Faculty of Engineering

Size: px
Start display at page:

Download "Faculty of Engineering"

Transcription

1 Faculty f Engneerng DEPARTMENT f ELECTRICAL AND ELECTRONIC ENGINEERING EEE 223 Crcut Thery I Instructrs: M. K. Uygurğlu E. Erdl Fnal EXAMINATION June 20, 2003 Duratn : 120 mnutes Number f Prblems: 6 Gd Luck STUDENT S NUMBER NAME SURNAME Prblem Pnts TOTAL 100

2 1. Cnsder e crcut n Fg. 1. a) Wuld yu use e ndal r mesh analyss t fnd e pwer absrbed by 20 V surce? Explan yur chce. b) Use e med yu prefer n (a) t fnd e pwer V ma SN1 100 Ω Ω Ω 200 Ω SN2 Fgure 1 a) There are 4 meshes, 2 current surces, 4 nnreference ndes and 2 ltage surces n e crcut. Ths means at, ere are 4(# f meshes)2(current surces) = 2 unknwn mesh currents and 4(nnreference ndes)2(ltage surces) = 2 unknwn nde ltages. We need t wrte 2 equtns fr each analyss med. Snce tw f e surces are dependent, e cntrl arables shuld be wrtten n terms f mesh currents r nde ltages. If we prefer ndal analyss and chse e bttm nde as reference nde en e cntrl arables wll be nde ltages and e calculatn f unknwn quanttes wll be ery easy. KCL at SN1: = = = (1) 1 2 KCL arund SN2: = = = (2) Multplcatn f Eq.(2) by 7 and en summatn f Eq(1) and (2) yelds: M. K. Uygurğlu, E. Erdl June 20, 2003

3 12.5 = = = 72 V 12.5 = 44 V and KCL at nde 2 20 : = 0 = 24 ma. 100 Therefre e pwer suppled by e 20 V surce s: P 20V = = (20) 480 mw suppled (480 mw absrbs) M. K. Uygurğlu, E. Erdl June 20, 2003

4 2. Use e prncple f superpstn t fnd e current n e crcut n Fg Ω 10 Ω 45 V 40 Ω 15 Ω 30 Ω 8 A Fgure 2 45 V ltage surce s acte and e er surces alues are set t zer. 5 Ω 10 Ω 45 V ' 40 Ω 15 Ω 30 Ω R e R e ' = //(10 30) = 40Ω 45 9 = = A 40 8 M. K. Uygurğlu, E. Erdl June 20, 2003

5 ltage surce s acte and e er surces alues are set t zer. 5 Ω 10 Ω 45 V '' 40 Ω 15 Ω 30 Ω 320 Re = //(5 15) = = = A R 320 Usng current dsn prncple '' e = = A R e 8A current surce s acte and e er surces alues are set t zer. KVL arund : 0 ''' = (1) KVL arund : ''' 40 80= (2) Multply Eq. (1) by 2 and en sum up Eq(1) and (2) ''' 80 = 480 ''' = 6A = = 7A ' '' ''' 5 Ω 10 Ω ''' 40 Ω 15 Ω 30 Ω 8 A 8 A M. K. Uygurğlu, E. Erdl June 20, 2003

6 3. The arable resstr ( R ) n e crcut n Fg.3 s adjusted untl t absrbs maxmum pwer frm e crcut. a) Fnd e alue f R. b) Fnd e maxmum pwer. 4 Ω 6 Ω R 2 A R 3 A V R Fgure 3 When R = R t wll absrb maxmum pwer. Maxmum pwer s P R max V = 4R 2 In rder t fnd R all ndependent surces are klled. 4 Ω 6 Ω R = 10 Ω Fr V : KCL at V V V = 2 4 V V = 8...(1) : V 4 Ω V 6 Ω KCL at V : V V V 10 = V 3V 2V 20= 36 2 A 3V 5V = 16...(2) Multply Eq. (1) by 5 and en sum up Eq(1) and (2) 2V = 24 V R P = 12 V = 10Ω R max 144 = = 3.6W 40 3 A M. K. Uygurğlu, E. Erdl June 20, 2003

7 4. Fnd 0 n terms f 1 and 2 e crcut n Fg.4. R 2 R 3 R R 1 0 V 1 x R 5 0 V 2 0 _ Fgure 4 KCL at e nertng termnal f OPAMP 1: x R2 = 0 x = R1 R2 R 1 KCL at e nertng termnal f OPAMP 2: R R R R R = 0 = = R R R R R R R R 2 x x M. K. Uygurğlu, E. Erdl June 20, 2003

8 5. In e crcut f Fg. 5, fnd t () fr t > 0. Assume at e swtch has been clsed fr a lng tme and pen at t = 0. t = 0 2 Ω 6 Ω 50 V 1 F 3 Fgure 5 At t = 0 KVL arund e lp: = 0 8 = 40 = 5A en 10 2 = 0 (0) = 20V Fr t > 0 : 2 Ω 6 Ω 50 V 2 Ω t t () = ( ) ( (0) ( )) e τ 1 2 τ = RC = 2 = s 3 3 In rder t fnd ( ), we wll assume at e crcut s under 1 F 3 dc cndtns. It s bus at ( ) = Therefre 3t 3t 2 2 t ( ) = 10 (20 10) e = 10(1 e ) V M. K. Uygurğlu, E. Erdl June 20, 2003

9 6. Fr e crcut n Fg. 6, fnd: t = 0 a) (0 ) and (0 ), b) d(0 ) d(0 ) and, dt dt c) ( ) and ( ). 12 V 6 Ω 4 Ω Snce e capactr ltage and nductr current cannt change nstantaneusly, (0 ) = (0 ) and 2 H 0.4 F (0 ) = (0 ). Therefre at t = 0 Fgure 6 6 Ω 4 Ω 12 (0 ) = (0 ) = = 2 A 6 (0 ) = (0 ) = 12V 12 V At t = 0 d d = 0 = 10 dt dt 2 and ( ) d d = 0.4 = 2.5 dt dt d(0 ) 1 = ( (0 ) 10 (0 )) = 4 A/ s dt 2 d(0 ) = 2.5 (0 ) = 5 V / 2 dt 6 Ω 4 Ω 2 H 0.4 F M. K. Uygurğlu, E. Erdl June 20, 2003

10 at t = ( ) = ( ) = 0 6 Ω 4 Ω 2 H M. K. Uygurğlu, E. Erdl June 20, 2003

Introduction to Electronic circuits.

Introduction to Electronic circuits. Intrductn t Electrnc crcuts. Passve and Actve crcut elements. Capactrs, esstrs and Inductrs n AC crcuts. Vltage and current dvders. Vltage and current surces. Amplfers, and ther transfer characterstc.

More information

EE 204 Lecture 25 More Examples on Power Factor and the Reactive Power

EE 204 Lecture 25 More Examples on Power Factor and the Reactive Power EE 204 Lecture 25 Mre Examples n Pwer Factr and the Reactve Pwer The pwer factr has been defned n the prevus lecture wth an example n pwer factr calculatn. We present tw mre examples n ths lecture. Example

More information

Design of Analog Integrated Circuits

Design of Analog Integrated Circuits Desgn f Analg Integrated Crcuts I. Amplfers Desgn f Analg Integrated Crcuts Fall 2012, Dr. Guxng Wang 1 Oerew Basc MOS amplfer structures Cmmn-Surce Amplfer Surce Fllwer Cmmn-Gate Amplfer Desgn f Analg

More information

ANALOG ELECTRONICS 1 DR NORLAILI MOHD NOH

ANALOG ELECTRONICS 1 DR NORLAILI MOHD NOH 24 ANALOG LTRONIS TUTORIAL DR NORLAILI MOHD NOH . 0 8kΩ Gen, Y β β 00 T F 26, 00 0.7 (a)deterne the dc ltages at the 3 X ternals f the JT (,, ). 0kΩ Z (b) Deterne g,r π and r? (c) Deterne the ltage gan

More information

Feedback Principle :-

Feedback Principle :- Feedback Prncple : Feedback amplfer s that n whch a part f the utput f the basc amplfer s returned back t the nput termnal and mxed up wth the nternal nput sgnal. The sub netwrks f feedback amplfer are:

More information

PHYSICS 536 Experiment 12: Applications of the Golden Rules for Negative Feedback

PHYSICS 536 Experiment 12: Applications of the Golden Rules for Negative Feedback PHYSICS 536 Experment : Applcatns f the Glden Rules fr Negatve Feedback The purpse f ths experment s t llustrate the glden rules f negatve feedback fr a varety f crcuts. These cncepts permt yu t create

More information

R th is the Thevenin equivalent at the capacitor terminals.

R th is the Thevenin equivalent at the capacitor terminals. Chaper 7, Slun. Applyng KV Fg. 7.. d 0 C - Takng he derae f each erm, d 0 C d d d r C Inegrang, () ln I 0 - () I 0 e - C C () () r - I 0 e - () V 0 e C C Chaper 7, Slun. h C where h s he Theenn equalen

More information

2. Find i, v, and the power dissipated in the 6-Ω resistor in the following figure.

2. Find i, v, and the power dissipated in the 6-Ω resistor in the following figure. CSC Class exercise DC Circuit analysis. Fr the ladder netwrk in the fllwing figure, find I and R eq. Slutin Req 4 ( 6 ) 5Ω 0 0 I Re q 5 A. Find i, v, and the pwer dissipated in the 6-Ω resistr in the fllwing

More information

Selected Student Solutions for Chapter 2

Selected Student Solutions for Chapter 2 /3/003 Assessment Prolems Selected Student Solutons for Chapter. Frst note that we know the current through all elements n the crcut except the 6 kw resstor (the current n the three elements to the left

More information

MAE140 - Linear Circuits - Winter 16 Midterm, February 5

MAE140 - Linear Circuits - Winter 16 Midterm, February 5 Instructons ME140 - Lnear Crcuts - Wnter 16 Mdterm, February 5 () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator

More information

CIRCUIT ANALYSIS II Chapter 1 Sinusoidal Alternating Waveforms and Phasor Concept. Sinusoidal Alternating Waveforms and

CIRCUIT ANALYSIS II Chapter 1 Sinusoidal Alternating Waveforms and Phasor Concept. Sinusoidal Alternating Waveforms and U ANAYSS hapter Snusdal Alternatng Wavefrs and Phasr ncept Snusdal Alternatng Wavefrs and Phasr ncept ONNS. Snusdal Alternatng Wavefrs.. General Frat fr the Snusdal ltage & urrent.. Average alue..3 ffectve

More information

IGEE 401 Power Electronic Systems. Solution to Midterm Examination Fall 2004

IGEE 401 Power Electronic Systems. Solution to Midterm Examination Fall 2004 Jós, G GEE 401 wer Electrnc Systems Slutn t Mdterm Examnatn Fall 2004 Specal nstructns: - Duratn: 75 mnutes. - Materal allwed: a crb sheet (duble sded 8.5 x 11), calculatr. - Attempt all questns. Make

More information

Is current gain generally significant in FET amplifiers? Why or why not? Substitute each capacitor with a

Is current gain generally significant in FET amplifiers? Why or why not? Substitute each capacitor with a FET Sall Snal Mdband Mdel Ntatn: C arables and quanttes are enerally desnated wth an uppercase subscrpt. AC arables and quanttes are enerally desnated wth a lwercase subscrpt. Phasr ntatn wll be used when

More information

Diodes Waveform shaping Circuits. Sedra & Smith (6 th Ed): Sec. 4.5 & 4.6 Sedra & Smith (5 th Ed): Sec. 3.5 & 3.6

Diodes Waveform shaping Circuits. Sedra & Smith (6 th Ed): Sec. 4.5 & 4.6 Sedra & Smith (5 th Ed): Sec. 3.5 & 3.6 des Waefrm shapng Cruts Sedra & Smth (6 th Ed): Se. 4.5 & 4.6 Sedra & Smth (5 th Ed): Se. 3.5 & 3.6 Tw-prt netwrks as buldng blks Reall: Transfer funtn f a tw-prt netwrk an be fund by slng ths rut ne.

More information

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax .7.4: Direct frequency dmain circuit analysis Revisin: August 9, 00 5 E Main Suite D Pullman, WA 9963 (509) 334 6306 ice and Fax Overview n chapter.7., we determined the steadystate respnse f electrical

More information

MAE140 - Linear Circuits - Fall 13 Midterm, October 31

MAE140 - Linear Circuits - Fall 13 Midterm, October 31 Instructons ME140 - Lnear Crcuts - Fall 13 Mdterm, October 31 () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator

More information

Diodes Waveform shaping Circuits

Diodes Waveform shaping Circuits des Waefrm shapng Cruts Leture ntes: page 2-2 t 2-31 Sedra & Smth (6 th Ed): Se. 4.5 & 4.6 Sedra & Smth (5 th Ed): Se. 3.5 & 3.6 F. Najmabad, ECE65, Wnter 212 Tw-prt netwrks as buldng blks Reall: Transfer

More information

Linear Amplifiers and OpAmps

Linear Amplifiers and OpAmps Lnear Amplfers and OpAmps eferences: Barbw (pp 7-80), Hayes & Hrwtz (pp 63-40), zzn (Chapter ) Amplfers are tw-prt netwrks n whch the utput ltage r current s drectly prprtnal t ether nput ltage r current.

More information

Wp/Lmin. Wn/Lmin 2.5V

Wp/Lmin. Wn/Lmin 2.5V UNIVERITY OF CALIFORNIA Cllege f Engneerng Department f Electrcal Engneerng and Cmputer cences Andre Vladmrescu Hmewrk #7 EEC Due Frday, Aprl 8 th, pm @ 0 Cry Prblem #.5V Wp/Lmn 0.0V Wp/Lmn n ut Wn/Lmn.5V

More information

III. Operational Amplifiers

III. Operational Amplifiers III. Operatnal Amplfers Amplfers are tw-prt netwrks n whch the utput vltage r current s drectly prprtnal t ether nput vltage r current. Fur dfferent knds f amplfers ext: ltage amplfer: Current amplfer:

More information

CHAPTER 11. Solutions for Exercises. (b) An inverting amplifier has negative gain. Thus L

CHAPTER 11. Solutions for Exercises. (b) An inverting amplifier has negative gain. Thus L CHPTE Slutn fr Exerce E. (a nnnertng amplfer ha pte gan. Thu ( t ( t 50 ( t 5.0 n(000πt (b n nertng amplfer ha negate gan. Thu ( t ( t 50 ( t 5.0 n(000πt E. V V 75 500 + 5+ 75 c 75 V 000 75 500 V + + 500

More information

Waveshapping Circuits and Data Converters. Lesson #17 Comparators and Schmitt Triggers Section BME 373 Electronics II J.

Waveshapping Circuits and Data Converters. Lesson #17 Comparators and Schmitt Triggers Section BME 373 Electronics II J. Waeshappg Crcuts and Data Cnerters Lessn #7 Cmparatrs and Schmtt Trggers Sectn. BME 7 Electrncs II 0 Waeshappg Crcuts and Data Cnerters Cmparatrs and Schmtt Trggers Astable Multbratrs and Tmers ectfers,

More information

Module B3. VLoad = = V S V LN

Module B3. VLoad = = V S V LN Mdule B Prblem The -hase lads are cnnected n arallel. One s a urely resste lad cnnected n wye. t cnsumes 00kW. The secnd s a urely nducte 00kR lad cnnected n wye. The thrd s a urely caacte 00kR lad cnnected

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electrnc Crcuts Feedback & Stablty Sectns f Chapter 2. Kruger Feedback & Stablty Cnfguratn f Feedback mplfer S S S S fb Negate feedback S S S fb S S S S S β s the feedback transfer functn Implct

More information

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER 70 CHAPTER 3 ANALYSIS OF KY BOOST CONERTER 3.1 Intrductn The KY Bst Cnverter s a recent nventn made by K.I.Hwu et. al., (2007), (2009a), (2009b), (2009c), (2010) n the nn-slated DC DC cnverter segment,

More information

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2 Lnearty An element s sad to be lnear f t satsfes homogenety (scalng) property and addte (superposton) property. 1. homogenety property Let x be the nput and y be the output of an element. x y If kx s appled

More information

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function Mdellng Physcal Systems The Transer Functn Derental Equatns U Plant Y In the plant shwn, the nput u aects the respnse the utput y. In general, the dynamcs ths respnse can be descrbed by a derental equatn

More information

The three major operations done on biological signals using Op-Amp:

The three major operations done on biological signals using Op-Amp: The three majr peratns dne n blgcal sgnals usng Op-Amp: ) Amplcatns and Attenuatns 2) DC settng: add r subtract a DC 3) Shape ts requency cntent: Flterng Ideal Op-Amp Mst belectrc sgnals are small and

More information

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o?

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o? Crcuts Op-Amp ENGG1015 1 st Semester, 01 Interactn f Crcut Elements Crcut desgn s cmplcated by nteractns amng the elements. Addng an element changes vltages & currents thrughut crcut. Example: clsng a

More information

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas Sectn : Detaled Slutns f Wrd Prblems Unt : Slvng Wrd Prblems by Mdelng wth Frmulas Example : The factry nvce fr a mnvan shws that the dealer pad $,5 fr the vehcle. If the stcker prce f the van s $5,, hw

More information

6.3.7 Example with Runga Kutta 4 th order method

6.3.7 Example with Runga Kutta 4 th order method 6.3.7 Example wth Runga Kutta 4 th order method Agan, as an example, 3 machne, 9 bus system shown n Fg. 6.4 s agan consdered. Intally, the dampng of the generators are neglected (.e. d = 0 for = 1, 2,

More information

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS) FE EIEW OPEATIONAL AMPLIFIES (OPAMPS) 1 The Opamp An opamp has two nputs and one output. Note the opamp below. The termnal labeled wth the () sgn s the nvertng nput and the nput labeled wth the () sgn

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Bose State Unersty Department of Electrcal and omputer Engneerng EE 1L rcut Analyss and Desgn Lab Experment #8: The Integratng and Dfferentatng Op-Amp rcuts 1 Objectes The objectes of ths laboratory experment

More information

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016 ME140 - Lnear rcuts - Wnter 16 Fnal, March 16, 2016 Instructons () The exam s open book. You may use your class notes and textbook. You may use a hand calculator wth no communcaton capabltes. () You have

More information

UNIVERSITY OF UTAH ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT. 10k. 3mH. 10k. Only one current in the branch:

UNIVERSITY OF UTAH ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT. 10k. 3mH. 10k. Only one current in the branch: UNIERSITY OF UTH ELECTRICL & COMPUTER ENGINEERING DEPRTMENT ECE 70 HOMEWORK #6 Soluton Summer 009. fter beng closed a long tme, the swtch opens at t = 0. Fnd (t) for t > 0. t = 0 0kΩ 0kΩ 3mH Step : (Redraw

More information

The Operational Amplifier and Application

The Operational Amplifier and Application Intrductn t Electrnc Crcuts: A Desgn Apprach Jse Sla-Martnez and Marn Onabaj The Operatnal Amplfer and Applcatn The peratnal ltage amplfer (mre cmmnly referred t as peratnal amplfer) s ne f the mst useful

More information

Copyright Paul Tobin 63

Copyright Paul Tobin 63 DT, Kevin t. lectric Circuit Thery DT87/ Tw-Prt netwrk parameters ummary We have seen previusly that a tw-prt netwrk has a pair f input terminals and a pair f utput terminals figure. These circuits were

More information

Relationships Between Frequency, Capacitance, Inductance and Reactance.

Relationships Between Frequency, Capacitance, Inductance and Reactance. P Physics Relatinships between f,, and. Relatinships Between Frequency, apacitance, nductance and Reactance. Purpse: T experimentally verify the relatinships between f, and. The data cllected will lead

More information

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given).

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given). Problem 5.37 Pror to t =, capactor C 1 n the crcut of Fg. P5.37 was uncharged. For I = 5 ma, R 1 = 2 kω, = 5 kω, C 1 = 3 µf, and C 2 = 6 µf, determne: (a) The equvalent crcut nvolvng the capactors for

More information

EE 221 Practice Problems for the Final Exam

EE 221 Practice Problems for the Final Exam EE 1 Practce Prblems fr the Fnal Exam 1. The netwrk functn f a crcut s 1.5 H. ω 1+ j 500 Ths table recrds frequency respnse data fr ths crcut. Fll n the blanks n the table:. The netwrk functn f a crcut

More information

Bipolar-Junction (BJT) transistors

Bipolar-Junction (BJT) transistors Bplar-Junctn (BJT) transstrs References: Hayes & Hrwtz (pp 84-4), Rzzn (chapters 8 & 9) A bplar junctn transstr s frmed by jnng three sectns f semcnductrs wth alternately dfferent dpngs. The mddle sectn

More information

_J _J J J J J J J J _. 7 particles in the blue state; 3 particles in the red state: 720 configurations _J J J _J J J J J J J J _

_J _J J J J J J J J _. 7 particles in the blue state; 3 particles in the red state: 720 configurations _J J J _J J J J J J J J _ Dsrder and Suppse I have 10 partcles that can be n ne f tw states ether the blue state r the red state. Hw many dfferent ways can we arrange thse partcles amng the states? All partcles n the blue state:

More information

SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES

SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES Mhammadreza Dlatan Alreza Jallan Department f Electrcal Engneerng, Iran Unversty f scence & Technlgy (IUST) e-mal:

More information

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh Frst CIRCLE YOUR DIVISION: Dv. 1 (9:30 am) Dv. (11:30 am) Dv. 3 (:30 m) Prf. Ruan Prf. Na Mr. Sngh Schl f Mechancal Engneerng Purdue Unversty ME315 Heat and Mass ransfer Eam #3 Wednesday Nvember 17 010

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Bose State Unersty Department of Electrcal and omputer Engneerng EE 1L rcut Analyss and Desgn Lab Experment #8: The Integratng and Dfferentatng Op-Amp rcuts 1 Objectes The objectes of ths laboratory experment

More information

ECSE Linearity Superposition Principle Superposition Example Dependent Sources. 10 kω. 30 V 5 ma. 6 kω. 2 kω

ECSE Linearity Superposition Principle Superposition Example Dependent Sources. 10 kω. 30 V 5 ma. 6 kω. 2 kω S-00 Lnearty Superposton Prncple Superposton xample Dependent Sources Lecture 4. sawyes@rp.edu www.rp.edu/~sawyes 0 kω 6 kω 8 V 0 V 5 ma 4 Nodes Voltage Sources Ref Unknown Node Voltage, kω If hae multple

More information

College of Engineering Department of Electronics and Communication Engineering. Test 1 With Model Answer

College of Engineering Department of Electronics and Communication Engineering. Test 1 With Model Answer Name: Student D Number: Secton Number: 01/0/03/04 A/B Lecturer: Dr Jamaludn/ Dr Jehana Ermy/ Dr Azn Wat Table Number: College of Engneerng Department of Electroncs and Communcaton Engneerng Test 1 Wth

More information

Transient Conduction: Spatial Effects and the Role of Analytical Solutions

Transient Conduction: Spatial Effects and the Role of Analytical Solutions Transent Cnductn: Spatal Effects and the Rle f Analytcal Slutns Slutn t the Heat Equatn fr a Plane Wall wth Symmetrcal Cnvectn Cndtns If the lumped capactance apprxmatn can nt be made, cnsderatn must be

More information

Schedule. ECEN 301 Discussion #17 Operational Amplifiers 1. Date Day Class No. Lab Due date. Exam

Schedule. ECEN 301 Discussion #17 Operational Amplifiers 1. Date Day Class No. Lab Due date. Exam chedule Date Day Class N. Title Chapters HW Due date 29 Oct Wed 17 Operatinal mplifiers 8.1 8.2 Lab Due date Exam 30 Oct Thu 31 Oct ri ecitatin HW 7 1 N at 2 N un 3 N Mn 18 Operatinal mplifiers 8.3 8.4

More information

element k Using FEM to Solve Truss Problems

element k Using FEM to Solve Truss Problems sng EM t Slve Truss Prblems A truss s an engneerng structure cmpsed straght members, a certan materal, that are tpcall pn-ned at ther ends. Such members are als called tw-rce members snce the can nl transmt

More information

Diode. Current HmAL Voltage HVL Simplified equivalent circuit. V γ. Reverse bias. Forward bias. Designation: Symbol:

Diode. Current HmAL Voltage HVL Simplified equivalent circuit. V γ. Reverse bias. Forward bias. Designation: Symbol: Dode Materal: Desgnaton: Symbol: Poste Current flow: ptype ntype Anode Cathode Smplfed equalent crcut Ideal dode Current HmAL 0 8 6 4 2 Smplfed model 0.5.5 2 V γ eal dode Voltage HVL V γ closed open V

More information

Chapter 2 Problem Solutions 2.1 R v = Peak diode current i d (max) = R 1 K 0.6 I 0 I 0

Chapter 2 Problem Solutions 2.1 R v = Peak diode current i d (max) = R 1 K 0.6 I 0 I 0 Chapter Problem Solutons. K γ.6, r f Ω For v, v.6 r + f ( 9.4) +. v 9..6 9.. v v v v v T ln and S v T ln S v v.3 8snωt (a) vs 3.33snωt 6 3.33 Peak dode current d (max) (b) P v s (max) 3.3 (c) T o π vo(

More information

EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING

EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING TaChang Chen Unersty of Washngton, Bothell Sprng 2010 EE215 1 WEEK 8 FIRST ORDER CIRCUIT RESPONSE May 21 st, 2010 EE215 2 1 QUESTIONS TO ANSWER Frst order crcuts

More information

CHAPTER 3: FEEDBACK. Dr. Wan Mahani Hafizah binti Wan Mahmud

CHAPTER 3: FEEDBACK. Dr. Wan Mahani Hafizah binti Wan Mahmud CHPTER 3: FEEDBCK Dr. Wan Mahan Hafzah bnt Wan Mahmud Feedback ntrductn Types f Feedback dvantages, Characterstcs and effect f Negatve Feedback mplfers Crcuts wth negatve feedback Pstve feedback and Oscllatr

More information

Conduction Heat Transfer

Conduction Heat Transfer Cnductn Heat Transfer Practce prblems A steel ppe f cnductvty 5 W/m-K has nsde and utsde surface temperature f C and 6 C respectvely Fnd the heat flw rate per unt ppe length and flux per unt nsde and per

More information

Key component in Operational Amplifiers

Key component in Operational Amplifiers Key component n Operatonal Amplfers Objectve of Lecture Descrbe how dependent voltage and current sources functon. Chapter.6 Electrcal Engneerng: Prncples and Applcatons Chapter.6 Fundamentals of Electrc

More information

Part a: Writing the nodal equations and solving for v o gives the magnitude and phase response: tan ( 0.25 )

Part a: Writing the nodal equations and solving for v o gives the magnitude and phase response: tan ( 0.25 ) + - Hmewrk 0 Slutin ) In the circuit belw: a. Find the magnitude and phase respnse. b. What kind f filter is it? c. At what frequency is the respnse 0.707 if the generatr has a ltage f? d. What is the

More information

Physics 102. Second Midterm Examination. Summer Term ( ) (Fundamental constants) (Coulomb constant)

Physics 102. Second Midterm Examination. Summer Term ( ) (Fundamental constants) (Coulomb constant) ε µ0 N mp T kg Kuwait University hysics Department hysics 0 Secnd Midterm Examinatin Summer Term (00-0) July 7, 0 Time: 6:00 7:0 M Name Student N Instructrs: Drs. bdel-karim, frusheh, Farhan, Kkaj, a,

More information

Circuit Variables. Unit: volt (V = J/C)

Circuit Variables. Unit: volt (V = J/C) Crcut Varables Scentfc nestgaton of statc electrcty was done n late 700 s and Coulomb s credted wth most of the dscoeres. He found that electrc charges hae two attrbutes: amount and polarty. There are

More information

Exercises for Frequency Response. ECE 102, Winter 2011, F. Najmabadi

Exercises for Frequency Response. ECE 102, Winter 2011, F. Najmabadi Eercses r Frequency espnse EE 0, Wnter 0, F. Najabad Eercse : A Mdy the crcut belw t nclude a dnant ple at 00 Mz ( 00 Ω, k, k, / 00 Ω, λ 0, and nre nternal capactances the MOS. pute the dnant ple n the

More information

6.01: Introduction to EECS I Lecture 7 March 15, 2011

6.01: Introduction to EECS I Lecture 7 March 15, 2011 6.0: Introducton to EECS I Lecture 7 March 5, 20 6.0: Introducton to EECS I Crcuts The Crcut Abstracton Crcuts represent systems as connectons of elements through whch currents (through arables) flow and

More information

Chapter 6. Operational Amplifier. inputs can be defined as the average of the sum of the two signals.

Chapter 6. Operational Amplifier.  inputs can be defined as the average of the sum of the two signals. 6 Operatonal mpler Chapter 6 Operatonal mpler CC Symbol: nput nput Output EE () Non-nvertng termnal, () nvertng termnal nput mpedance : Few mega (ery hgh), Output mpedance : Less than (ery low) Derental

More information

CHAPTER 5. Solutions for Exercises

CHAPTER 5. Solutions for Exercises HAPTE 5 Slutins fr Exercises E5. (a We are given v ( t 50 cs(00π t 30. The angular frequency is the cefficient f t s we have ω 00π radian/s. Then f ω / π 00 Hz T / f 0 ms m / 50 / 06. Furthermre, v(t attains

More information

Lab 11 LRC Circuits, Damped Forced Harmonic Motion

Lab 11 LRC Circuits, Damped Forced Harmonic Motion Physics 6 ab ab 11 ircuits, Damped Frced Harmnic Mtin What Yu Need T Knw: The Physics OK this is basically a recap f what yu ve dne s far with circuits and circuits. Nw we get t put everything tgether

More information

6.01: Introduction to EECS 1 Week 6 October 15, 2009

6.01: Introduction to EECS 1 Week 6 October 15, 2009 6.0: ntroducton to EECS Week 6 October 5, 2009 6.0: ntroducton to EECS Crcuts The Crcut Abstracton Crcuts represent systems as connectons of component through whch currents (through arables) flow and across

More information

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010 FE REVEW OPERATONAL AMPLFERS (OP-AMPS)( ) 1 The Op-amp 2 An op-amp has two nputs and one output. Note the op-amp below. The termnal labeled l wth the (-) sgn s the nvertng nput and the nput labeled wth

More information

Title Chapters HW Due date. Lab Due date 8 Sept Mon 2 Kirchoff s Laws NO LAB. 9 Sept Tue NO LAB 10 Sept Wed 3 Power

Title Chapters HW Due date. Lab Due date 8 Sept Mon 2 Kirchoff s Laws NO LAB. 9 Sept Tue NO LAB 10 Sept Wed 3 Power Schedule Date Day Class No. Ttle Chapters HW Due date Lab Due date 8 Sept Mon Krchoff s Laws..3 NO LAB Exam 9 Sept Tue NO LAB 10 Sept Wed 3 Power.4.5 11 Sept Thu NO LAB 1 Sept Fr Rectaton HW 1 13 Sept

More information

Finding the Earth s magnetic field

Finding the Earth s magnetic field Labratry #6 Name: Phys 1402 - Dr. Cristian Bahrim Finding the Earth s magnetic field The thery accepted tday fr the rigin f the Earth s magnetic field is based n the mtin f the plasma (a miture f electrns

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

Chapter 30. Inductance

Chapter 30. Inductance Chapter 30 nductance 30. Self-nductance Cnsider a lp f wire at rest. f we establish a current arund the lp, it will prduce a magnetic field. Sme f the magnetic field lines pass thrugh the lp. et! be the

More information

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune Chapter 7 Flud Systems and Thermal Systems 7.1 INTODUCTION A. Bazune A flud system uses ne r mre fluds t acheve ts purpse. Dampers and shck absrbers are eamples f flud systems because they depend n the

More information

Lesson #14. Section BME 373 Electronics II J.Schesser

Lesson #14. Section BME 373 Electronics II J.Schesser Feedback and Oscillatrs Lessn #4 Impedances Sectin 9.35 65 Types f ffeedback Type f ffeedback k(the utput tentity fed dback): Vltage Feedback s. Current Feedback β s. β Hw it is achieed (the means t fed

More information

You need to be able to define the following terms and answer basic questions about them:

You need to be able to define the following terms and answer basic questions about them: CS440/ECE448 Sectin Q Fall 2017 Midterm Review Yu need t be able t define the fllwing terms and answer basic questins abut them: Intr t AI, agents and envirnments Pssible definitins f AI, prs and cns f

More information

V. Electrostatics Lecture 27a: Diffuse charge at electrodes

V. Electrostatics Lecture 27a: Diffuse charge at electrodes V. Electrstatcs Lecture 27a: Dffuse charge at electrdes Ntes by MIT tudent We have talked abut the electrc duble structures and crrespndng mdels descrbng the n and ptental dstrbutn n the duble layer. Nw

More information

Complex Numbers, Signals, and Circuits

Complex Numbers, Signals, and Circuits Complex Numbers, Sgnals, and Crcuts 3 August, 009 Complex Numbers: a Revew Suppose we have a complex number z = x jy. To convert to polar form, we need to know the magntude of z and the phase of z. z =

More information

Formulation of Circuit Equations

Formulation of Circuit Equations ECE 570 Sesson 2 IC 752E Computer Aded Engneerng for Integrated Crcuts Formulaton of Crcut Equatons Bascs of crcut modelng 1. Notaton 2. Crcut elements 3. Krchoff laws 4. ableau formulaton 5. Modfed nodal

More information

Revised 2/07. Projectile Motion

Revised 2/07. Projectile Motion LPC Phsics Reised /07 Prjectile Mtin Prjectile Mtin Purpse: T measure the dependence f the range f a prjectile n initial elcit height and firing angle. Als, t erif predictins made the b equatins gerning

More information

Technote 6. Op Amp Definitions. April 1990 Revised 11/22/02. Tim J. Sobering SDE Consulting

Technote 6. Op Amp Definitions. April 1990 Revised 11/22/02. Tim J. Sobering SDE Consulting Technte 6 prl 990 Resed /22/02 Op mp Dentns Tm J. Sberng SDE Cnsultng sdecnsultng@pbx.cm 990 Tm J. Sberng. ll rghts resered. Op mp Dentns Pge 2 Op mp Dentns Ths Technte summrzes the bsc pertnl mpler dentns

More information

Section I5: Feedback in Operational Amplifiers

Section I5: Feedback in Operational Amplifiers Sectin I5: eedback in Operatinal mplifiers s discussed earlier, practical p-amps hae a high gain under dc (zer frequency) cnditins and the gain decreases as frequency increases. This frequency dependence

More information

Figure 1a. A planar mechanism.

Figure 1a. A planar mechanism. ME 5 - Machine Design I Fall Semester 0 Name f Student Lab Sectin Number EXAM. OPEN BOOK AND CLOSED NOTES. Mnday, September rd, 0 Write n ne side nly f the paper prvided fr yur slutins. Where necessary,

More information

Energy Storage Elements: Capacitors and Inductors

Energy Storage Elements: Capacitors and Inductors CHAPTER 6 Energy Storage Elements: Capactors and Inductors To ths pont n our study of electronc crcuts, tme has not been mportant. The analyss and desgns we hae performed so far hae been statc, and all

More information

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018 Michael Faraday lived in the Lndn area frm 1791 t 1867. He was 29 years ld when Hand Oersted, in 1820, accidentally discvered that electric current creates magnetic field. Thrugh empirical bservatin and

More information

I 2 V V. = 0 write 1 loop equation for each loop with a voltage not in the current set of equations. or I using Ohm s Law V 1 5.

I 2 V V. = 0 write 1 loop equation for each loop with a voltage not in the current set of equations. or I using Ohm s Law V 1 5. Krchoff s Laws Drect: KL, KL, Ohm s Law G G Ohm s Law: 6 (always get equaton/esor) Ω 5 Ω 6Ω 4 KL: : 5 : 5 eq. are dependent (n general, get n ndep. for nodes) KL: 4 wrte loop equaton for each loop wth

More information

INDUCTANCE. RC Cicuits vs LR Circuits

INDUCTANCE. RC Cicuits vs LR Circuits INDUTANE R cuts vs LR rcuts R rcut hargng (battery s connected): (1/ )q + (R)dq/ dt LR rcut = (R) + (L)d/ dt q = e -t/ R ) = / R(1 - e -(R/ L)t ) q ncreases from 0 to = dq/ dt decreases from / R to 0 Dschargng

More information

Designing Information Devices and Systems II Spring 2018 J. Roychowdhury and M. Maharbiz Discussion 3A

Designing Information Devices and Systems II Spring 2018 J. Roychowdhury and M. Maharbiz Discussion 3A EECS 16B Desgnng Informaton Devces and Systems II Sprng 018 J. Roychowdhury and M. Maharbz Dscusson 3A 1 Phasors We consder snusodal voltages and currents of a specfc form: where, Voltage vt) = V 0 cosωt

More information

MAE140 - Linear Circuits - Fall 10 Midterm, October 28

MAE140 - Linear Circuits - Fall 10 Midterm, October 28 M140 - Lnear rcuts - Fall 10 Mdterm, October 28 nstructons () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator

More information

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SPECIAL SEMESTER 2013 / 2014

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SPECIAL SEMESTER 2013 / 2014 OLLEGE OF ENGNEENG PUTAJAYA AMPUS FNAL EXAMNATON SPEAL SEMESTE 03 / 04 POGAMME SUBJET ODE SUBJET : Bachelor of Electrcal & Electroncs Engneerng (Honours) Bachelor of Electrcal Power Engneerng (Honours)

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

Week 11: Differential Amplifiers

Week 11: Differential Amplifiers ELE 0A Electronc rcuts Week : Dfferental Amplfers Lecture - Large sgnal analyss Topcs to coer A analyss Half-crcut analyss eadng Assgnment: hap 5.-5.8 of Jaeger and Blalock or hap 7. - 7.3, of Sedra and

More information

G = G 1 + G 2 + G 3 G 2 +G 3 G1 G2 G3. Network (a) Network (b) Network (c) Network (d)

G = G 1 + G 2 + G 3 G 2 +G 3 G1 G2 G3. Network (a) Network (b) Network (c) Network (d) Massachusetts Insttute of Technology Department of Electrcal Engneerng and Computer Scence 6.002 í Electronc Crcuts Homework 2 Soluton Handout F98023 Exercse 21: Determne the conductance of each network

More information

TUTORIAL PROBLEMS. E.1 KCL, KVL, Power and Energy. Q.1 Determine the current i in the following circuit. All units in VAΩ,,

TUTORIAL PROBLEMS. E.1 KCL, KVL, Power and Energy. Q.1 Determine the current i in the following circuit. All units in VAΩ,, 196 E TUTORIAL PROBLEMS E.1 KCL, KVL, Power and Energy Q.1 Determne the current n the followng crcut. 3 5 3 8 9 6 5 Appendx E Tutoral Problems 197 Q. Determne the current and the oltage n the followng

More information

PT326 PROCESS TRAINER

PT326 PROCESS TRAINER PT326 PROCESS TRAINER 1. Descrptn f the Apparatus PT 326 Prcess Traner The PT 326 Prcess Traner mdels cmmn ndustral stuatns n whch temperature cntrl s requred n the presence f transprt delays and transfer

More information

( ) = ( ) + ( 0) ) ( )

( ) = ( ) + ( 0) ) ( ) EETOMAGNETI OMPATIBIITY HANDBOOK 1 hapter 9: Transent Behavor n the Tme Doman 9.1 Desgn a crcut usng reasonable values for the components that s capable of provdng a tme delay of 100 ms to a dgtal sgnal.

More information

Electrical Circuits II (ECE233b)

Electrical Circuits II (ECE233b) Electrcal Crcuts (ECE33b SteadyState Power Analyss Anests Dounas The Unersty of Western Ontaro Faculty of Engneerng Scence SteadyState Power Analyss (t AC crcut: The steady state oltage and current can

More information

Lecture 20a. Circuit Topologies and Techniques: Opamps

Lecture 20a. Circuit Topologies and Techniques: Opamps Lecture a Circuit Tplgies and Techniques: Opamps In this lecture yu will learn: Sme circuit tplgies and techniques Intrductin t peratinal amplifiers Differential mplifier IBIS1 I BIS M VI1 vi1 Vi vi I

More information

, where. This is a highpass filter. The frequency response is the same as that for P.P.14.1 RC. Thus, the sketches of H and φ are shown below.

, where. This is a highpass filter. The frequency response is the same as that for P.P.14.1 RC. Thus, the sketches of H and φ are shown below. hapter 4, Slutn. H ( H(, where H π H ( φ H ( tan - ( Th a hghpa lter. The requency repne the ame a that r P.P.4. except that. Thu, the ketche H and φ are hwn belw. H.77 / φ 9 45 / hapter 4, Slutn. H(,

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C45 ME C8 Introducton to MEM Desgn Fall 7 Prof. Clark T.C. Nguyen Dept. of Electrcal Engneerng & Computer cences Unersty of Calforna at Berkeley Berkeley, C 947 Dscusson: eew of Op mps EE C45: Introducton

More information

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations STAPLE Physics 201 Name Final Exam May 14, 2013 This is a clsed bk examinatin but during the exam yu may refer t a 5 x7 nte card with wrds f wisdm yu have written n it. There is extra scratch paper available.

More information

The two main types of FETs are the junction field effect transistor (JFET) and the metal oxide field effect transistor (MOSFET).

The two main types of FETs are the junction field effect transistor (JFET) and the metal oxide field effect transistor (MOSFET). Mcrelectrncs Chapter three: Feld Effect Transstr sall snal analyss Intrductn: Feld-effect transstr aplfers prde an excellent ltae an wth the added feature f hh nput pedance. They are als lw-pwercnsuptn

More information

ELECTRONICS. EE 42/100 Lecture 4: Resistive Networks and Nodal Analysis. Rev B 1/25/2012 (9:49PM) Prof. Ali M. Niknejad

ELECTRONICS. EE 42/100 Lecture 4: Resistive Networks and Nodal Analysis. Rev B 1/25/2012 (9:49PM) Prof. Ali M. Niknejad A. M. Nknejad Unversty of Calforna, Berkeley EE 100 / 42 Lecture 4 p. 1/14 EE 42/100 Lecture 4: Resstve Networks and Nodal Analyss ELECTRONICS Rev B 1/25/2012 (9:49PM) Prof. Al M. Nknejad Unversty of Calforna,

More information