PHYSICS 151 Notes for Online Lecture #23

Size: px
Start display at page:

Download "PHYSICS 151 Notes for Online Lecture #23"

Transcription

1 PHYSICS 5 Ntes fr Online Lecture #3 Peridicity Peridic eans that sething repeats itself. r exaple, eery twenty-fur hurs, the Earth aes a cplete rtatin. Heartbeats are an exaple f peridic behair. If yu l at heartbeats n an electrcardigra, they ae a regular pattern. he pattern that the heart beys is rather cplicated. In this sectin, we re ging t be dealing with a specific type f peridic tin called siple harnic tin Harnic eans that the tin can be described using sines and csines. Siple eans that the tin can be described using a single frequency. A ass n a spring (hrizntal r ertical) is a x 0 gd exaple f siple 0 harnic tin (r SHM fr shrt). he tin f the spring is repeated er and er. Let s start with a hrizntal spring, resting n a frictinless table. We pic a reference pint - x n the ass fr exaple, the center f the ass. he psitin f the center f the ass when the spring is unstretched is called the equilibriu x x pint (x 0). Nw I pull the ass an arbitrary distance x t the right. he spring exerts a frce in the directin ppsite the displaceent (t the left in this case). he frce is gien by He s Law: x where is the spring cnstant and has units f N/. If I pull the spring t the right, the spring exerts a frce t the left. Alternately, I can push the spring in a distance x. Nw the spring exerts a frce tward the right. Reeber that He s law nly wrs when the displaceents are sall. If yu ae a ery large displaceent, He s law desn t apply anyre and nne f what I abut t tell yu will apply either. A special characteristic f siple harnic tin is that the acceleratin is directly prprtinal t the displaceent. We can start with Newtn's secnd law a, and then insert He's law fr the frce n the spring. Lecture 3 Page

2 a x a a x Any syste in which the acceleratin is prprtinal t the displaceent will exhibit siple harnic tin. his can be tested experientally. Plt s. x n a graph and tae the slpe f the resulting straight line. If yu d this and yu dn t get a straight line, it eans that the spring can t be described by He s law. Siple Harnic Mtin Vcabulary displaceent ti e When I pull the ass n a spring and release it, the ass exhibits a peridic tin the psitin f the spring cnstantly repeats itself. If I were t plt the displaceent f the ass as a functin f tie, it wuld l sething lie this: If yu want t find ut where the ass is at any pint in tie, yu fllw the x-axis ut t the tie yu're interested in and they e up t the cure t see where the ass's psitin is. We can define a nuber f characteristics f siple harnic tin. r exaple, the aplitude is the axiu displaceent f the ass. he sybl fr aplitude is x. his is a distance, s the units shuld be eters. he tie it taes fr the ass t ae ne cplete cycle that is, t g fr stretched t cpressed and bac again is called the perid, which we represent by. Reind yurself that the "picture" f the wae is a picture f the ass as a functin f tie. It's nt a snapsht f the wae itself. he frequency is the nuber f cycles that are cpleted in ne secnd. he frequency is gien by f If the ass taes 3.0 s t cplete a cycle, the frequency is / (/s). We hae a special nae fr the unit f frequency, which is the Hertz (Hz). Lecture 3 Page

3 Hz s Quantity Sybl Definitin Units Perid tie fr ne cycle s requency f nuber f cycles per secnd /s Hz Aplitude x axiu displaceent displace ent a plitude ti e peri d Describing SHM using sines r csines he graph f the wae we hae been diagraing can be expressed as a sine r csine wae. In general, we can write any SHM as a sine wae r a csine wae. Yu nw fr trig that the sine and csine waes hae perids f π. he arguent f the trig functin has t be ultiplied by a factr such that the perid f yur wae is a ultiple f π. he scale factr turns ut t be t/. When the tie is equal t ne perid, yu want yur wae t be bac where it started. At t, the arguent is equal t π. xt ( ) x cs( π?) xt () x cs t π H G I K J If yu tae a csine wae and shift it by ne quarter f a cycle (90 degrees r π/ radians), yu find that the result is a sine wae. π t π πt xt () xcs xsin Lecture 3 Page 3

4 Hw d yu nw which is which? he answer is that yu hae t figure ut hw the wae starts. r exaple, at t 0, the sine functin will always be zer, regardless f the alue f ega. he wae belw in blue ust be a sine wae because it starts at zer. displaceent Csine wae tie Sine wae We can als find the elcity and the acceleratin f the ass as a functin f tie. If xt () x cs then t () sin and at () a cs πt H G I K J πt H G I K J πt H G I K J Nte that ur cnstraint that x and a ust be prprtinal t each ther is satisfied by these expressins. Lecture 3 Page 4

5 Ex. 3-: he tin f an scillatr f ass 0. g is gien by: xt () (. 050)cs 09. t b g where x is in and t is in s a) ind the aplitude b) ind the perid c) ind the frequency f scillatin d) ind the psitin f the ass at t 0 s, 0.75 s,.5 s, 3.0 s and 6.0 s We first hae t put this in the sae fr -as xt () x cs his gie us a) x 0.50 b) he arguent in the csine functin is πt c) f / /3.0 s 0.33 Hz ie π t/ t π H G I K J t xt () ( 0.5) cs π 3.0. he perid ust therefre be 3.0 s. cs HG π t 30. I K J X(t) s π / s π π 0.5 Ex. 3-: A 0.50-g ass at the end f a hrizntal spring has psitin 0 when t 0. he aplitude is 0.5 and the cycle starts by ing t the right first. he ass aes.0 cplete scillatins each secnd. What is the equatin fr the psitin as a functin f tie? Slutin: he functin will be either a sine r a csine. Hw d we nw which t pic? We re tld that the psitin at t 0 is x 0. Cpare the csine and sin functins. Lecture 3 Page 5

6 functin t 0 alue I HG K J cs(0) cs π t sin π t I HG K J sin(0) 0 S anytie that the ass starts fr x 0, yu will hae a sin functin. If the ass starts fr its aplitude alue, x 0, yu need t hae a csine functin. Since we re starting fr 0, we need t use a sin functin. πt xt () x sin We are tld that the syste cpletes tw scillatins eery secnd. his is the frequency, f H G I K J f /s he perid,, is gien by /f 0.5 s he aplitude is gien t us as x 0.5. Putting these in ur equatin, we hae: πt xt () b. sin H G I 05 g. sin t. K J b05 g b4π g 05 Why were we tld that the scillatins started tward the right? S that we wuld nw whether we needed a psitie r a negatie sign ut frnt. When the ass starts at zer, it can g either psitie r negatie in displaceent. If we tae t the right as psitie, the equatin will nt need a negatie sign. If the ass were ging t the left, we wuld hae a negatie sign ut frnt. he ertical spring What if the spring yu hae is hung ertically instead f hrizntally? Des what we just discered still hld? Ex. 3-3: A spring f spring cnstant 5 N/ has a ass f 0.5 g hung fr it. Hw far des the spring stretch when the ass is placed n it? When the ass is n the spring, it pulls the spring dwn, but then it just hangs there. We can draw a free-bdy diagra fr the ass. he acceleratin is zer, and the nly frces acting are graity dwn and the frce f the spring up. x0 Lecture 3 Page 6 x x eq

7 Σ 0 g x 0 eq xeq g (. 05g) xeq 98. 5N/ s x eq his is where the effect f graity ce in- it shifts the equilibriu psitin f the spring. Once this has been accunted fr - by taing the ptential energy t be zer when the ass is at x. Graity has n effect n the SH tin at all. Let s l at the spring when it s displaced a distance x. Draw the free-bdy diagra. (x-x ) x0 x x eq g x x + x eq he net frce is We fund in part a that x eq g/. ( x+ x ) g x+ x+ he nly frce causing the SHM is the spring! HG HG eq g g I K J I K J x+ g g x S analyzing SHM in the ertical and the hrizntal directins is the sae, except that the equilibriu psitin shift ust be accunted fr. g g Lecture 3 Page 7

8 Cnseratin f Energy fr SHM As the spring is stretched r cpressed, energy is cnerted fr the tin f the ass and spring t energy stred in the cils and bac again. he elastic ptential energy due t a spring (and ther stretchy things lie rubber bands) is: PE el x where, unlie graitatinal ptential energy, we tae the zer t be the equilibriu psitin f the spring (i.e. x 0 crrespnds t the pint at which there is zer ptential energy). 0 x - x 0 We can write the ttal echanical energy fr a spring as: E KE+ PE E + x At the axiu displaceent (x x ), the ass is entarily standing still. he ttal energy is then: 0 x 0 x E + x E x0 All ptential energy! When x 0, the ass has a elcity, which is the axiu elcity that the ass can hae. he ttal energy is then: 0 E + x E Because the ttal energy is cnstant at eery place alng the tin, All inetic energy Lecture 3 Page 8

9 x x x here is ne ther relatinship that we will need t use (which can be deried by cnsidering SHM is the prjectin f circular tin). π Let's reiew the definitins and relatinships we hae x aplitude axiu displaceent - ccurs when 0 (A is als used fr aplitude) axiu elcity ccurs when x 0 perid (s) f frequency (Hz /s) spring cnstant (N/) Relatinships: π f x x f π Ex. 3-4: he tin f an scillatr f ass 0. g is gien by: xt () (. 050)cs 09. t where x is in and t is in s. Nte that this is the sae equatin as Exaple 3-. b g e) ind the spring cnstant f) ind the ttal energy g) ind the axiu elcity We first hae t put this in the sae fr as xt () x cs t π H G I K J his gies us t xt () ( 0.5) cs π 3.0 Lecture 3 Page 9

10 a) spring cnstant: We ntice first that the perid is 3.0 s, s b) tal energy π ( π ) ( π ) ( ) ( ) 0.g π ( 3.0 s) g N s E x N E c088. hb050. g E. x0 J c) Maxiu elcity: he axiu elcity ccurs when x 0, s the energy is entirely inetic E E (. x0 J) 0. g 05. s. s Yu ry It! A 0.50-g ass at the end f a hrizntal spring is pulled bac t a distance f 0.5. At t 0, the ass is released and aes 3.0 cplete scillatins each secnd. ind: a) the elcity when the ass passes the equilibriu pint b) the elcity when the ass is 0.0 fr equilibriu c) the ttal echanical energy f the syste Knwn: A g f 3.0 Hz a) he quantity we are ling fr is. In exaining the equatins fr elcity and psitin, we fund that x Lecture 3 Page 0

11 Unfrtunately, we dn't nw, but we can find fr Nw put this in ur expressin fr π π f πf I HG f K J π πf b x g d i πf πf x x πfx π( 30. Hz)(. 05) 8. s + x + πf Using cnseratin f energy: x f x x π. x b b b π c sh c π(. sh b. g s f x Stp t see if this aes sense. he elcity ust be less than, which it is. c) tal energy g g g Lecture 3 Page

12 E b gc sh E 05. g 8. E 0. J Lecture 3 Page

PHYSICS 151 Notes for Online Lecture 4.1

PHYSICS 151 Notes for Online Lecture 4.1 PHYSICS 5 Nte r Online ecture 4. Peridicity Peridic ean that ethin repeat itel. r exaple, eery twenty-ur hur, the ae a cplete rtatin. Heartbeat are an exaple peridic behair. I yu l at heartbeat n an electrcardira,

More information

2015 Regional Physics Exam Solution Set

2015 Regional Physics Exam Solution Set 05 Reginal hysics Exa Slutin Set. Crrect answer: D Nte: [quantity] dentes: units f quantity WYSE Acadeic Challenge 05 Reginal hysics Exa SOLUTION SET r F r a lengthass length / tie ass length / tie. Crrect

More information

Physics 321 Solutions for Final Exam

Physics 321 Solutions for Final Exam Page f 8 Physics 3 Slutins fr inal Exa ) A sall blb f clay with ass is drpped fr a height h abve a thin rd f length L and ass M which can pivt frictinlessly abut its center. The initial situatin is shwn

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

Harmonic Motion (HM) Oscillation with Laminar Damping

Harmonic Motion (HM) Oscillation with Laminar Damping Harnic Mtin (HM) Oscillatin with Lainar Daping If yu dn t knw the units f a quantity yu prbably dn t understand its physical significance. Siple HM r r Hke' s Law: F k x definitins: f T / T / Bf x A sin

More information

Lecture 2: Single-particle Motion

Lecture 2: Single-particle Motion Lecture : Single-particle Mtin Befre we start, let s l at Newtn s 3 rd Law Iagine a situatin where frces are nt transitted instantly between tw bdies, but rather prpagate at se velcity c This is true fr

More information

SOFT MASSIVE SPRING Objectives: Apparatus: Introduction:

SOFT MASSIVE SPRING Objectives: Apparatus: Introduction: SOFT MASSIVE SPRING Objectives: ) T deterine the spring cnstant and the ass crrectin factr fr the given sft assive spring by static (equilibriu extensin) ethd. 2) T deterine the spring cnstant and the

More information

Solution to HW14 Fall-2002

Solution to HW14 Fall-2002 Slutin t HW14 Fall-2002 CJ5 10.CQ.003. REASONING AND SOLUTION Figures 10.11 and 10.14 shw the velcity and the acceleratin, respectively, the shadw a ball that underges unirm circular mtin. The shadw underges

More information

AP Physics Kinematic Wrap Up

AP Physics Kinematic Wrap Up AP Physics Kinematic Wrap Up S what d yu need t knw abut this mtin in tw-dimensin stuff t get a gd scre n the ld AP Physics Test? First ff, here are the equatins that yu ll have t wrk with: v v at x x

More information

Lecture 5: Equilibrium and Oscillations

Lecture 5: Equilibrium and Oscillations Lecture 5: Equilibrium and Oscillatins Energy and Mtin Last time, we fund that fr a system with energy cnserved, v = ± E U m ( ) ( ) One result we see immediately is that there is n slutin fr velcity if

More information

PHY 140Y FOUNDATIONS OF PHYSICS Tutorial Questions #10 Solutions November 19/20

PHY 140Y FOUNDATIONS OF PHYSICS Tutorial Questions #10 Solutions November 19/20 PHY 40Y FOUNDTIONS OF PHYSICS 00-00 Tutrial Questins #0 Slutins Nveer 9/0 Dape an Driven Harnic Mtin, Resnance. ass f 0 g is cnnecte t a light spring having frce cnstant 5.4 N/. It is free t scillate n

More information

Lecture 6: Phase Space and Damped Oscillations

Lecture 6: Phase Space and Damped Oscillations Lecture 6: Phase Space and Damped Oscillatins Oscillatins in Multiple Dimensins The preius discussin was fine fr scillatin in a single dimensin In general, thugh, we want t deal with the situatin where:

More information

2. The acceleration of a simple harmonic oscillator is zero whenever the oscillating object is at the equilibrium position.

2. The acceleration of a simple harmonic oscillator is zero whenever the oscillating object is at the equilibrium position. CHAPER : Vibratins and Waes Answers t Questins. he blades in an electric shaer ibrate, apprxiately in SHM. he speaers in a stere syste ibrate, but usually in a ery cplicated way since any ntes are being

More information

2. The acceleration of a simple harmonic oscillator is zero whenever the oscillating object is at the equilibrium position.

2. The acceleration of a simple harmonic oscillator is zero whenever the oscillating object is at the equilibrium position. CHAPER : Vibratins and Waes Answers t Questins. he blades in an electric shaer ibrate, apprximately in SHM. he speakers in a stere system ibrate, but usually in a ery cmplicated way since many ntes are

More information

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b . REVIEW OF SOME BASIC ALGEBRA MODULE () Slving Equatins Yu shuld be able t slve fr x: a + b = c a d + e x + c and get x = e(ba +) b(c a) d(ba +) c Cmmn mistakes and strategies:. a b + c a b + a c, but

More information

CHAPTER 8b Static Equilibrium Units

CHAPTER 8b Static Equilibrium Units CHAPTER 8b Static Equilibrium Units The Cnditins fr Equilibrium Slving Statics Prblems Stability and Balance Elasticity; Stress and Strain The Cnditins fr Equilibrium An bject with frces acting n it, but

More information

Lecture 11 DAMPED AND DRIVEN HARMONIC OSCILLATIONS. Composition of harmonic oscillations (1) Harmonic motion diff. equation is: -linear -uniform

Lecture 11 DAMPED AND DRIVEN HARMONIC OSCILLATIONS. Composition of harmonic oscillations (1) Harmonic motion diff. equation is: -linear -uniform Lecture DMPED ND DRIVEN HRMONIC OSCILLTIONS Ntes: Lecture - Cpsitin f harnic scillatins () Learn re: Linear differential equatin Harnic tin diff. equatin is: -linear -unifr d + http://en.wikipedia.rg/wiki/linear_differential_eq

More information

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1 Phys101 Final Cde: 1 Term: 1 Wednesday, May 1, 014 Page: 1 Q1. A car accelerates at.0 m/s alng a straight rad. It passes tw marks that are 0 m apart at times t = 4.0 s and t = 5.0 s. Find the car s velcity

More information

CHAPTER 6 -- ENERGY. Approach #2: Using the component of mg along the line of d:

CHAPTER 6 -- ENERGY. Approach #2: Using the component of mg along the line of d: Slutins--Ch. 6 (Energy) CHAPTER 6 -- ENERGY 6.) The f.b.d. shwn t the right has been prvided t identify all the frces acting n the bdy as it mves up the incline. a.) T determine the wrk dne by gravity

More information

Simple Harmonic Motion of Spring

Simple Harmonic Motion of Spring Nae P Physics Date iple Haronic Motion and prings Hooean pring W x U ( x iple Haronic Motion of pring. What are the two criteria for siple haronic otion? - Only restoring forces cause siple haronic otion.

More information

Lecture 7: Damped and Driven Oscillations

Lecture 7: Damped and Driven Oscillations Lecture 7: Damped and Driven Oscillatins Last time, we fund fr underdamped scillatrs: βt x t = e A1 + A csω1t + i A1 A sinω1t A 1 and A are cmplex numbers, but ur answer must be real Implies that A 1 and

More information

20 Faraday s Law and Maxwell s Extension to Ampere s Law

20 Faraday s Law and Maxwell s Extension to Ampere s Law Chapter 20 Faraday s Law and Maxwell s Extensin t Ampere s Law 20 Faraday s Law and Maxwell s Extensin t Ampere s Law Cnsider the case f a charged particle that is ming in the icinity f a ming bar magnet

More information

Study Guide Physics Pre-Comp 2013

Study Guide Physics Pre-Comp 2013 I. Scientific Measurement Metric Units S.I. English Length Meter (m) Feet (ft.) Mass Kilgram (kg) Pund (lb.) Weight Newtn (N) Ounce (z.) r pund (lb.) Time Secnds (s) Secnds (s) Vlume Liter (L) Galln (gal)

More information

INTRODUCTION TO ENZYME KINETICS

INTRODUCTION TO ENZYME KINETICS Bilgy 00; Lecture 0 INTRODUCTION TO ENZYME INETICS enzye actie (catalytic) sites. stabilize substrate binding with sae cllectin f nn-calent interactins which theseles stabilize enzye 3-D cnfratins H-bnds,

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Tw Dimensins; Vectrs Vectrs and Scalars Additin f Vectrs Graphical Methds (One and Tw- Dimensin) Multiplicatin f a Vectr b a Scalar Subtractin f Vectrs Graphical Methds Adding Vectrs

More information

Chapter 5: Force and Motion I-a

Chapter 5: Force and Motion I-a Chapter 5: rce and Mtin I-a rce is the interactin between bjects is a vectr causes acceleratin Net frce: vectr sum f all the frces n an bject. v v N v v v v v ttal net = i = + + 3 + 4 i= Envirnment respnse

More information

Q x = cos 1 30 = 53.1 South

Q x = cos 1 30 = 53.1 South Crdinatr: Dr. G. Khattak Thursday, August 0, 01 Page 1 Q1. A particle mves in ne dimensin such that its psitin x(t) as a functin f time t is given by x(t) =.0 + 7 t t, where t is in secnds and x(t) is

More information

Physics 2010 Motion with Constant Acceleration Experiment 1

Physics 2010 Motion with Constant Acceleration Experiment 1 . Physics 00 Mtin with Cnstant Acceleratin Experiment In this lab, we will study the mtin f a glider as it accelerates dwnhill n a tilted air track. The glider is supprted ver the air track by a cushin

More information

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1 /Solution. Solution

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1 /Solution. Solution 39th Internatinal Physics Olympiad - Hani - Vietnam - 8 Theretical Prblem N. /Slutin Slutin. The structure f the mrtar.. Calculating the distance TG The vlume f water in the bucket is V = = 3 3 3 cm m.

More information

Example 1. A robot has a mass of 60 kg. How much does that robot weigh sitting on the earth at sea level? Given: m. Find: Relationships: W

Example 1. A robot has a mass of 60 kg. How much does that robot weigh sitting on the earth at sea level? Given: m. Find: Relationships: W Eample 1 rbt has a mass f 60 kg. Hw much des that rbt weigh sitting n the earth at sea level? Given: m Rbt = 60 kg ind: Rbt Relatinships: Slutin: Rbt =589 N = mg, g = 9.81 m/s Rbt = mrbt g = 60 9. 81 =

More information

14. Which shows the direction of the centripetal force acting on a mass spun in a vertical circle?

14. Which shows the direction of the centripetal force acting on a mass spun in a vertical circle? Physics 0 Public Exam Questins Unit 1: Circular Mtin NAME: August 009---------------------------------------------------------------------------------------------------------------------- 1. Which describes

More information

14. Which shows the direction of the centripetal force acting on a mass spun in a vertical circle?

14. Which shows the direction of the centripetal force acting on a mass spun in a vertical circle? Physics 3204 Public Exam Questins Unit 1: Circular Mtin NAME: August 2009---------------------------------------------------------------------------------------------------------------------- 12. Which

More information

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018 Michael Faraday lived in the Lndn area frm 1791 t 1867. He was 29 years ld when Hand Oersted, in 1820, accidentally discvered that electric current creates magnetic field. Thrugh empirical bservatin and

More information

Corrections for the textbook answers: Sec 6.1 #8h)covert angle to a positive by adding period #9b) # rad/sec

Corrections for the textbook answers: Sec 6.1 #8h)covert angle to a positive by adding period #9b) # rad/sec U n i t 6 AdvF Date: Name: Trignmetric Functins Unit 6 Tentative TEST date Big idea/learning Gals In this unit yu will study trignmetric functins frm grade, hwever everything will be dne in radian measure.

More information

Periodic Motion is everywhere

Periodic Motion is everywhere Lecture 19 Goals: Chapter 14 Interrelate the physics and atheatics of oscillations. Draw and interpret oscillatory graphs. Learn the concepts of phase and phase constant. Understand and use energy conservation

More information

m A 1 m mgd k m v ( C) AP Physics Multiple Choice Practice Oscillations

m A 1 m mgd k m v ( C) AP Physics Multiple Choice Practice Oscillations P Physics Multiple Choice Practice Oscillations. ass, attached to a horizontal assless spring with spring constant, is set into siple haronic otion. Its axiu displaceent fro its equilibriu position is.

More information

Physics 207 Lecture 18. Physics 207, Lecture 18, Nov. 3 Goals: Chapter 14

Physics 207 Lecture 18. Physics 207, Lecture 18, Nov. 3 Goals: Chapter 14 Physics 07, Lecture 18, Nov. 3 Goals: Chapter 14 Interrelate the physics and atheatics of oscillations. Draw and interpret oscillatory graphs. Learn the concepts of phase and phase constant. Understand

More information

. (7.1.1) This centripetal acceleration is provided by centripetal force. It is directed towards the center of the circle and has a magnitude

. (7.1.1) This centripetal acceleration is provided by centripetal force. It is directed towards the center of the circle and has a magnitude Lecture #7-1 Dynamics f Rtatin, Trque, Static Equilirium We have already studied kinematics f rtatinal mtin We discussed unifrm as well as nnunifrm rtatin Hwever, when we mved n dynamics f rtatin, the

More information

More Oscillations! (Today: Harmonic Oscillators)

More Oscillations! (Today: Harmonic Oscillators) More Oscillations! (oday: Haronic Oscillators) Movie assignent reinder! Final due HURSDAY April 20 Subit through ecapus Different rubric; reeber to chec it even if you got 00% on your draft: http://sarahspolaor.faculty.wvu.edu/hoe/physics-0

More information

BASIC DIRECT-CURRENT MEASUREMENTS

BASIC DIRECT-CURRENT MEASUREMENTS Brwn University Physics 0040 Intrductin BASIC DIRECT-CURRENT MEASUREMENTS The measurements described here illustrate the peratin f resistrs and capacitrs in electric circuits, and the use f sme standard

More information

Hooke s Law (Springs) DAVISSON. F A Deformed. F S is the spring force, in newtons (N) k is the spring constant, in N/m

Hooke s Law (Springs) DAVISSON. F A Deformed. F S is the spring force, in newtons (N) k is the spring constant, in N/m HYIC 534 XRCI-4 ANWR Hke s Law (prings) DAVION Clintn Davissn was awarded the Nbel prize fr physics in 1937 fr his wrk n the diffractin f electrns. A spring is a device that stres ptential energy. When

More information

CHECKLIST. r r. Newton s Second Law. natural frequency ω o (rad.s -1 ) (Eq ) a03/p1/waves/waves doc 9:19 AM 29/03/05 1

CHECKLIST. r r. Newton s Second Law. natural frequency ω o (rad.s -1 ) (Eq ) a03/p1/waves/waves doc 9:19 AM 29/03/05 1 PHYS12 Physics 1 FUNDAMENTALS Module 3 OSCILLATIONS & WAVES Text Physics by Hecht Chapter 1 OSCILLATIONS Sections: 1.5 1.6 Exaples: 1.6 1.7 1.8 1.9 CHECKLIST Haronic otion, periodic otion, siple haronic

More information

Student Book pages

Student Book pages Chapter 7 Review Student Boo pages 390 39 Knowledge. Oscillatory otion is otion that repeats itself at regular intervals. For exaple, a ass oscillating on a spring and a pendulu swinging bac and forth..

More information

WileyPLUS Assignment 3. Next Week

WileyPLUS Assignment 3. Next Week WileyPLUS Assignent 3 Chapters 6 & 7 Due Wednesday, Noveber 11 at 11 p Next Wee No labs of tutorials Reebrance Day holiday on Wednesday (no classes) 24 Displaceent, x Mass on a spring ωt = 2π x = A cos

More information

ENGI 4430 Parametric Vector Functions Page 2-01

ENGI 4430 Parametric Vector Functions Page 2-01 ENGI 4430 Parametric Vectr Functins Page -01. Parametric Vectr Functins (cntinued) Any nn-zer vectr r can be decmpsed int its magnitude r and its directin: r rrˆ, where r r 0 Tangent Vectr: dx dy dz dr

More information

i-clicker!! x 2 lim Lecture 3 Motion in 2- and 3-Dimensions lim REVIEW OF 1-D MOTION

i-clicker!! x 2 lim Lecture 3 Motion in 2- and 3-Dimensions lim REVIEW OF 1-D MOTION Lecture 3 Mtin in - and 3-Dimensins REVIEW OF -D MOTION TODY: LSTCHNCETOMKEUPTHEPHYSICS PRETEST(u get pints fr cmpleting the pre and pst tests) Where: SERC 6 (SEC 6) When: Yucanarrieantime3:0pm 6:30 pm

More information

Question 2-1. Solution 2-1 CHAPTER 2 HYDROSTATICS

Question 2-1. Solution 2-1 CHAPTER 2 HYDROSTATICS CHAPTER HYDROSTATICS. INTRODUCTION Hydraulic engineers have any engineering applicatins in hich they have t cpute the frce being exerted n suberged surfaces. The hydrstatic frce n any suberged plane surface

More information

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1 Physics 1 Lecture 1 Tday's Cncept: Magnetic Frce n mving charges F qv Physics 1 Lecture 1, Slide 1 Music Wh is the Artist? A) The Meters ) The Neville rthers C) Trmbne Shrty D) Michael Franti E) Radiatrs

More information

Fall 2013 Physics 172 Recitation 3 Momentum and Springs

Fall 2013 Physics 172 Recitation 3 Momentum and Springs Fall 03 Physics 7 Recitatin 3 Mmentum and Springs Purpse: The purpse f this recitatin is t give yu experience wrking with mmentum and the mmentum update frmula. Readings: Chapter.3-.5 Learning Objectives:.3.

More information

PHYS 314 HOMEWORK #3

PHYS 314 HOMEWORK #3 PHYS 34 HOMEWORK #3 Due : 8 Feb. 07. A unifrm chain f mass M, lenth L and density λ (measured in k/m) hans s that its bttm link is just tuchin a scale. The chain is drpped frm rest nt the scale. What des

More information

Fundamental Concepts in Structural Plasticity

Fundamental Concepts in Structural Plasticity Lecture Fundamental Cncepts in Structural Plasticit Prblem -: Stress ield cnditin Cnsider the plane stress ield cnditin in the principal crdinate sstem, a) Calculate the maximum difference between the

More information

SPH3U1 Lesson 06 Kinematics

SPH3U1 Lesson 06 Kinematics PROJECTILE MOTION LEARNING GOALS Students will: Describe the mtin f an bject thrwn at arbitrary angles thrugh the air. Describe the hrizntal and vertical mtins f a prjectile. Slve prjectile mtin prblems.

More information

Page 1. Physics 131: Lecture 22. Today s Agenda. SHM and Circles. Position

Page 1. Physics 131: Lecture 22. Today s Agenda. SHM and Circles. Position Physics 3: ecture Today s genda Siple haronic otion Deinition Period and requency Position, velocity, and acceleration Period o a ass on a spring Vertical spring Energy and siple haronic otion Energy o

More information

Revised 2/07. Projectile Motion

Revised 2/07. Projectile Motion LPC Phsics Reised /07 Prjectile Mtin Prjectile Mtin Purpse: T measure the dependence f the range f a prjectile n initial elcit height and firing angle. Als, t erif predictins made the b equatins gerning

More information

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic.

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic. Tpic : AC Fundamentals, Sinusidal Wavefrm, and Phasrs Sectins 5. t 5., 6. and 6. f the textbk (Rbbins-Miller) cver the materials required fr this tpic.. Wavefrms in electrical systems are current r vltage

More information

Chapter 9 Vector Differential Calculus, Grad, Div, Curl

Chapter 9 Vector Differential Calculus, Grad, Div, Curl Chapter 9 Vectr Differential Calculus, Grad, Div, Curl 9.1 Vectrs in 2-Space and 3-Space 9.2 Inner Prduct (Dt Prduct) 9.3 Vectr Prduct (Crss Prduct, Outer Prduct) 9.4 Vectr and Scalar Functins and Fields

More information

LHS Mathematics Department Honors Pre-Calculus Final Exam 2002 Answers

LHS Mathematics Department Honors Pre-Calculus Final Exam 2002 Answers LHS Mathematics Department Hnrs Pre-alculus Final Eam nswers Part Shrt Prblems The table at the right gives the ppulatin f Massachusetts ver the past several decades Using an epnential mdel, predict the

More information

**DO NOT ONLY RELY ON THIS STUDY GUIDE!!!**

**DO NOT ONLY RELY ON THIS STUDY GUIDE!!!** Tpics lists: UV-Vis Absrbance Spectrscpy Lab & ChemActivity 3-6 (nly thrugh 4) I. UV-Vis Absrbance Spectrscpy Lab Beer s law Relates cncentratin f a chemical species in a slutin and the absrbance f that

More information

Lab 11 LRC Circuits, Damped Forced Harmonic Motion

Lab 11 LRC Circuits, Damped Forced Harmonic Motion Physics 6 ab ab 11 ircuits, Damped Frced Harmnic Mtin What Yu Need T Knw: The Physics OK this is basically a recap f what yu ve dne s far with circuits and circuits. Nw we get t put everything tgether

More information

Kinetics of Particles. Chapter 3

Kinetics of Particles. Chapter 3 Kinetics f Particles Chapter 3 1 Kinetics f Particles It is the study f the relatins existing between the frces acting n bdy, the mass f the bdy, and the mtin f the bdy. It is the study f the relatin between

More information

Lab #3: Pendulum Period and Proportionalities

Lab #3: Pendulum Period and Proportionalities Physics 144 Chwdary Hw Things Wrk Spring 2006 Name: Partners Name(s): Intrductin Lab #3: Pendulum Perid and Prprtinalities Smetimes, it is useful t knw the dependence f ne quantity n anther, like hw the

More information

Lecture XXX. Approximation Solutions to Boltzmann Equation: Relaxation Time Approximation. Readings: Brennan Chapter 6.2 & Notes. Prepared By: Hua Fan

Lecture XXX. Approximation Solutions to Boltzmann Equation: Relaxation Time Approximation. Readings: Brennan Chapter 6.2 & Notes. Prepared By: Hua Fan Prepared y: Hua Fan Lecture XXX Apprxiatin Slutins t ltann Equatin: Relaxatin ie Apprxiatin Readings: rennan Chapter 6. & Ntes Gergia Insitute echnlgy ECE 645-Hua Fan Apprxiatin Slutins the ltann Equatin

More information

Physics 1200 Mechanics, Kinematics, Fluids, Waves

Physics 1200 Mechanics, Kinematics, Fluids, Waves Physics 100 Mechanics, Kinematics, Fluids, Waes Lecturer: Tm Humanic Cntact inf: Office: Physics Research Building, Rm. 144 Email: humanic@mps.hi-state.edu Phne: 614 47 8950 Office hurs: Tuesday 3:00 pm,

More information

Finding the Earth s magnetic field

Finding the Earth s magnetic field Labratry #6 Name: Phys 1402 - Dr. Cristian Bahrim Finding the Earth s magnetic field The thery accepted tday fr the rigin f the Earth s magnetic field is based n the mtin f the plasma (a miture f electrns

More information

Calculus Placement Review. x x. =. Find each of the following. 9 = 4 ( )

Calculus Placement Review. x x. =. Find each of the following. 9 = 4 ( ) Calculus Placement Review I. Finding dmain, intercepts, and asympttes f ratinal functins 9 Eample Cnsider the functin f ( ). Find each f the fllwing. (a) What is the dmain f f ( )? Write yur answer in

More information

Physics 123 Lecture 2 1 Dimensional Motion

Physics 123 Lecture 2 1 Dimensional Motion Reiew: Physics 13 Lecture 1 Dimensinal Mtin Displacement: Dx = x - x 1 (If Dx < 0, the displacement ectr pints t the left.) Aerage elcity: (Nt the same as aerage speed) a x t x t 1 1 Dx Dt slpe = a x 1

More information

CLASS XI SET A PHYSICS

CLASS XI SET A PHYSICS PHYSIS. If the acceleratin f wedge in the shwn arrangement is a twards left then at this instant acceleratin f the blck wuld be, (assume all surfaces t be frictinless) a () ( cs )a () a () cs a If the

More information

1 Course Notes in Introductory Physics Jeffrey Seguritan

1 Course Notes in Introductory Physics Jeffrey Seguritan Intrductin & Kinematics I Intrductin Quickie Cncepts Units SI is standard system f units used t measure physical quantities. Base units that we use: meter (m) is standard unit f length kilgram (kg) is

More information

Thermodynamics Partial Outline of Topics

Thermodynamics Partial Outline of Topics Thermdynamics Partial Outline f Tpics I. The secnd law f thermdynamics addresses the issue f spntaneity and invlves a functin called entrpy (S): If a prcess is spntaneus, then Suniverse > 0 (2 nd Law!)

More information

CHAPTER 5. Solutions for Exercises

CHAPTER 5. Solutions for Exercises HAPTE 5 Slutins fr Exercises E5. (a We are given v ( t 50 cs(00π t 30. The angular frequency is the cefficient f t s we have ω 00π radian/s. Then f ω / π 00 Hz T / f 0 ms m / 50 / 06. Furthermre, v(t attains

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

CHAPTER 3 INEQUALITIES. Copyright -The Institute of Chartered Accountants of India

CHAPTER 3 INEQUALITIES. Copyright -The Institute of Chartered Accountants of India CHAPTER 3 INEQUALITIES Cpyright -The Institute f Chartered Accuntants f India INEQUALITIES LEARNING OBJECTIVES One f the widely used decisin making prblems, nwadays, is t decide n the ptimal mix f scarce

More information

NAME Borough of Manhattan Community College Course Physics 110 Sec 721 Instructor: Dr. Hulan E. Jack Jr. Date December 19, 2006

NAME Borough of Manhattan Community College Course Physics 110 Sec 721 Instructor: Dr. Hulan E. Jack Jr. Date December 19, 2006 Brug f Manattan unity llege urse Pysics 110 Sec 721 nstructr: Dr. Hulan E. Jack Jr. Date Deceber 19, 2006 inal Exa NSTRUTONS - D 7 prbles : D Prble 1, 2 fr Prble 2,3 and 4, 2 fr Prbles 5,6 and 7, 2 fr

More information

i-clicker Question How many beans are in the 900 ml beaker? A. Fewer than 1000 B C D E.

i-clicker Question How many beans are in the 900 ml beaker? A. Fewer than 1000 B C D E. i-clicker Questin Hw many beans are in the 900 ml beaker? A. Fewer than 1000 B. 1000-1500 C. 1500-000 D. 000-500 E. Mre than 500 Reiew: Physics 13 Lecture 1 Dimensinal Mtin Displacement: Dx = x - x 1 (If

More information

Equilibrium of Stress

Equilibrium of Stress Equilibrium f Stress Cnsider tw perpendicular planes passing thrugh a pint p. The stress cmpnents acting n these planes are as shwn in ig. 3.4.1a. These stresses are usuall shwn tgether acting n a small

More information

Figure 1a. A planar mechanism.

Figure 1a. A planar mechanism. ME 5 - Machine Design I Fall Semester 0 Name f Student Lab Sectin Number EXAM. OPEN BOOK AND CLOSED NOTES. Mnday, September rd, 0 Write n ne side nly f the paper prvided fr yur slutins. Where necessary,

More information

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations STAPLE Physics 201 Name Final Exam May 14, 2013 This is a clsed bk examinatin but during the exam yu may refer t a 5 x7 nte card with wrds f wisdm yu have written n it. There is extra scratch paper available.

More information

Precalculus A. Semester Exam Review

Precalculus A. Semester Exam Review Precalculus A 015-016 MCPS 015 016 1 The semester A eaminatin fr Precalculus cnsists f tw parts. Part 1 is selected respnse n which a calculatr will NOT be allwed. Part is shrt answer n which a calculatr

More information

Waves Unit I Activity: Kinematic Equations for SHM

Waves Unit I Activity: Kinematic Equations for SHM Nae Date Period Waves Unit I Activity: Kineatic Equations for SHM You have seen four different graphs in the wor you have done on ass-spring systes oscillating in siple haronic otion (SHM). Now we will

More information

Dispersion Ref Feynman Vol-I, Ch-31

Dispersion Ref Feynman Vol-I, Ch-31 Dispersin Ref Feynman Vl-I, Ch-31 n () = 1 + q N q /m 2 2 2 0 i ( b/m) We have learned that the index f refractin is nt just a simple number, but a quantity that varies with the frequency f the light.

More information

Physics 12 Assignment KEY Equilibrium & 2-D Dynamics

Physics 12 Assignment KEY Equilibrium & 2-D Dynamics Physics Assignment KEY Equilibrium & -D Dynamics. Deine the llwing terms: Newtn s laws mtin - three undamental laws mtin which are the basis Newtnian mechanics are: ) an bject will remain at rest r in

More information

Aircraft Performance - Drag

Aircraft Performance - Drag Aircraft Perfrmance - Drag Classificatin f Drag Ntes: Drag Frce and Drag Cefficient Drag is the enemy f flight and its cst. One f the primary functins f aerdynamicists and aircraft designers is t reduce

More information

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1 Crdinatr: Nasser Wednesday, January 4, 007 Page: 1 Q1. Tw transmitters, S 1 and S shwn in the figure, emit identical sund waves f wavelength λ. The transmitters are separated by a distance λ /. Cnsider

More information

Faculty of Engineering and Department of Physics Engineering Physics 131 Midterm Examination February 27, 2006; 7:00 pm 8:30 pm

Faculty of Engineering and Department of Physics Engineering Physics 131 Midterm Examination February 27, 2006; 7:00 pm 8:30 pm Faculty f Engineering and Department f Physics Engineering Physics 131 Midterm Examinatin February 27, 2006; 7:00 pm 8:30 pm N ntes r textbks allwed. Frmula sheet is n the last page (may be remved). Calculatrs

More information

Concept Category 2. Trigonometry & The Unit Circle

Concept Category 2. Trigonometry & The Unit Circle Cncept Categry 2 Trignmetry & The Unit Circle Skill Checklist Use special right triangles t express values f fr the six trig functins Evaluate sine csine and tangent using the unit circle Slve tw-step

More information

Problem Set 14: Oscillations AP Physics C Supplementary Problems

Problem Set 14: Oscillations AP Physics C Supplementary Problems Proble Set 14: Oscillations AP Physics C Suppleentary Probles 1 An oscillator consists of a bloc of ass 050 g connected to a spring When set into oscillation with aplitude 35 c, it is observed to repeat

More information

Electric Current and Resistance

Electric Current and Resistance Electric Current and Resistance Electric Current Electric current is the rate f flw f charge thrugh sme regin f space The SI unit f current is the ampere (A) 1 A = 1 C / s The symbl fr electric current

More information

Yeu-Sheng Paul Shiue, Ph.D 薛宇盛 Professor and Chair Mechanical Engineering Department Christian Brothers University 650 East Parkway South Memphis, TN

Yeu-Sheng Paul Shiue, Ph.D 薛宇盛 Professor and Chair Mechanical Engineering Department Christian Brothers University 650 East Parkway South Memphis, TN Yeu-Sheng Paul Shiue, Ph.D 薛宇盛 Prfessr and Chair Mechanical Engineering Department Christian Brthers University 650 East Parkway Suth Memphis, TN 38104 Office: (901) 321-3424 Rm: N-110 Fax : (901) 321-3402

More information

Department of Economics, University of California, Davis Ecn 200C Micro Theory Professor Giacomo Bonanno. Insurance Markets

Department of Economics, University of California, Davis Ecn 200C Micro Theory Professor Giacomo Bonanno. Insurance Markets Department f Ecnmics, University f alifrnia, Davis Ecn 200 Micr Thery Prfessr Giacm Bnann Insurance Markets nsider an individual wh has an initial wealth f. ith sme prbability p he faces a lss f x (0

More information

Trigonometric Ratios Unit 5 Tentative TEST date

Trigonometric Ratios Unit 5 Tentative TEST date 1 U n i t 5 11U Date: Name: Trignmetric Ratis Unit 5 Tentative TEST date Big idea/learning Gals In this unit yu will extend yur knwledge f SOH CAH TOA t wrk with btuse and reflex angles. This extensin

More information

F = 0. x o F = -k x o v = 0 F = 0. F = k x o v = 0 F = 0. x = 0 F = 0. F = -k x 1. PHYSICS 151 Notes for Online Lecture 2.4.

F = 0. x o F = -k x o v = 0 F = 0. F = k x o v = 0 F = 0. x = 0 F = 0. F = -k x 1. PHYSICS 151 Notes for Online Lecture 2.4. PHYSICS 151 Notes for Online Lecture.4 Springs, Strings, Pulleys, and Connected Objects Hook s Law F = 0 F = -k x 1 x = 0 x = x 1 Let s start with a horizontal spring, resting on a frictionless table.

More information

Sodium D-line doublet. Lectures 5-6: Magnetic dipole moments. Orbital magnetic dipole moments. Orbital magnetic dipole moments

Sodium D-line doublet. Lectures 5-6: Magnetic dipole moments. Orbital magnetic dipole moments. Orbital magnetic dipole moments Lectures 5-6: Magnetic diple mments Sdium D-line dublet Orbital diple mments. Orbital precessin. Grtrian diagram fr dublet states f neutral sdium shwing permitted transitins, including Na D-line transitin

More information

Physics 4A Solutions to Chapter 15 Homework

Physics 4A Solutions to Chapter 15 Homework Physics 4A Solutions to Chapter 15 Hoework Chapter 15 Questions:, 8, 1 Exercises & Probles 6, 5, 31, 41, 59, 7, 73, 88, 90 Answers to Questions: Q 15- (a) toward -x (b) toward +x (c) between -x and 0 (d)

More information

Honors Physics Final Review Summary

Honors Physics Final Review Summary Hnrs Physics Final Review Summary Wrk Dne By A Cnstant Frce: Wrk describes a frce s tendency t change the speed f an bject. Wrk is dne nly when an bject mves in respnse t a frce, and a cmpnent f the frce

More information

This section is primarily focused on tools to aid us in finding roots/zeros/ -intercepts of polynomials. Essentially, our focus turns to solving.

This section is primarily focused on tools to aid us in finding roots/zeros/ -intercepts of polynomials. Essentially, our focus turns to solving. Sectin 3.2: Many f yu WILL need t watch the crrespnding vides fr this sectin n MyOpenMath! This sectin is primarily fcused n tls t aid us in finding rts/zers/ -intercepts f plynmials. Essentially, ur fcus

More information

NGSS High School Physics Domain Model

NGSS High School Physics Domain Model NGSS High Schl Physics Dmain Mdel Mtin and Stability: Frces and Interactins HS-PS2-1: Students will be able t analyze data t supprt the claim that Newtn s secnd law f mtin describes the mathematical relatinship

More information

Cop yri ht 2006, Barr Mabillard.

Cop yri ht 2006, Barr Mabillard. Trignmetry II Cpyright Trignmetry II Standards 006, Test Barry ANSWERS Mabillard. 0 www.math0s.cm . If csα, where sinα > 0, and 5 cs α + β value f sin β, where tan β > 0, determine the exact 9 First determine

More information

Inertial Mass of Charged Elementary Particles

Inertial Mass of Charged Elementary Particles David L. Bergan 1 Inertial Mass Inertial Mass f Charged Eleentary Particles David L. Bergan Cn Sense Science P.O. Bx 1013 Kennesaw, GA 30144-8013 Inertial ass and its prperty f entu are derived fr electrdynaic

More information

37 Maxwell s Equations

37 Maxwell s Equations 37 Maxwell s quatins In this chapter, the plan is t summarize much f what we knw abut electricity and magnetism in a manner similar t the way in which James Clerk Maxwell summarized what was knwn abut

More information