle (p -channel) cnductn. Whereas a BJT dece cntrls a lare utput (cllectr) current by eans f a relately sall nput (base) current the FET dece cntrls an utput (dran) current by eans f a sall nput (ate-ltae) ltae. In eneral therefre the BJT s a current-cntrlled dece and the FET s a ltae-cntrlled dece. In bth cases hweer nte that the utput current s the cntrlled arable. Because f the hh nput characterstc f FETs the ac equalent del s sewhat spler than that eplyed fr BJTs. Whereas the BJT has an aplfcatn factr β (beta) the FET has a transcnductance factr. The tw an types f FETs are the junctn feld effect transstr (JFET) and the etal xde feld effect transstr (MOSFET). Th-Qar Unersty/En. Cllae/BME. EPT. Lectures are prepared by Nadee Kharan

2 Mcrelectrncs 3.2 JFET Lw Frequency SMLL-SIGNL MOEL Befre exann the lw frequency sall snal del we recall the JFET paraeters. We knw that dran t surce current f JFET s cntrlled by ate t surce ltae. The chane n the dran current due t chane n ate t surce ltae can be deterned usn the transcnductance factr " ". It s en by: I GS ran current ( I fllws: ) can be deterned fr any GS f GS ( ff ) and I SS are knwn as I GS ISS (1 ) GS ( ff ) 2 Where: I SS s dran t surce current wth ate shrt GS ( ff ) s the cutff ltae that akes I apprxately zer. We knw that n BJT the relatn between an utput and nput quantty s en by aplfcatn factr β whereas n JFET ths relatn s en by transcnductance factr " ". The prefx trans - n the ternly appled t reeals that t establshes a relatnshp between an utput and an nput quantty. The rt wrd cnductance was chsen because s deterned by a current-t-ltae rat slar t the rat that defnes the cnductance f a resstr 1 I G. R In addtnal I can be calculated usn the fllwn frula: GS GS 0(1 ) GS ( ff ) When a alue f 0 s nt aalable yu can calculate t usn alues f I SS and GS ( ff ) Th-Qar Unersty/En. Cllae/BME. EPT. Lectures are prepared by Nadee Kharan

3 Mcrelectrncs 0 2I SS GS ( ff ) nther prtant paraeter f JFET s dran resstance "r d ". It s en by: S rd I It deternes the utput pedance f the JFET aplfer. JFET C Equalent Crcut Nw that the prtant paraeters f an ac equalent crcut hae been ntrduced and dscussed a del fr the JFET transstr n the ac dan can be cnstructed. The cntrl f I d by s s ncluded as a current surce s cnnected fr dran t surce as shwn n Fure 3.1. The current surce has ts arrw pntn fr dran t surce t establsh a 180 phase shft between utput and nput ltaes as wll ccur n actual peratn. Fure 3.1: Internal FET equalent crcut. Th-Qar Unersty/En. Cllae/BME. EPT. Lectures are prepared by Nadee Kharan

4 Mcrelectrncs In part (a) the nternal resstance r s appears between the ate and surce. ls the nternal dran t surse resstance r ds s ncluded. In part (b) a splfed deal del s shwn. The resstance rs s assued t be nfntely lare s that there s an pen crcut between the ate and surce. ls rds s assued lare enuh t nelect. JFET Cn Surce aplfer 1. JFET Fxed Bas cnfuratn The fxed-bas cnfuratn f fure 3.2 ncludes the cupln capactrs C 1 and C 2 whch slate the dc basn arraneent fr the appled snal and lad; they act as shrt crcut equalents fr the ac analyss. Fure 3.2: JFET fxed-bas cnfuratn. Once the leels f s deterned fr the dc basn arraneent specfcatn sheet r characterstcs the ac equalent del can be substtuted between the apprprate ternals as shwn n fure 3.3. Nte that bth capactrs hae the shrt-crcut equalent because the reactance X C 1 2fc s suffcently sall cpared t ther pedance leels f the netwrk and the dc batteres GG and are set t 0 by a shrt-crcut equalent. Th-Qar Unersty/En. Cllae/BME. EPT. Lectures are prepared by Nadee Kharan

5 Mcrelectrncs Fure 3.3: Substtutn the JFET ac equalent crcut unt nt the netwrk Nte the defned plarty f s whch defnes the drectn f s. If s s neate the drectn f the current surce reerses. The appled snal s represented by and the utput snal acrss R by Input pedance ( n ): n R G Output pedance ( ): R ltae an ( ): s R But s S that: R Th-Qar Unersty/En. Cllae/BME. EPT. Lectures are prepared by Nadee Kharan

6 Mcrelectrncs Phase Relatnshp The neate sn n the resultn equatn fr clearly reeals a phase shft f 180 between nput and utput ltaes. Exaple 3.1: fr the crcut shwn belw deterne )nput pedance ) utput pedance ) ltae an Slutn: R M ) 1 n G R k ) 5.1 ) R Th-Qar Unersty/En. Cllae/BME. EPT. Lectures are prepared by Nadee Kharan

7 Mcrelectrncs 2. JFET wth Self-Bas (Bypassed R S ): The fxed-bas cnfuratn has the dstnct dsadantae f requrn tw dc ltae surces. The self-bas cnfuratn f fure 3.4 requres nly ne dc supply t establsh the desred peratn pnt. Fure 3.4: Self-bas JFET cnfuratn. Under ac cndtns the capactr assues the shrt-crcut state and shrt crcuts the effects f R S. The JFET equalent crcut s establshed n Fure 3.5: 3.5: JFET ac equalent crcut. Input pedance ( n ): n R G Th-Qar Unersty/En. Cllae/BME. EPT. Lectures are prepared by Nadee Kharan

8 Mcrelectrncs Output pedance ( ): R ltae an ( ): R Phase Relatnshp The neate sn n the slutns fr aan ndcates a phase shft f 180 between and. Th-Qar Unersty/En. Cllae/BME. EPT. Lectures are prepared by Nadee Kharan

9 Mcrelectrncs. JFET wth Self-Bas (Unbypassed R S ) If C S s reed fr F 3.4 the resstr R S wll be part f the ac equalent crcut as shwn n F In ths case there s n bus way t reduce the netwrk t lwer ts leel f cplexty. In deternn the leels f and ne ust be ery careful wth ntatn and defned plartes and drectn. Intally the resstance r d wll be left ut f the analyss t fr a bass fr cparsn. Fure 3.6: Self-bas JFET cnfuratn ncludn the effects f R S Input pedance ( ): R G Output pedance ( ): pplyn Krchhff s current law results n Wth ( I I ) R s s I I I s S that I I ( I I ) R I R I R s s s I 1 R s I 1 R s nd I I (the cntrlled current surce s = 0 fr the appled cndtns) Th-Qar Unersty/En. Cllae/BME. EPT. Lectures are prepared by Nadee Kharan

10 Mcrelectrncs Snce I R Then ( I ) R I R I R ltae an ( ): Fr the netwrk f F. 3.6 applcatn f Krchhff s ltae law t the nput crcut results n 0 s R s R (1 R ) s s s s s Snce the utput ltae s en by: I R R s R 1 R S Phase Relatnshp The neate sn n last equatn aan reeals that a 180 phase shft wll exst between and. Exaple 3.2: fr the crcut shwn belw deterne ) nput pedance ) utput pedance ) ltae an take 1.58 S Th-Qar Unersty/En. Cllae/BME. EPT. Lectures are prepared by Nadee Kharan

11 Mcrelectrncs Slutn: R M ) 1 ) 2.2 ) G R k 3 3 R ( )(2.210 ) Rs 1 ( )(110 ) Th-Qar Unersty/En. Cllae/BME. EPT. Lectures are prepared by Nadee Kharan

12 Mcrelectrncs JFET SOURCE-FOLLOWER (COMMON-RIN) CONFIGURTION The JFET n fure 3.7 s the surce-fllwer cnfuratn. Nte that the utput s taken ff the surce ternal and when the dc supply s replaced by ts shrt-crcut equalent the dran s runded (hence the ternly cn-dran). Fure 3.7: JFET surce-fllwer cnfuratn. Substtutn the JFET equalent crcut results n the cnfuratn f F Fure 3.8: Netwrk f F. 3.7 fllwn the substtutn f the JFET ac equalent del. The cntrlled surce and the nternal utput pedance f the JFET are ted t rund at ne end and R S n the ther wth acrss R S. Snce s and R S are cnnected t the sae ternal and rund they can all be placed n parallel as shwn n F The current surce reersed drectn but s s stll defned between the ate and surce ternals. Th-Qar Unersty/En. Cllae/BME. EPT. Lectures are prepared by Nadee Kharan

13 Mcrelectrncs Fure 3.9 Netwrk f F. 3.8 redrawn. Input pedance ( ): R G Output pedance ( ): : Settn = 0 wll result n the ate ternal ben cnnected drectly t rund. The fact that s and are acrss the sae parallel netwrk results n s. I I I s s I s R s Snce s I R 1 I ( ) R s s 1 1 Rs // I 1 1 R 1 s Th-Qar Unersty/En. Cllae/BME. EPT. Lectures are prepared by Nadee Kharan

14 Mcrelectrncs Therefre R //(1/ ) s ltae an ( ) The utput ltae s deterned by s Rs nd applyn Krchhff s ltae law arund the pereter f the netwrk f F. 3.9 results n S that ( ) R s s R R s Or s s R R nd 1 S that s s Rs 1 R s Phase Relatnshp snce s a pste quantty; and are n phase fr the JFET surce-fllwer cnfuratn. Th-Qar Unersty/En. Cllae/BME. EPT. Lectures are prepared by Nadee Kharan

15 Mcrelectrncs Exaple 3.3: fr the crcut belw 2.5 S. Calculate and Slutn: R 1 M G 1 1 Rs // 3.3 k // S Rs R s Th-Qar Unersty/En. Cllae/BME. EPT. Lectures are prepared by Nadee Kharan

16 Mcrelectrncs JFET COMMON-GTE CONFIGURTION The last JFET cnfuratn t be analyzed n detal s the cn-ate cnfuratn f F FIG. 3.10: JFET cn-ate cnfuratn. Substtutn the JFET equalent crcut results n F Nte the cntnun requreent that the cntrlled surce s be cnnected fr dran t surce. The slatn between nput and utput crcuts has busly been lst snce the ate ternal s nw cnnected t the cn rund f the netwrk and the cntrlled current surce s cnnected drectly fr dran t surce. In addtn the resstr cnnected between nput ternals s n lner R G but the resstr R S cnnected fr surce t rund. Nte als the lcatn f the cntrlln ltae s and the fact that t appears drectly acrss the resstr R S. Fure 3.11: Netwrk f F fllwn substtutn f JFET ac equalent del Input pedance ( ): It s en by R // s 1 I s s R s // 1 Th-Qar Unersty/En. Cllae/BME. EPT. Lectures are prepared by Nadee Kharan

17 Mcrelectrncs Output pedance (): Substtutn = 0 n F wll shrtut the effects f R S and set s t 0. The result s s = 0. Therefre R ltae an ( ): Fure 3.11 reeals that s nd I R I s R S that I R R R We bsere that there are n phase shft between nput and utput n cn ate aplfer. Th-Qar Unersty/En. Cllae/BME. EPT. Lectures are prepared by Nadee Kharan

18 Mcrelectrncs Exaple 3.5: Fr the crcut belw 2.8 S. Calculate and Slutn: 1 1 Rs // 1 k // 1000// S 0 R 5.1 k R 2.8S 5.1 k Exaple 3.6: The crcut shwn belw has 2.5 L ltae an lare. S S. Calculate f the crcut. ssue all capactrs t be extreely Th-Qar Unersty/En. Cllae/BME. EPT. Lectures are prepared by Nadee Kharan

19 Mcrelectrncs Slutn: Fure belw shws the sall snal equalent crcut fr the aplfer shwn n fure abe. S S R s L Snce s R L RL ( RL // R ) S RG R r G s RG R r S G s ( RL // R ) RG 2.5 S (28 k // 3 k )1M R r 1M 50k S G s Th-Qar Unersty/En. Cllae/BME. EPT. Lectures are prepared by Nadee Kharan

Is current gain generally significant in FET amplifiers? Why or why not? Substitute each capacitor with a

Is current gain generally significant in FET amplifiers? Why or why not? Substitute each capacitor with a FET Sall Snal Mdband Mdel Ntatn: C arables and quanttes are enerally desnated wth an uppercase subscrpt. AC arables and quanttes are enerally desnated wth a lwercase subscrpt. Phasr ntatn wll be used when

More information

Microelectronics Circuit Analysis and Design. NMOS Common-Source Circuit. NMOS Common-Source Circuit 10/15/2013. In this chapter, we will:

Microelectronics Circuit Analysis and Design. NMOS Common-Source Circuit. NMOS Common-Source Circuit 10/15/2013. In this chapter, we will: Mcrelectrncs Crcut Analyss and Desn Dnald A. Neaen Chapter 4 Basc FET Aplfers In ths chapter, we wll: Inestate a snle-transstr crcut that can aplfy a sall, te-aryn nput snal Deelp sall-snal dels that are

More information

ANALOG ELECTRONICS 1 DR NORLAILI MOHD NOH

ANALOG ELECTRONICS 1 DR NORLAILI MOHD NOH 24 ANALOG LTRONIS TUTORIAL DR NORLAILI MOHD NOH . 0 8kΩ Gen, Y β β 00 T F 26, 00 0.7 (a)deterne the dc ltages at the 3 X ternals f the JT (,, ). 0kΩ Z (b) Deterne g,r π and r? (c) Deterne the ltage gan

More information

Exercises for Frequency Response. ECE 102, Winter 2011, F. Najmabadi

Exercises for Frequency Response. ECE 102, Winter 2011, F. Najmabadi Eercses r Frequency espnse EE 0, Wnter 0, F. Najabad Eercse : A Mdy the crcut belw t nclude a dnant ple at 00 Mz ( 00 Ω, k, k, / 00 Ω, λ 0, and nre nternal capactances the MOS. pute the dnant ple n the

More information

Introduction to Electronic circuits.

Introduction to Electronic circuits. Intrductn t Electrnc crcuts. Passve and Actve crcut elements. Capactrs, esstrs and Inductrs n AC crcuts. Vltage and current dvders. Vltage and current surces. Amplfers, and ther transfer characterstc.

More information

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER 70 CHAPTER 3 ANALYSIS OF KY BOOST CONERTER 3.1 Intrductn The KY Bst Cnverter s a recent nventn made by K.I.Hwu et. al., (2007), (2009a), (2009b), (2009c), (2010) n the nn-slated DC DC cnverter segment,

More information

CIRCUIT ANALYSIS II Chapter 1 Sinusoidal Alternating Waveforms and Phasor Concept. Sinusoidal Alternating Waveforms and

CIRCUIT ANALYSIS II Chapter 1 Sinusoidal Alternating Waveforms and Phasor Concept. Sinusoidal Alternating Waveforms and U ANAYSS hapter Snusdal Alternatng Wavefrs and Phasr ncept Snusdal Alternatng Wavefrs and Phasr ncept ONNS. Snusdal Alternatng Wavefrs.. General Frat fr the Snusdal ltage & urrent.. Average alue..3 ffectve

More information

Design of Analog Integrated Circuits

Design of Analog Integrated Circuits Desgn f Analg Integrated Crcuts I. Amplfers Desgn f Analg Integrated Crcuts Fall 2012, Dr. Guxng Wang 1 Oerew Basc MOS amplfer structures Cmmn-Surce Amplfer Surce Fllwer Cmmn-Gate Amplfer Desgn f Analg

More information

Week 9: Multivibrators, MOSFET Amplifiers

Week 9: Multivibrators, MOSFET Amplifiers ELE 2110A Electronc Crcuts Week 9: Multbrators, MOSFET Aplfers Lecture 09-1 Multbrators Topcs to coer Snle-stae MOSFET aplfers Coon-source aplfer Coon-dran aplfer Coon-ate aplfer eadn Assnent: Chap 14.1-14.5

More information

CHAPTER 3 Frequency Response of Basic BJT and MOSFET Amplifiers

CHAPTER 3 Frequency Response of Basic BJT and MOSFET Amplifiers HAPT 3 Frequency espnse f asc JT and MOFT Aplfers eew aterals n Appendces III and V In ths chapter yu wll learn abut the eneral fr f the frequency dan transfer functn f an aplfer. Yu wll learn t analyze

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electrnc Crcuts Feedback & Stablty Sectns f Chapter 2. Kruger Feedback & Stablty Cnfguratn f Feedback mplfer S S S S fb Negate feedback S S S fb S S S S S β s the feedback transfer functn Implct

More information

Feedback Principle :-

Feedback Principle :- Feedback Prncple : Feedback amplfer s that n whch a part f the utput f the basc amplfer s returned back t the nput termnal and mxed up wth the nternal nput sgnal. The sub netwrks f feedback amplfer are:

More information

BME 5742 Biosystems Modeling and Control

BME 5742 Biosystems Modeling and Control BME 5742 Bsystems Mdeln and Cntrl Cell Electrcal Actvty: In Mvement acrss Cell Membrane and Membrane Ptental Dr. Zv Rth (FAU) 1 References Hppensteadt-Peskn, Ch. 3 Dr. Rbert Farley s lecture ntes Inc Equlbra

More information

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune Chapter 7 Flud Systems and Thermal Systems 7.1 INTODUCTION A. Bazune A flud system uses ne r mre fluds t acheve ts purpse. Dampers and shck absrbers are eamples f flud systems because they depend n the

More information

The three major operations done on biological signals using Op-Amp:

The three major operations done on biological signals using Op-Amp: The three majr peratns dne n blgcal sgnals usng Op-Amp: ) Amplcatns and Attenuatns 2) DC settng: add r subtract a DC 3) Shape ts requency cntent: Flterng Ideal Op-Amp Mst belectrc sgnals are small and

More information

PHYSICS 536 Experiment 12: Applications of the Golden Rules for Negative Feedback

PHYSICS 536 Experiment 12: Applications of the Golden Rules for Negative Feedback PHYSICS 536 Experment : Applcatns f the Glden Rules fr Negatve Feedback The purpse f ths experment s t llustrate the glden rules f negatve feedback fr a varety f crcuts. These cncepts permt yu t create

More information

Wp/Lmin. Wn/Lmin 2.5V

Wp/Lmin. Wn/Lmin 2.5V UNIVERITY OF CALIFORNIA Cllege f Engneerng Department f Electrcal Engneerng and Cmputer cences Andre Vladmrescu Hmewrk #7 EEC Due Frday, Aprl 8 th, pm @ 0 Cry Prblem #.5V Wp/Lmn 0.0V Wp/Lmn n ut Wn/Lmn.5V

More information

6. Cascode Amplifiers and Cascode Current Mirrors

6. Cascode Amplifiers and Cascode Current Mirrors 6. Cascde plfes and Cascde Cuent Ms Seda & Sth Sec. 7 (MOS ptn (S&S 5 th Ed: Sec. 6 MOS ptn & ne fequency espnse ECE 0, Fall 0, F. Najabad Cascde aplfe s a ppula buldn blck f ICs Cascde Cnfuatn CG stae

More information

FYSE400 ANALOG ELECTRONICS

FYSE400 ANALOG ELECTRONICS YS400 NLOG LCONCS LCU 12 eedback plfer 1 uptn 1. he bac aplfer unlateral. 2. he gan OL f the bac aplfer deterned wthut feedback. 3. he calculated gan OL laded gan : ladng f the feedback netwrk, urce and

More information

Common Gate Amplifier

Common Gate Amplifier mmn Gate Ampler Fure (a) shs a cmmn ate ampler th deal current surce lad. Fure (b) shs the deal current surce mplemented by PMOS th cnstant ate t surce vltae. DD DD G M G M G M (a) (b) Fure. mmn ate ampler.

More information

CHAPTER 3: FEEDBACK. Dr. Wan Mahani Hafizah binti Wan Mahmud

CHAPTER 3: FEEDBACK. Dr. Wan Mahani Hafizah binti Wan Mahmud CHPTER 3: FEEDBCK Dr. Wan Mahan Hafzah bnt Wan Mahmud Feedback ntrductn Types f Feedback dvantages, Characterstcs and effect f Negatve Feedback mplfers Crcuts wth negatve feedback Pstve feedback and Oscllatr

More information

IGEE 401 Power Electronic Systems. Solution to Midterm Examination Fall 2004

IGEE 401 Power Electronic Systems. Solution to Midterm Examination Fall 2004 Jós, G GEE 401 wer Electrnc Systems Slutn t Mdterm Examnatn Fall 2004 Specal nstructns: - Duratn: 75 mnutes. - Materal allwed: a crb sheet (duble sded 8.5 x 11), calculatr. - Attempt all questns. Make

More information

EE 204 Lecture 25 More Examples on Power Factor and the Reactive Power

EE 204 Lecture 25 More Examples on Power Factor and the Reactive Power EE 204 Lecture 25 Mre Examples n Pwer Factr and the Reactve Pwer The pwer factr has been defned n the prevus lecture wth an example n pwer factr calculatn. We present tw mre examples n ths lecture. Example

More information

Lecture 14: More MOS Circuits and the Differential Amplifier

Lecture 14: More MOS Circuits and the Differential Amplifier Lecture 4: More MOS rcuts an the Dfferental Aplfer Gu-Yeon We Dson of nneern an Apple Scences Harar Unersty uyeon@eecs.harar.eu We Oerew Rean S&S: hapter 5.0, 6.~, 6.6 ackroun Han seen soe of the basc

More information

ANALOG ELECTRONICS DR NORLAILI MOHD NOH

ANALOG ELECTRONICS DR NORLAILI MOHD NOH 24 ANALOG LTRONIS lass 5&6&7&8&9 DR NORLAILI MOHD NOH 3.3.3 n-ase cnfguatn V V Rc I π π g g R V /p sgnal appled t. O/p taken f. ted t ac gnd. The hybd-π del pdes an accuate epesentatn f the sall-sgnal

More information

Linear Amplifiers and OpAmps

Linear Amplifiers and OpAmps Lnear Amplfers and OpAmps eferences: Barbw (pp 7-80), Hayes & Hrwtz (pp 63-40), zzn (Chapter ) Amplfers are tw-prt netwrks n whch the utput ltage r current s drectly prprtnal t ether nput ltage r current.

More information

Active Load. Reading S&S (5ed): Sec. 7.2 S&S (6ed): Sec. 8.2

Active Load. Reading S&S (5ed): Sec. 7.2 S&S (6ed): Sec. 8.2 cte La ean S&S (5e: Sec. 7. S&S (6e: Sec. 8. In nteate ccuts, t s ffcult t fabcate essts. Instea, aplfe cnfuatns typcally use acte las (.e. las ae w acte eces. Ths can be ne usn a cuent suce cnfuatn,.e.

More information

Chapter III The Operational Amplifier and Applications

Chapter III The Operational Amplifier and Applications Intrductn t Electrnc rcuts: A Desn Apprach Jse SlaMartnez and Marn Onaba hapter III The Operatnal Amplfer and Applcatns The peratnal ltae amplfer (mre cmmnly referred t as peratnal amplfer) s ne f the

More information

Chapter IIIa The operational Amplifier and applications.

Chapter IIIa The operational Amplifier and applications. ELEN. Intrductn t Electrnc rcuts: A Desn Apprach Jse SlaMartnez hapter IIIa The peratnal Amplfer and applcatns. III.. Basc Mdel fr the Operatnal Amplfer. The OPeratnal AMPlfer (OPAMP) s a key buldn blck

More information

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas Sectn : Detaled Slutns f Wrd Prblems Unt : Slvng Wrd Prblems by Mdelng wth Frmulas Example : The factry nvce fr a mnvan shws that the dealer pad $,5 fr the vehcle. If the stcker prce f the van s $5,, hw

More information

Chapter 3, Solution 1C.

Chapter 3, Solution 1C. COSMOS: Cmplete Onlne Slutns Manual Organzatn System Chapter 3, Slutn C. (a If the lateral surfaces f the rd are nsulated, the heat transfer surface area f the cylndrcal rd s the bttm r the tp surface

More information

Waveshapping Circuits and Data Converters. Lesson #17 Comparators and Schmitt Triggers Section BME 373 Electronics II J.

Waveshapping Circuits and Data Converters. Lesson #17 Comparators and Schmitt Triggers Section BME 373 Electronics II J. Waeshappg Crcuts and Data Cnerters Lessn #7 Cmparatrs and Schmtt Trggers Sectn. BME 7 Electrncs II 0 Waeshappg Crcuts and Data Cnerters Cmparatrs and Schmtt Trggers Astable Multbratrs and Tmers ectfers,

More information

Faculty of Engineering

Faculty of Engineering Faculty f Engneerng DEPARTMENT f ELECTRICAL AND ELECTRONIC ENGINEERING EEE 223 Crcut Thery I Instructrs: M. K. Uygurğlu E. Erdl Fnal EXAMINATION June 20, 2003 Duratn : 120 mnutes Number f Prblems: 6 Gd

More information

Bipolar-Junction (BJT) transistors

Bipolar-Junction (BJT) transistors Bplar-Junctn (BJT) transstrs References: Hayes & Hrwtz (pp 84-4), Rzzn (chapters 8 & 9) A bplar junctn transstr s frmed by jnng three sectns f semcnductrs wth alternately dfferent dpngs. The mddle sectn

More information

WYSE Academic Challenge 2004 Sectional Physics Solution Set

WYSE Academic Challenge 2004 Sectional Physics Solution Set WYSE Acadec Challenge 004 Sectnal Physcs Slutn Set. Answer: e. The axu pssble statc rctn r ths stuatn wuld be: ax µ sn µ sg (0.600)(40.0N) 4.0N. Snce yur pushng rce s less than the axu pssble rctnal rce,

More information

Part III Lectures Field-Effect Transistors (FETs) and Circuits

Part III Lectures Field-Effect Transistors (FETs) and Circuits Part III Lecture 5-8 Feld-Effect Trantr (FET) and Crcut Unverty f Technlgy Feld-Effect Trantr (FET) Electrcal and Electrnc Engneerng epartment Lecture Ffteen - Page f 8 ecnd Year, Electrnc I, 2009-200

More information

Transfer Characteristic

Transfer Characteristic Eeld-Effect Transstors (FETs 3.3 The CMS Common-Source Amplfer Transfer Characterstc Electronc Crcuts, Dept. of Elec. Eng., The Chnese Unersty of Hong Kong, Prof. K.-L. Wu Lesson 8&9 Eeld-Effect Transstors

More information

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function Mdellng Physcal Systems The Transer Functn Derental Equatns U Plant Y In the plant shwn, the nput u aects the respnse the utput y. In general, the dynamcs ths respnse can be descrbed by a derental equatn

More information

V. Electrostatics Lecture 27a: Diffuse charge at electrodes

V. Electrostatics Lecture 27a: Diffuse charge at electrodes V. Electrstatcs Lecture 27a: Dffuse charge at electrdes Ntes by MIT tudent We have talked abut the electrc duble structures and crrespndng mdels descrbng the n and ptental dstrbutn n the duble layer. Nw

More information

Lesson 5. Thermomechanical Measurements for Energy Systems (MENR) Measurements for Mechanical Systems and Production (MMER)

Lesson 5. Thermomechanical Measurements for Energy Systems (MENR) Measurements for Mechanical Systems and Production (MMER) Lessn 5 Thermmechancal Measurements r Energy Systems (MEN) Measurements r Mechancal Systems and Prductn (MME) A.Y. 205-6 Zaccara (n ) Del Prete We wll nw analyze mre n depth each ne the unctnal blcks the

More information

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o?

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o? Crcuts Op-Amp ENGG1015 1 st Semester, 01 Interactn f Crcut Elements Crcut desgn s cmplcated by nteractns amng the elements. Addng an element changes vltages & currents thrughut crcut. Example: clsng a

More information

The Operational Amplifier and Application

The Operational Amplifier and Application Intrductn t Electrnc Crcuts: A Desgn Apprach Jse Sla-Martnez and Marn Onabaj The Operatnal Amplfer and Applcatn The peratnal ltage amplfer (mre cmmnly referred t as peratnal amplfer) s ne f the mst useful

More information

element k Using FEM to Solve Truss Problems

element k Using FEM to Solve Truss Problems sng EM t Slve Truss Prblems A truss s an engneerng structure cmpsed straght members, a certan materal, that are tpcall pn-ned at ther ends. Such members are als called tw-rce members snce the can nl transmt

More information

T-model: - + v o. v i. i o. v e. R i

T-model: - + v o. v i. i o. v e. R i T-mdel: e gm - V Rc e e e gme R R R 23 e e e gme R R The s/c tanscnductance: G m e m g gm e 0 The nput esstance: R e e e e The utput esstance: R R 0 /c unladed ltage gan, R a g R m e gmr e 0 m e g me e/e

More information

Lecture 12. Heat Exchangers. Heat Exchangers Chee 318 1

Lecture 12. Heat Exchangers. Heat Exchangers Chee 318 1 Lecture 2 Heat Exchangers Heat Exchangers Chee 38 Heat Exchangers A heat exchanger s used t exchange heat between tw fluds f dfferent temperatures whch are separated by a sld wall. Heat exchangers are

More information

III. Operational Amplifiers

III. Operational Amplifiers III. Operatnal Amplfers Amplfers are tw-prt netwrks n whch the utput vltage r current s drectly prprtnal t ether nput vltage r current. Fur dfferent knds f amplfers ext: ltage amplfer: Current amplfer:

More information

ECE 2C, notes set 7: Basic Transistor Circuits; High-Frequency Response

ECE 2C, notes set 7: Basic Transistor Circuits; High-Frequency Response class notes, M. odwell, copyrhted 013 EE, notes set 7: Basc Transstor rcuts; Hh-Frequency esponse Mark odwell Unversty of alforna, Santa Barbara rodwell@ece.ucsb.edu 805-893-344, 805-893-36 fax oals class

More information

Week 11: Differential Amplifiers

Week 11: Differential Amplifiers ELE 0A Electronc rcuts Week : Dfferental Amplfers Lecture - Large sgnal analyss Topcs to coer A analyss Half-crcut analyss eadng Assgnment: hap 5.-5.8 of Jaeger and Blalock or hap 7. - 7.3, of Sedra and

More information

ES 330 Electronics II Homework 04 (Fall 2017 Due Wednesday, September 27, 2017)

ES 330 Electronics II Homework 04 (Fall 2017 Due Wednesday, September 27, 2017) Pae1 Nae Solutons ES 330 Electroncs II Hoework 04 (Fall 2017 Due Wednesday, Septeer 27, 2017) Prole 1 onsder the FET aplfer of F. 7.10 for the case of t =0.4, kn = 5 A/ 2, GS =0.6, DD = 1.8 and RD = 10

More information

Diodes Waveform shaping Circuits. Sedra & Smith (6 th Ed): Sec. 4.5 & 4.6 Sedra & Smith (5 th Ed): Sec. 3.5 & 3.6

Diodes Waveform shaping Circuits. Sedra & Smith (6 th Ed): Sec. 4.5 & 4.6 Sedra & Smith (5 th Ed): Sec. 3.5 & 3.6 des Waefrm shapng Cruts Sedra & Smth (6 th Ed): Se. 4.5 & 4.6 Sedra & Smth (5 th Ed): Se. 3.5 & 3.6 Tw-prt netwrks as buldng blks Reall: Transfer funtn f a tw-prt netwrk an be fund by slng ths rut ne.

More information

EE 221 Practice Problems for the Final Exam

EE 221 Practice Problems for the Final Exam EE 1 Practce Prblems fr the Fnal Exam 1. The netwrk functn f a crcut s 1.5 H. ω 1+ j 500 Ths table recrds frequency respnse data fr ths crcut. Fll n the blanks n the table:. The netwrk functn f a crcut

More information

Diodes Waveform shaping Circuits

Diodes Waveform shaping Circuits des Waefrm shapng Cruts Leture ntes: page 2-2 t 2-31 Sedra & Smth (6 th Ed): Se. 4.5 & 4.6 Sedra & Smth (5 th Ed): Se. 3.5 & 3.6 F. Najmabad, ECE65, Wnter 212 Tw-prt netwrks as buldng blks Reall: Transfer

More information

Module B3. VLoad = = V S V LN

Module B3. VLoad = = V S V LN Mdule B Prblem The -hase lads are cnnected n arallel. One s a urely resste lad cnnected n wye. t cnsumes 00kW. The secnd s a urely nducte 00kR lad cnnected n wye. The thrd s a urely caacte 00kR lad cnnected

More information

College of Engineering Department of Electronics and Communication Engineering. Test 2

College of Engineering Department of Electronics and Communication Engineering. Test 2 Name: Student D Number: Secton Number: 01/0/03/04 A/B Lecturer: Dr Jamaludn/ Dr Azn Wat/ Dr Jehana Ermy/ Prof Md Zan Table Number: ollege of Engneerng Department of Electroncs and ommuncaton Engneerng

More information

A New Method for Solving Integer Linear. Programming Problems with Fuzzy Variables

A New Method for Solving Integer Linear. Programming Problems with Fuzzy Variables Appled Mathematcal Scences, Vl. 4, 00, n. 0, 997-004 A New Methd fr Slvng Integer Lnear Prgrammng Prblems wth Fuzzy Varables P. Pandan and M. Jayalakshm Department f Mathematcs, Schl f Advanced Scences,

More information

Conduction Heat Transfer

Conduction Heat Transfer Cnductn Heat Transfer Practce prblems A steel ppe f cnductvty 5 W/m-K has nsde and utsde surface temperature f C and 6 C respectvely Fnd the heat flw rate per unt ppe length and flux per unt nsde and per

More information

Chapter II Circuit Analysis Fundamentals

Chapter II Circuit Analysis Fundamentals Chapter II Crcut nalyss Fundamentals Frm a desgn engneer s perspecte, t s mre releant t understand a crcut s peratn and lmtatns than t fnd eact mathematcal epressns r eact numercal slutns. Precse results

More information

Copyright Paul Tobin 63

Copyright Paul Tobin 63 DT, Kevin t. lectric Circuit Thery DT87/ Tw-Prt netwrk parameters ummary We have seen previusly that a tw-prt netwrk has a pair f input terminals and a pair f utput terminals figure. These circuits were

More information

Z 3. z z. S g II "ÿ b3 < II. g g o ÿ aaÿ? Fn m C II "m. z z 3 3 n. 3Bÿ. z z > = z z > 3. 0ÿ 0 ÿ =m ÿ ÿ ÿ- ÿ- S g. N" Z Z ÿ ::r 3 O- O-0--" 7.

Z 3. z z. S g II ÿ b3 < II. g g o ÿ aaÿ? Fn m C II m. z z 3 3 n. 3Bÿ. z z > = z z > 3. 0ÿ 0 ÿ =m ÿ ÿ ÿ- ÿ- S g. N Z Z ÿ ::r 3 O- O-0-- 7. @ L, z z B. z z n O- O---" 7 N" ::r, z 4 - S S " b < rn z - z z > = - 8" 7 z >. -, r = 8" z z > -,- z z > = aa? Fn C " C r tl " _ c < I'-- _ITI q > - > - > > > - - S _ z N S _. - a _ -. ;-'- S _. 7 > z

More information

Chapter 6 : Gibbs Free Energy

Chapter 6 : Gibbs Free Energy Wnter 01 Chem 54: ntrductry hermdynamcs Chapter 6 : Gbbs Free Energy... 64 Defntn f G, A... 64 Mawell Relatns... 65 Gbbs Free Energy G(,) (ure substances)... 67 Gbbs Free Energy fr Mtures... 68 ΔG f deal

More information

LEAP FROG TECHNIQUE. Operational Simulation of LC Ladder Filters ECEN 622 (ESS) TAMU-AMSC

LEAP FROG TECHNIQUE. Operational Simulation of LC Ladder Filters ECEN 622 (ESS) TAMU-AMSC LEAP FOG TEHNQUE Opeatnal Smulatn f L Ladde Fltes L pttype lw senstvty One fm f ths technque s called Leapf Technque Fundamental Buldn Blcks ae - nteats - Secnd-de ealzatns Fltes cnsdeed - LP - BP - HP

More information

Chapter 10 Diodes. 1. Understand diode operation and select diodes for various applications.

Chapter 10 Diodes. 1. Understand diode operation and select diodes for various applications. Chapter 10 des 1. Understand dde peratn and select ddes fr arus applcatns. 2. nalyze nnlnear crcuts usng the graphcal lad-lne technque. 3. nalyze and desgn smple ltage-regulatr crcuts. 4. Sle crcuts usng

More information

SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES

SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES Mhammadreza Dlatan Alreza Jallan Department f Electrcal Engneerng, Iran Unversty f scence & Technlgy (IUST) e-mal:

More information

CHAPTER 11. Solutions for Exercises. (b) An inverting amplifier has negative gain. Thus L

CHAPTER 11. Solutions for Exercises. (b) An inverting amplifier has negative gain. Thus L CHPTE Slutn fr Exerce E. (a nnnertng amplfer ha pte gan. Thu ( t ( t 50 ( t 5.0 n(000πt (b n nertng amplfer ha negate gan. Thu ( t ( t 50 ( t 5.0 n(000πt E. V V 75 500 + 5+ 75 c 75 V 000 75 500 V + + 500

More information

Chapter 7 Impulse and Momentum

Chapter 7 Impulse and Momentum Chapter 7 Ipulse and Mentu Gals r Chapter 7 T study pulse and entu. T understand cnseratn entu. T study entu changes durng cllsns. T understand center ass and hw rces act n the c... T apply entu t rcket

More information

Revision: December 13, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: December 13, E Main Suite D Pullman, WA (509) Voice and Fax .9.1: AC power analyss Reson: Deceber 13, 010 15 E Man Sute D Pullan, WA 99163 (509 334 6306 Voce and Fax Oerew n chapter.9.0, we ntroduced soe basc quanttes relate to delery of power usng snusodal sgnals.

More information

Physics 321 Solutions for Final Exam

Physics 321 Solutions for Final Exam Page f 8 Physics 3 Slutins fr inal Exa ) A sall blb f clay with ass is drpped fr a height h abve a thin rd f length L and ass M which can pivt frictinlessly abut its center. The initial situatin is shwn

More information

V V. This calculation is repeated now for each current I.

V V. This calculation is repeated now for each current I. Page1 Page2 The power supply oltage V = +5 olts and the load resstor R = 1 k. For the range of collector bas currents, I = 0.5 ma, 1 ma, 2.5 ma, 4 ma and 4.5 ma, determne the correspondng collector-to-emtter

More information

Water vapour balance in a building moisture exposure for timber structures

Water vapour balance in a building moisture exposure for timber structures Jnt Wrkshp f COST Actns TU1 and E55 September 21-22 9, Ljubljana, Slvena Water vapur balance n a buldng msture expsure fr tmber structures Gerhard Fnk ETH Zurch, Swtzerland Jchen Köhler ETH Zurch, Swtzerland

More information

Exercises for Frequency Response. ECE 102, Fall 2012, F. Najmabadi

Exercises for Frequency Response. ECE 102, Fall 2012, F. Najmabadi Eecses Fequency espnse EE 0, Fall 0, F. Najabad Eecse : Fnd the d-band an and the lwe cut- equency the aple belw. µ n (W/ 4 A/, t 0.5, λ 0, 0 µf, and µf Bth capacts ae lw- capacts. F. Najabad, EE0, Fall

More information

R th is the Thevenin equivalent at the capacitor terminals.

R th is the Thevenin equivalent at the capacitor terminals. Chaper 7, Slun. Applyng KV Fg. 7.. d 0 C - Takng he derae f each erm, d 0 C d d d r C Inegrang, () ln I 0 - () I 0 e - C C () () r - I 0 e - () V 0 e C C Chaper 7, Slun. h C where h s he Theenn equalen

More information

PHYSICS 151 Notes for Online Lecture #23

PHYSICS 151 Notes for Online Lecture #23 PHYSICS 5 Ntes fr Online Lecture #3 Peridicity Peridic eans that sething repeats itself. r exaple, eery twenty-fur hurs, the Earth aes a cplete rtatin. Heartbeats are an exaple f peridic behair. If yu

More information

where v means the change in velocity, and t is the

where v means the change in velocity, and t is the 1 PHYS:100 LECTURE 4 MECHANICS (3) Ths lecture covers the eneral case of moton wth constant acceleraton and free fall (whch s one of the more mportant examples of moton wth constant acceleraton) n a more

More information

CURRENT FEEDBACK AMPLIFIERs

CURRENT FEEDBACK AMPLIFIERs Abstract-The need r hgh speed, wdeband amplers s the drng rce behnd the deelpment the Current Feedback Ampler (CFA). The CFA has sgncant adantages er cnentnal amplers n terms slew rate perrmance and nherently

More information

PHY2053 Summer 2012 Exam 2 Solutions N F o f k

PHY2053 Summer 2012 Exam 2 Solutions N F o f k HY0 Suer 0 Ea Slutns. he ree-bdy dagra r the blck s N F 7 k F g Usng Newtn s secnd law r the -cnents F a F F cs7 k 0 k F F cs7 (0 N ( Ncs7 N he wrk dne by knetc rctn k r csθ ( N(6 cs80 0 N. Mechancal energy

More information

BASIC DIRECT-CURRENT MEASUREMENTS

BASIC DIRECT-CURRENT MEASUREMENTS Brwn University Physics 0040 Intrductin BASIC DIRECT-CURRENT MEASUREMENTS The measurements described here illustrate the peratin f resistrs and capacitrs in electric circuits, and the use f sme standard

More information

Square law expression is non linear between I D and V GS. Need to operate in appropriate region for linear behaviour. W L

Square law expression is non linear between I D and V GS. Need to operate in appropriate region for linear behaviour. W L MOS Feld-Effec Trassrs (MOSFETs ecure # 4 MOSFET as a Amplfer k ( S Square law express s lear bewee ad. Need perae apprprae reg fr lear behaur. Cpyrgh 004 by Oxfrd Uersy Press, c. MOSFET as a Amplfer S

More information

Spring 2002 Lecture #17

Spring 2002 Lecture #17 1443-51 Sprng 22 Lecture #17 r. Jaehn Yu 1. Cndtns fr Equlbrum 2. Center f Gravty 3. Elastc Prpertes f Slds Yung s dulus Shear dulus ulk dulus Tday s Hmewrk Assgnment s the Hmewrk #8!!! 2 nd term eam n

More information

Section I5: Feedback in Operational Amplifiers

Section I5: Feedback in Operational Amplifiers Sectin I5: eedback in Operatinal mplifiers s discussed earlier, practical p-amps hae a high gain under dc (zer frequency) cnditins and the gain decreases as frequency increases. This frequency dependence

More information

CHAPTER If two balls swing in initial momentum is 2 mv and balls 4 and 5 will swing out.

CHAPTER If two balls swing in initial momentum is 2 mv and balls 4 and 5 will swing out. HPTER 4 4. Slutn: Mentu s cnsered. Therefre 5 th ball es ut wth sae elcty as st ball n pact. 4. If tw balls swng n ntal entu s and balls 4 and 5 wll swng ut. 4.3 Slutn: L n L L n 4.4 Slutn: M b M. kg kg

More information

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter).

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter). Three charges, all with a charge f 0 are situated as shwn (each grid line is separated by meter). ) What is the net wrk needed t assemble this charge distributin? a) +0.5 J b) +0.8 J c) 0 J d) -0.8 J e)

More information

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SPECIAL SEMESTER 2013 / 2014

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SPECIAL SEMESTER 2013 / 2014 OLLEGE OF ENGNEENG PUTAJAYA AMPUS FNAL EXAMNATON SPEAL SEMESTE 03 / 04 POGAMME SUBJET ODE SUBJET : Bachelor of Electrcal & Electroncs Engneerng (Honours) Bachelor of Electrcal Power Engneerng (Honours)

More information

Lecture 8: Small signal parameters and hybrid-π model Lecture 9, High Speed Devices 2016

Lecture 8: Small signal parameters and hybrid-π model Lecture 9, High Speed Devices 2016 Lecture 8: Small sgnal parameters and hbrdπ model π 08006 Lecture 9, Hgh Speed Deces 06 Lecture 8: Small sgnal parameters and hbrdπ model Lterature: Twoport networks Transstors for hgh frequences How to

More information

PT326 PROCESS TRAINER

PT326 PROCESS TRAINER PT326 PROCESS TRAINER 1. Descrptn f the Apparatus PT 326 Prcess Traner The PT 326 Prcess Traner mdels cmmn ndustral stuatns n whch temperature cntrl s requred n the presence f transprt delays and transfer

More information

College of Engineering Department of Electronics and Communication Engineering. Test 1 With Model Answer

College of Engineering Department of Electronics and Communication Engineering. Test 1 With Model Answer Name: Student D Number: Secton Number: 01/0/03/04 A/B Lecturer: Dr Jamaludn/ Dr Jehana Ermy/ Dr Azn Wat Table Number: College of Engneerng Department of Electroncs and Communcaton Engneerng Test 1 Wth

More information

(2) Even if such a value of k was possible, the neutrons multiply

(2) Even if such a value of k was possible, the neutrons multiply CHANGE OF REACTOR Nuclear Thery - Curse 227 POWER WTH REACTVTY CHANGE n this lessn, we will cnsider hw neutrn density, neutrn flux and reactr pwer change when the multiplicatin factr, k, r the reactivity,

More information

University of Southern California School Of Engineering Department Of Electrical Engineering

University of Southern California School Of Engineering Department Of Electrical Engineering Unverty f Suthern afrna Sch Of Enneern Deartent Of Eectrca Enneern EE 48: ewrk nent # fa, Due 9/7/ ha Fure : The redrawn cnfuratn f "F P." t b t a Gven the fure, ne can wrte the fwn equatn: λ t t { λ }

More information

Synchronous Motor V-Curves

Synchronous Motor V-Curves Synchrnus Mtr V-Curves 1 Synchrnus Mtr V-Curves Intrductin Synchrnus mtrs are used in applicatins such as textile mills where cnstant speed peratin is critical. Mst small synchrnus mtrs cntain squirrel

More information

1. Transformer A transformer is used to obtain the approximate output voltage of the power supply. The output of the transformer is still AC.

1. Transformer A transformer is used to obtain the approximate output voltage of the power supply. The output of the transformer is still AC. PHYSIS 536 Experiment 4: D Pwer Supply I. Intrductin The prcess f changing A t D is investigated in this experiment. An integrated circuit regulatr makes it easy t cnstruct a high-perfrmance vltage surce

More information

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018 EEN474/704: (nal) VSI ircuit Desin Sprin 0 ecture 3: Flded ascde & Tw Stae Miller OT Sa Paler nal & Mixed-Sinal enter Texas &M University nnunceents Exa dates reinder Exa is n pr. 0 Exa 3 is n May 3 (3PM-5PM)

More information

Diode. Current HmAL Voltage HVL Simplified equivalent circuit. V γ. Reverse bias. Forward bias. Designation: Symbol:

Diode. Current HmAL Voltage HVL Simplified equivalent circuit. V γ. Reverse bias. Forward bias. Designation: Symbol: Dode Materal: Desgnaton: Symbol: Poste Current flow: ptype ntype Anode Cathode Smplfed equalent crcut Ideal dode Current HmAL 0 8 6 4 2 Smplfed model 0.5.5 2 V γ eal dode Voltage HVL V γ closed open V

More information

Lucas Imperfect Information Model

Lucas Imperfect Information Model Lucas Imerfect Infrmatn Mdel 93 Lucas Imerfect Infrmatn Mdel The Lucas mdel was the frst f the mdern, mcrfundatns mdels f aggregate suly and macrecnmcs It bult drectly n the Fredman-Phels analyss f the

More information

Exercises for Cascode Amplifiers. ECE 102, Fall 2012, F. Najmabadi

Exercises for Cascode Amplifiers. ECE 102, Fall 2012, F. Najmabadi Execises f Cascde plifies ECE 0, Fall 0, F. Najabadi F. Najabadi, ECE0, Fall 0 /6 Execise : Cpute assue and Eey Cascde stae inceases by uble Cascde Execise : Cpute all indicated s, s, and i s. ssue tansists

More information

A Novel Isolated Buck-Boost Converter

A Novel Isolated Buck-Boost Converter vel slated uck-st Cnverter S-Sek Kim *,WOO-J JG,JOOG-HO SOG, Ok-K Kang, and Hee-Jn Kim ept. f Electrical Eng., Seul atinal University f Technlgy, Krea Schl f Electrical and Cmputer Eng., Hanyang University,

More information

Approach: (Equilibrium) TD analysis, i.e., conservation eqns., state equations Issues: how to deal with

Approach: (Equilibrium) TD analysis, i.e., conservation eqns., state equations Issues: how to deal with Schl f Aerspace Chemcal D: Mtvatn Prevus D Analyss cnsdered systems where cmpstn f flud was frzen fxed chemcal cmpstn Chemcally eactng Flw but there are numerus stuatns n prpulsn systems where chemcal

More information

Edexcel GCSE Physics

Edexcel GCSE Physics Edexcel GCSE Physics Tpic 10: Electricity and circuits Ntes (Cntent in bld is fr Higher Tier nly) www.pmt.educatin The Structure f the Atm Psitively charged nucleus surrunded by negatively charged electrns

More information

Relationships Between Frequency, Capacitance, Inductance and Reactance.

Relationships Between Frequency, Capacitance, Inductance and Reactance. P Physics Relatinships between f,, and. Relatinships Between Frequency, apacitance, nductance and Reactance. Purpse: T experimentally verify the relatinships between f, and. The data cllected will lead

More information

Thermodynamics of Materials

Thermodynamics of Materials Thermdynamcs f Materals 14th Lecture 007. 4. 8 (Mnday) FUGACITY dg = Vd SdT dg = Vd at cnstant T Fr an deal gas dg = (RT/)d = RT dln Ths s true fr deal gases nly, but t wuld be nce t have a smlar frm fr

More information

MODULE TITLE : ELECTRONICS TOPIC TITLE : AMPLIFIERS LESSON 1 : FEEDBACK

MODULE TITLE : ELECTRONICS TOPIC TITLE : AMPLIFIERS LESSON 1 : FEEDBACK MODULE TITLE : ELECTONICS TOPIC TITLE : AMPLIFIES LESSON : FEEDBACK EL - 3 - INTODUCTION This lessn trduces the ideas f negative feedback, which we shw can vercme the disadvantages f wide parameter variat

More information