, where. This is a highpass filter. The frequency response is the same as that for P.P.14.1 RC. Thus, the sketches of H and φ are shown below.

Size: px
Start display at page:

Download ", where. This is a highpass filter. The frequency response is the same as that for P.P.14.1 RC. Thus, the sketches of H and φ are shown below."

Transcription

1 hapter 4, Slutn. H ( H(, where H π H ( φ H ( tan - ( Th a hghpa lter. The requency repne the ame a that r P.P.4. except that. Thu, the ketche H and φ are hwn belw. H.77 / φ 9 45 /

2 hapter 4, Slutn. H(, where H H ( φ H ( - tan - ( The requency repne dentcal t the repne n Example 4. except that. Hence the repne hwn belw. H.77 / φ / hapter 4, Slutn. (a The Thevenn mpedance acr the ecnd capactr where taken Th Th Th Th

3 Th Th ( ( Th H( ( ( Th ( ( ( H( -6 - (b (4 ( 8. 8 There are n zer and the ple are at hapter 4, Slutn 4. (a H ( ( (b H( H ( H( - ( ( -

4 hapter 4, Slutn 5. (a H ( H( (b H ( ( ( ( H( hapter 4, Slutn 6. (a Ung current dvn, I H ( I H ((.5 ((.5 ((.5 ( 5 H( 5.5 (b We apply ndal analy t the crcut belw. x I /.5 x I

5 I x x.5x But.5x I x ( I I x.5 I I ( ( I I ( I H I ( H ( (.5 ( ( H(.5 hapter 4, Slutn 7. (a (b (c.5 lg H -.5 lg H H lgh. lg H - -. H lg H.5 lg H 5 H

6 hapter 4, Slutn 8. (a H. 5 HdB lg. 5-6., φ (b H 5 HdB lg5 4.94, φ j (c H ( j HdB lg , φ (d H (.9 j j j H hapter 4, Slutn 9. db lg , φ -.55 H ( ( ( H db - lg lg - - φ - tan ( tan ( / / The magntude and phae plt are hwn belw. H db φ lg / lg arg / arg

7 hapter 4, Slutn. H ( 5 (5 5 H db 4 lg lg lg 5 φ arg / 5 arg -8 hapter 4, Slutn. H ( 5( ( H db lg 5 lg lg lg - φ -9 tan tan -

8 The magntude and phae plt are hwn belw. H db φ

9 hapter 4, Slutn..( T ( w, lg. ( / The plt are hwn belw. T (db arg T 9. -9

10 hapter 4, Slutn. ( ( G ( ( ( ( ( j G db - lg 4lg lg - - φ -8 tan tan The magntude and phae plt are hwn belw. G db φ

11 hapter 4, Slutn 4. H ( H db lg lg lg lg 5 (j 5 φ 9 tan tan The magntude and phae plt are hwn belw. H db φ

12 hapter 4, Slutn 5. H ( 4( ( ( ( ( ( H db lg lg lg lg - - φ tan tan tan - The magntude and phae plt are hwn belw. H db φ hapter 4, Slutn 6. G( (

13 G db - lg. 4lg -4-6 lg(/ 9 φ arg arg( arg hapter 4, Slutn 7. G ( ( 4 ( ( G db -lg 4 lg lg 4lg - φ -9 - tan tan - The magntude and phae plt are hwn belw. G db

14 φ hapter 4, Slutn 8. 4( G ( 5 ( 5( G db lg 4 5 4lg lg lg 5 lg where lg φ -9 tan tan 5 tan - The magntude and phae plt are hwn belw. G db φ

15 hapter 4, Slutn 9. H ( ( H lg lg lg db - φ 9 tan The magntude and phae plt are hwn belw. H db φ

16 hapter 4, Slutn. N ( ( ( ( N db lg lg lg - - φ tan tan tan - The magntude and phae plt are hwn belw. N db φ hapter 4, Slutn. ( T ( ( ( TdB lg lg lg

17 lg lg φ 9 tan tan tan The magntude and phae plt are hwn belw. T db φ hapter 4, Slutn. lg k k A zer lpe db / dec at A ple lpe - db / dec at

18 A ple lpe - db / dec at Hence, ( H ( ( ( H( 4 ( ( ( hapter 4, Slutn. A zer lpe db / dec at the rgn j A ple lpe - db / dec at A ple lpe - 4 db/ dec at ( Hence, H ( ( ( H( ( ( hapter 4, Slutn 4. The phae plt decmped a hwn belw. φ 9 45 arg ( / arg ( arg /

19 G ( k ( ( k (( ( where k a cntant nce arg k. Hence, G( k (, where k k ( cntant hapter 4, Slutn (4 ( kω ( 5 krad / ( 4 j ( 4 j (5 ( ( 4 j(5 4 5 ( 4 j.75 kω ( j (5 - ( j (4-6 (5 ( ( 4 j( 5 ( j. kω ( j

20 - ( j ((5 (4-6 ((5 ( ( j. kω (4 j ( 4 j (4(5 (4-6 (4(5 ( ( 4 j.75 kω hapter 4, Slutn 6. (a π π 5x 9 xx.5khz (b B x krad/ 6 x (c Q x hapter 4, Slutn 7. At renance, Ω, B and Q B Hence, Q ((8 6 H 5

21 Therere, 5 µ F (5 (6 B 6 Ω,.65 rad / 6 H, 5 µ F, B.65 rad / hapter 4, Slutn 8. et Ω..5 H B µ F ( (.5 Q B 5 Therere, Ω then.5 H, µ F, Q 5 hapter 4, Slutn 9. /

22 j Snce v (t and (t are n phae, Im( 4 -± rad /.68 hapter 4, Slutn. Select Ω. Q (( ((.5.5 H 5 mh. F B ((..5 rad / Therere, Ω then 5 mh,. F, B.5 rad / hapter 4, Slutn. X X B X 6 πxx x5.6x 4x x rad/

23 hapter 4, Slutn. Snce Q >, B, B B Q krad / rad / rad / hapter 4, Slutn. Q 8 Q π 6 πx5.6x x4x pf Q πq 4x 6 πx5.6x x8 4. µ H hapter 4, Slutn 4. (a 6 8x x6x.44 krad/ (b B 6 5x x6x. rad/ 6 (c Q.44x x5x x6x 4. 9

24 hapter 4, Slutn 5. At renance, Y Y 5-4 Ω Q 8 µ F ( (4 Q -6.5 µ H (4 ( B Q 8.5 krad / B krad / B. 5.5 krad / hapter 4, Slutn 6. 5 rad / Y( ( kω 4 Y ( 4 j.5 j8.75 ks 4 ( 4.5 j j5. Ω Y ( j.5 j7.5 ks

25 j.75.5 ( Ω 74 j j7.5 ks.5 j ( Y ( Ω 74 j j8.75 ks j (4 Y 4 ( Ω j5..4 hapter 4, Slutn 7. ( j( j j j j ( j j //( j ( ( Im( Thu, hapter 4, Slutn 8. j j j j Y At renance,,.e. Im( Y

26 (4 - ( rad / hapter 4, Slutn 9. (a B π( π(9 86x π 8 krad / ( π(88x 76π B B 8πx xx 9.89nF (b 64.4H 9 (76π x9.89x (c 76π 55.9krad / (d B 8π 5.krad / 76π (e Q B 8π hapter 4, Slutn 4. (a 5 5 mh 5x 6 xx.857 k rad/ec

27 Q.857x x5x xx 9.8 B rad 6 5x x (b T ncreae B by % mean that B 4. 6 B 5x x4 µf Snce µ F and µf, we then btan µf. Therere, t ncreae the bandwdth, we merely add anther µf n ere wth the rt ne. hapter 4, Slutn 4. (a Th a ere crcut. 6 8 Ω, H,.4 F.58 rad /.4 Q B 8 rad / (b Th a parallel crcut. ((6 µ F and 6 µ F µ F 6 µ F, kω, mh

28 ( ( 5 krad / -6 - (5 ( Q - ( ( 5 krad / B -6 hapter 4, Slutn 4. (a ( ( n n n ( ( ( At renance, Im(,.e. n ( (b ( n n ( ( ( n (- [( ( ] At renance, Im(,.e. n (

29 ( (c ( n n n ( ( ( ( [( ] ( At renance, Im(,.e. n ( hapter 4, Slutn 4. nder the crcut belw. / n (a ( n ( n

30 n j n ( ( ( n - ( n (- [ ( ] ( ( At renance, Im(,.e. n ( ( ( (.(9.57 krad / -6 (. (9-6 (b At.57 krad /, - j(.57 ( j47.4 j j. j j47.4 j(.57 (9 6 n ( ( (

31 n ( (.9996 j.(. j47.4 (.9996 j. (. j47.4 n ( Ω hapter 4, Slutn 44. We nd the nput mpedance the crcut hwn belw. (/ / /, j j -j.5 j -j.5 j v (t and (t are n phae when purely real,.e. -.5 ( r F Ω I ( ( v (t n(t,.e.

32 hapter 4, Slutn 45. (a, Tranrm the current urce gve the crcut belw. I I H( I ( (b H ( ( j H(. 5 ( hapter 4, Slutn 46. (a Th an ere crcut. (πx5x xx.6nf (b, I / / 6 A πx5x xx (c Q 5π 47.

33 hapter 4, Slutn 47. j j ( H ( H and ( H hwng that th crcut a lwpa lter. At the crner requency, ( H c,.e. c c r c Hence, c c π π π - c khz 796 hapter 4, Slutn 48. j j j ( H j j j j j ( H H( j ( H and hwng that ( H th crcut a lwpa lter.

34 hapter 4, Slutn At dc, H (. Hence, H ( H( 4 4 c 4 8 c c. H( 4 j j H (.99 In db, lg H( arg H( -tan hapter 4, Slutn 5. H ( H ( and H ( hwng that th crcut a hghpa lter. H ( c c c r c π c c π π. 8. Hz

35 hapter 4, Slutn 5. H ( (rm Eq. 4.5 Th ha a unty paband gan,.e. H (. 5 c H ^ j ( H ( 5 H( j 5 hapter 4, Prblem 5. Degn an lwpa lter that ue a 4-mH cl and ha a cut- requency 5 khz. hapter 4, Slutn 5. π c c - c 5 π (π( (4 5. kω hapter 4, Slutn 54. π π π π B π π

36 Q B π.5 π (π ( H B B (π ( kω hapter 4, Slutn 55. c π c π c πxx xx 65.kΩ hapter 4, Slutn (5 B - Q 5. 4 (.4.4 krad / krad / 9.8 B. 9.8 krad / r.56 khz π. B.. krad / r.6 khz π Therere,.56 khz < <.6 khz

37 hapter 4, Slutn 57. (a Frm Eq 4.54, H ( Snce B and, B H( B (b Frm Eq. 4.56, H ( H( B hapter 4, Slutn 58. (a nder the crcut belw. I I / / (

38 ( ( ( ( I ( I I ( I ( H ( H Thu, r rad / B rad / (b Smlarly, ( ( ( ( I, ( I I I

39 H ( Thu, rad / B rad / hapter 4, Slutn 59. (a - (.(4 6.5 rad / (b B. 4.5 B Q A a hgh Q crcut, B 4 (5 49 krad / B 4 (5 5 krad / (c A een n part (b, Q 5

40 hapter 4, Slutn 6. nder the crcut belw. / ( ( ( ( H ( n ( n n n ( ( ( ( Im( n mple that - [ ] (

41 5.8 krad / - -6 ( (4 H ( H max H( r H max H( lm j ( At and, H H mzx ( ( ( ( ( ( ( ( (96 ( -6 4 ( (96 ( -6 4 ( ( 4 ( (96 ( 4 ( ( (96 ( 4-8 ( 96 (

42 Hence, 4.65 krad / 7.6 krad / B krad / hapter 4, Slutn 6. (a, Snce, H( (b, Snce, H(

43 hapter 4, Slutn 6. Th a hghpa lter. H ( j H (, c π ( c H ( j c j (a H ( Hz j5 m j5.5 m (b H ( khz j.5 m j.5 7. m (c H ( khz j. m j. 9.4 m hapter 4, Slutn 6. Fr an actve hghpa lter, H( (

44 But / H( ( mparng ( and ( lead t: Ω M Ω k.. hapter 4, Slutn 64. j j j j j Hence, - ( H j ( j ( j - Th a bandpa lter. ( H mlar t the prduct the traner unctn a lwpa lter and a hghpa lter. hapter 4, Slutn 65. j j j Snce,

45 H( It evdent that a, the gan and that the crner requency. hapter 4, Slutn 66. (a Pr (b When 4, H ( 4 4 (c When, - H ( hapter 4, Slutn 67. D gan 4 4 rner requency c π (5 rad / I we elect kω, then 8 kω and 5.95 nf (π(5( Therere, kω, then 8 kω and 5.95 nf

46 hapter 4, Slutn 68. Hgh requency gan 5 5 rner requency c π ( rad / I we elect kω, then kω and 9.8 nf (π(( Therere, kω, then kω and 9.8 nf hapter 4, Slutn 69. Th a hghpa lter wth c khz. c π c πc 4π 8 Hz may be regarded a hgh requency. Hence the hgh-requency gan r.5 4 I we let kω, then 4π 5 kω, and nf.

47 hapter 4, Slutn 7. (a ( H ( ( Y Y Y Y Y (Y Y 4 Y where Y G, Y G, Y, Y 4. H( G G G G (G G GG (b H(, H ( GG hwng that th crcut a lwpa lter. hapter 4, Slutn 7. 5 Ω, 4 mh, µ F K K m K K m (4-5 K K m ( K K m -6 K K m 6 K ( K m Subttutng ( nt (, 6 K 5K K. - K m 5K 5 -

48 hapter 4, Slutn 7. K K (4 ( (( - -6 K 4-8 K -4 K m K m (( m ((4-6 K K 5 m hapter 4, Slutn 7. m K ((8 K m 8-6 (4 K 9.6 MΩ µ F K K m pf (8( hapter 4, Slutn 74. ' K m x Ω ' K m x kω ' K m K ( µ H 6 ' K K m 8 nf

49 hapter 4, Slutn 75. ' K m x Ω ' K K m 5 (4 4 µ H ' K mk 5 x µ F hapter 4, Slutn 76. ' K m 5x 5x 5 Ω ' K m K µ H 6 6 x x mh ' 4 pf K K m 4x x x 6 4 mf hapter 4, Slutn 77. and are needed bere calng. B H B 5.5 µ F (6( (a K m (6( H K m µ F

50 (b mh K.5 K -4.5 nf K m (4( (c 5 8 mh K K K -4.5 (4( 5 m 7.8 pf hapter 4, Slutn 78. m K (( kω K K m 4 (. H K K. µ F ( ( 4 m The new crcut hwn belw. kω I kω. H. µf kω x

51 hapter 4, Slutn 79. (a Inert a - urce at the nput termnal. I / There a upernde. ( But ( Al, ( mbnng ( and ( (4 4 Subttutng ( and (4 nt ( gve

52 I ( 4 n I 4 n 4 (5 When 5,,., ( n 8 5 At renance, Im( n 4 r.8 rad / (.( (b Ater calng, K m 4 Ω 4 Ω 5 Ω 5 Ω K K m (. H. K K (( m -4 Frm (5, ( n rad / -4 (.(

53 hapter 4, Slutn 8. (a m K (( 4 Ω K m (( mh K 4 K K.5.5 µ F (( 4 m The new crcut hwn belw. a mh I x.5 µf 4 Ω.5 I x b (b Inert a -A urce at the termnal a-b. a I x A /(.5 I x b At nde, ( At nde, But, I x..5i x

54 .5 ( Slvng ( and (,.5 Th.5 At 4, Th Th 4 (j ( 4 j 6 j.5 j (j ( (.5.5( j (.5-6 (4 Th hm hapter 4, Slutn 8. (a G (G ( whch lead t ( G G j ( ( G G We cmpare th wth the gven mpedance: ( ( ( 5

55 mparng ( and ( hw that mf, / G G ms Thu, G 5.4.4Ω,.4 H, mf, G ms (b By requency-calng, K..4 Ω, G ms.4 '.4mH, ' µ F K K hapter 4, Slutn 8. K m K K c K - K m 6 5 K m 5 kω, thu, kω

56 hapter 4, Slutn 8. µ F ' K mk 6 5 x.pf 5 µ F '.5 pf kω ' K m x kω MΩ kω ' MΩ hapter 4, Slutn 84. The chematc hwn belw. A vltage marker nerted t meaure v. In the A weep bx, we elect Ttal Pnt 5, Start Frequency, and End Frequency. Ater avng and mulatn, we btan the magntude and phae plt n the prbe menu a hwn belw.

57 hapter 4, Slutn 85. We let I A that / I. The chematc hwn belw. The crcut mulated r < < khz.

58 hapter 4, Slutn 86. The chematc hwn belw. A current marker nerted t meaure I. We et Ttal Pnt, tart Frequency, and End Frequency khz n the A weep bx. Ater mulatn, the magntude and phae plt are btaned n the Prbe menu a hwn belw.

59

60 hapter 4, Slutn 87. The chematc hwn belw. I n the A Sweep bx, we et Ttal Pnt 5, Start Frequency, and End Frequency. Ater mulatn, we btan the magntude repne a hwn belw. It evdent rm the repne that the crcut repreent a hgh-pa lter.

61 hapter 4, Slutn 88. The chematc hwn belw. We nert a vltage marker t meaure. In the A Sweep bx, we et Ttal Pnt, Start Frequency, and End Frequency. Ater mulatn, we btan the magntude and phae plt a hwn belw.

62 hapter 4, Slutn 89. The chematc hwn belw. In the A Sweep bx, we type Ttal Pnt, Start Frequency, and End Frequency k. Ater mulatn, the magntude plt the repne btaned a hwn belw.

63 hapter 4, Slutn 9. The chematc hwn belw. In the A Sweep bx, we et Ttal Pnt, Start Frequency, and End Frequency k. Ater mulatn, we btan the magntude plt the repne a hwn belw. The repne hw that the crcut a hgh-pa lter.

64 hapter 4, Slutn 9. The chematc hwn belw. In the A Sweep bx, we et Ttal Pnt, Start Frequency, and End Frequency k. Ater mulatn, we btan the magntude plt the repne a hwn belw. The repne hw that the crcut a hgh-pa lter.

65 hapter 4, Slutn 9. The chematc hwn belw. We type Ttal Pnt, Start Frequency, and End Frequency n the A Sweep bx. Ater mulatng the crcut, the magntude plt the requency repne hwn belw.

66 hapter 4, Slutn 9. π , (4 ( 88 Snce <<

67 8 98 khz π 4π I reduced t 4 Ω, <<. The reult reman the ame. hapter 4, Slutn 94. c We make and a mall a pble. T acheve th, we cnnect.8 kω and. k Ω n parallel that.8x..64 kω.8. We place the -pf and -pf capactr n ere that (x/4 7.5 pf Hence, c 4.55x.64x x7.5x 6 rad/ hapter 4, Slutn 95. (a π When 6 pf, π -6 - When 4 pf, π (4 (4 (6-6 - (4 Therere, the requency range.54 MHz < <.64 MHz.54 MHz.64 MHz

68 (b Q π At.54 MHz, Q 6 (π(.54 ( At.64 MHz, Q 6 (π(.64 ( hapter 4, Slutn 96. (

69 where and Therere, ( ( ( where. hapter 4, Slutn 97.

70 (, j H( ( ( ( ( H( ( ( ( where. hapter 4, Slutn 98. B π ( π ( π π QB ((44 π ((44π (( 44 Hz π hapter 4, Slutn 99. X c π π X c 6 (π( (5-9 π X π

71 X π (π( 6 4π π MHz -4-9 π 4π π B 4π ( rad / hapter 4, Slutn. π c c π (π( (.5-6 c 5.9 Ω hapter 4, Slutn. π c c π (π(5( -6 c.6 kω hapter 4, Slutn. (a When and, we have a lw-pa lter. π c c π (π(4 (4 c Hz

72 (b We btan Th acr the capactr. ( Th Th π 5 (4.5 kω (π(.5 (4 c -9 Th c.59 khz hapter 4, Slutn. H (, H ( ( ( ( H( ( hapter 4, Slutn 4. The chematc hwn belw. We clck Analy/Setup/A Sweep and enter Ttal Pnt, Start Frequency, and End Frequency k. Ater mulatn, we btan the magntude plt the repne a hwn.

73

ELG4139: Op Amp-based Active Filters

ELG4139: Op Amp-based Active Filters ELG439: Op Amp-baed Actve Flter Advantage: educed ze and weght, and therere paratc. Increaed relablty and mprved perrmance. Smpler degn than r pave lter and can realze a wder range unctn a well a prvdng

More information

Let s start from a first-order low pass filter we already discussed.

Let s start from a first-order low pass filter we already discussed. EEE0 Netrk Analy II Dr. harle Km Nte09: Actve Flter ---Part. gher-order Actve Flter The rt-rder lter d nt harply dvde the pa band and the tp band. One apprach t btan a harper trantn beteen the pa band

More information

EE 221 Practice Problems for the Final Exam

EE 221 Practice Problems for the Final Exam EE 1 Practce Prblems fr the Fnal Exam 1. The netwrk functn f a crcut s 1.5 H. ω 1+ j 500 Ths table recrds frequency respnse data fr ths crcut. Fll n the blanks n the table:. The netwrk functn f a crcut

More information

CHAPTER 11. Solutions for Exercises. (b) An inverting amplifier has negative gain. Thus L

CHAPTER 11. Solutions for Exercises. (b) An inverting amplifier has negative gain. Thus L CHPTE Slutn fr Exerce E. (a nnnertng amplfer ha pte gan. Thu ( t ( t 50 ( t 5.0 n(000πt (b n nertng amplfer ha negate gan. Thu ( t ( t 50 ( t 5.0 n(000πt E. V V 75 500 + 5+ 75 c 75 V 000 75 500 V + + 500

More information

Part III Lectures Field-Effect Transistors (FETs) and Circuits

Part III Lectures Field-Effect Transistors (FETs) and Circuits Part III Lecture 5-8 Feld-Effect Trantr (FET) and Crcut Unverty f Technlgy Feld-Effect Trantr (FET) Electrcal and Electrnc Engneerng epartment Lecture Ffteen - Page f 8 ecnd Year, Electrnc I, 2009-200

More information

Introduction to Electronic circuits.

Introduction to Electronic circuits. Intrductn t Electrnc crcuts. Passve and Actve crcut elements. Capactrs, esstrs and Inductrs n AC crcuts. Vltage and current dvders. Vltage and current surces. Amplfers, and ther transfer characterstc.

More information

Energy & Work

Energy & Work rk Dne by a Cntant Frce 6.-6.4 Energy & rk F N m jule () J rk Dne by a Cntant Frce Example Pullng a Sutcae-n-heel Fnd the wrk dne the rce 45.0-N, the angle 50.0 degree, and the dplacement 75.0 m. 3 ( F

More information

ELG3336: Op Amp-based Active Filters

ELG3336: Op Amp-based Active Filters ELG6: Op Amp-baed Actve Flter Advantage: educed ze and weght, and thereore paratc. Increaed relablty and mproved perormance. Smpler degn than or pave lter and can realze a wder range o uncton a well a

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler -T Sytem: Ung Bode Plot EEE 30 Sgnal & Sytem Pro. Mark Fowler Note Set #37 /3 Bode Plot Idea an Help Vualze What rcut Do Lowpa Flter Break Pont = / H ( ) j /3 Hghpa Flter c = / L Bandpa Flter n nn ( a)

More information

Lesson #15. Section BME 373 Electronics II J.Schesser

Lesson #15. Section BME 373 Electronics II J.Schesser Feedack and Ocillatr Len # Tranient and Frequency Repne Sectin 9.6- BME 373 Electrnic II J.Scheer 78 Cled-Lp Gain in the Frequency Dmain ume that th the pen-lp gain, and the eedack, β are unctin requency

More information

ANALOG ELECTRONICS 1 DR NORLAILI MOHD NOH

ANALOG ELECTRONICS 1 DR NORLAILI MOHD NOH 24 ANALOG LTRONIS TUTORIAL DR NORLAILI MOHD NOH . 0 8kΩ Gen, Y β β 00 T F 26, 00 0.7 (a)deterne the dc ltages at the 3 X ternals f the JT (,, ). 0kΩ Z (b) Deterne g,r π and r? (c) Deterne the ltage gan

More information

EE 204 Lecture 25 More Examples on Power Factor and the Reactive Power

EE 204 Lecture 25 More Examples on Power Factor and the Reactive Power EE 204 Lecture 25 Mre Examples n Pwer Factr and the Reactve Pwer The pwer factr has been defned n the prevus lecture wth an example n pwer factr calculatn. We present tw mre examples n ths lecture. Example

More information

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function Mdellng Physcal Systems The Transer Functn Derental Equatns U Plant Y In the plant shwn, the nput u aects the respnse the utput y. In general, the dynamcs ths respnse can be descrbed by a derental equatn

More information

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given).

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given). Problem 5.37 Pror to t =, capactor C 1 n the crcut of Fg. P5.37 was uncharged. For I = 5 ma, R 1 = 2 kω, = 5 kω, C 1 = 3 µf, and C 2 = 6 µf, determne: (a) The equvalent crcut nvolvng the capactors for

More information

IGEE 401 Power Electronic Systems. Solution to Midterm Examination Fall 2004

IGEE 401 Power Electronic Systems. Solution to Midterm Examination Fall 2004 Jós, G GEE 401 wer Electrnc Systems Slutn t Mdterm Examnatn Fall 2004 Specal nstructns: - Duratn: 75 mnutes. - Materal allwed: a crb sheet (duble sded 8.5 x 11), calculatr. - Attempt all questns. Make

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electrnc Crcuts Feedback & Stablty Sectns f Chapter 2. Kruger Feedback & Stablty Cnfguratn f Feedback mplfer S S S S fb Negate feedback S S S fb S S S S S β s the feedback transfer functn Implct

More information

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016 ME140 - Lnear rcuts - Wnter 16 Fnal, March 16, 2016 Instructons () The exam s open book. You may use your class notes and textbook. You may use a hand calculator wth no communcaton capabltes. () You have

More information

Exercises for Frequency Response. ECE 102, Winter 2011, F. Najmabadi

Exercises for Frequency Response. ECE 102, Winter 2011, F. Najmabadi Eercses r Frequency espnse EE 0, Wnter 0, F. Najabad Eercse : A Mdy the crcut belw t nclude a dnant ple at 00 Mz ( 00 Ω, k, k, / 00 Ω, λ 0, and nre nternal capactances the MOS. pute the dnant ple n the

More information

Chapter 6. Operational Amplifier. inputs can be defined as the average of the sum of the two signals.

Chapter 6. Operational Amplifier.  inputs can be defined as the average of the sum of the two signals. 6 Operatonal mpler Chapter 6 Operatonal mpler CC Symbol: nput nput Output EE () Non-nvertng termnal, () nvertng termnal nput mpedance : Few mega (ery hgh), Output mpedance : Less than (ery low) Derental

More information

R th is the Thevenin equivalent at the capacitor terminals.

R th is the Thevenin equivalent at the capacitor terminals. Chaper 7, Slun. Applyng KV Fg. 7.. d 0 C - Takng he derae f each erm, d 0 C d d d r C Inegrang, () ln I 0 - () I 0 e - C C () () r - I 0 e - () V 0 e C C Chaper 7, Slun. h C where h s he Theenn equalen

More information

EE 215A Fundamentals of Electrical Engineering Lecture Notes Operational Amplifiers (Op Amps) 8/6/01 Reviewed 10/04

EE 215A Fundamentals of Electrical Engineering Lecture Notes Operational Amplifiers (Op Amps) 8/6/01 Reviewed 10/04 EE 5 Fundamental Electrcal Engneerng Lecture Nte Operatnal mpler (Op mp) 8/6/ eewed /4 ch Chrte Oerew: The peratnal ampler, r p amp r hrt, a undamental buldng blck n crcut degn. Stued nde a chp are a bunch

More information

FEEDBACK AMPLIFIERS. β f

FEEDBACK AMPLIFIERS. β f FEEDBC MPLFES X - X X X * What negatve eedback? ddng the eedback gnal t the nput a t patally cancel the nput gnal t the ample. * What eedback? Takng a ptn the gnal avng at the lad and eedng t back t the

More information

Wp/Lmin. Wn/Lmin 2.5V

Wp/Lmin. Wn/Lmin 2.5V UNIVERITY OF CALIFORNIA Cllege f Engneerng Department f Electrcal Engneerng and Cmputer cences Andre Vladmrescu Hmewrk #7 EEC Due Frday, Aprl 8 th, pm @ 0 Cry Prblem #.5V Wp/Lmn 0.0V Wp/Lmn n ut Wn/Lmn.5V

More information

Series and Parallel Resonances

Series and Parallel Resonances Series and Parallel esnances Series esnance Cnsider the series circuit shwn in the frequency dmain. The input impedance is Z Vs jl jl I jc C H s esnance ccurs when the imaginary part f the transfer functin

More information

Small signal analysis

Small signal analysis Small gnal analy. ntroducton Let u conder the crcut hown n Fg., where the nonlnear retor decrbed by the equaton g v havng graphcal repreentaton hown n Fg.. ( G (t G v(t v Fg. Fg. a D current ource wherea

More information

Module B3. VLoad = = V S V LN

Module B3. VLoad = = V S V LN Mdule B Prblem The -hase lads are cnnected n arallel. One s a urely resste lad cnnected n wye. t cnsumes 00kW. The secnd s a urely nducte 00kR lad cnnected n wye. The thrd s a urely caacte 00kR lad cnnected

More information

Name Student ID. A student uses a voltmeter to measure the electric potential difference across the three boxes.

Name Student ID. A student uses a voltmeter to measure the electric potential difference across the three boxes. Name Student ID II. [25 pt] Thi quetin cnit f tw unrelated part. Part 1. In the circuit belw, bulb 1-5 are identical, and the batterie are identical and ideal. Bxe,, and cntain unknwn arrangement f linear

More information

Richard s Transformations

Richard s Transformations 4/27/25 Rihard Tranfrmatin.d /7 Rihard Tranfrmatin Reall the put impedane f hrt-iruited and peniruited tranmiin le tub. j tan β, β t β, β Nte that the put impedane are purely reatie jut like lumped element!

More information

PHYSICS 536 Experiment 12: Applications of the Golden Rules for Negative Feedback

PHYSICS 536 Experiment 12: Applications of the Golden Rules for Negative Feedback PHYSICS 536 Experment : Applcatns f the Glden Rules fr Negatve Feedback The purpse f ths experment s t llustrate the glden rules f negatve feedback fr a varety f crcuts. These cncepts permt yu t create

More information

Faculty of Engineering

Faculty of Engineering Faculty f Engneerng DEPARTMENT f ELECTRICAL AND ELECTRONIC ENGINEERING EEE 223 Crcut Thery I Instructrs: M. K. Uygurğlu E. Erdl Fnal EXAMINATION June 20, 2003 Duratn : 120 mnutes Number f Prblems: 6 Gd

More information

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER 70 CHAPTER 3 ANALYSIS OF KY BOOST CONERTER 3.1 Intrductn The KY Bst Cnverter s a recent nventn made by K.I.Hwu et. al., (2007), (2009a), (2009b), (2009c), (2010) n the nn-slated DC DC cnverter segment,

More information

Feedback Principle :-

Feedback Principle :- Feedback Prncple : Feedback amplfer s that n whch a part f the utput f the basc amplfer s returned back t the nput termnal and mxed up wth the nternal nput sgnal. The sub netwrks f feedback amplfer are:

More information

FYSE400 ANALOG ELECTRONICS

FYSE400 ANALOG ELECTRONICS YS400 NLOG LCONCS LCU 12 eedback plfer 1 uptn 1. he bac aplfer unlateral. 2. he gan OL f the bac aplfer deterned wthut feedback. 3. he calculated gan OL laded gan : ladng f the feedback netwrk, urce and

More information

CIRCUIT ANALYSIS II Chapter 1 Sinusoidal Alternating Waveforms and Phasor Concept. Sinusoidal Alternating Waveforms and

CIRCUIT ANALYSIS II Chapter 1 Sinusoidal Alternating Waveforms and Phasor Concept. Sinusoidal Alternating Waveforms and U ANAYSS hapter Snusdal Alternatng Wavefrs and Phasr ncept Snusdal Alternatng Wavefrs and Phasr ncept ONNS. Snusdal Alternatng Wavefrs.. General Frat fr the Snusdal ltage & urrent.. Average alue..3 ffectve

More information

Design of Analog Integrated Circuits

Design of Analog Integrated Circuits Desgn f Analg Integrated Crcuts I. Amplfers Desgn f Analg Integrated Crcuts Fall 2012, Dr. Guxng Wang 1 Oerew Basc MOS amplfer structures Cmmn-Surce Amplfer Surce Fllwer Cmmn-Gate Amplfer Desgn f Analg

More information

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS Department o Electrcal and Computer Engneerng UNIT I EII FEEDBCK MPLIFIES porton the output sgnal s ed back to the nput o the ampler s called Feedback mpler. Feedback Concept: block dagram o an ampler

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 00 Circuit Analysis Lessn 6 Chapter 4 Sec 4., 4.5, 4.7 Series LC Circuit C Lw Pass Filter Daniel M. Litynski, Ph.D. http://hmepages.wmich.edu/~dlitynsk/ ECE 00 Circuit Analysis Lessn 5 Chapter 9 &

More information

Chapter 8. Root Locus Techniques

Chapter 8. Root Locus Techniques Chapter 8 Rt Lcu Technique Intrductin Sytem perfrmance and tability dt determined dby cled-lp l ple Typical cled-lp feedback cntrl ytem G Open-lp TF KG H Zer -, - Ple 0, -, -4 K 4 Lcatin f ple eaily fund

More information

The three major operations done on biological signals using Op-Amp:

The three major operations done on biological signals using Op-Amp: The three majr peratns dne n blgcal sgnals usng Op-Amp: ) Amplcatns and Attenuatns 2) DC settng: add r subtract a DC 3) Shape ts requency cntent: Flterng Ideal Op-Amp Mst belectrc sgnals are small and

More information

Why working at higher frequencies?

Why working at higher frequencies? Advanced course on ELECTRICAL CHARACTERISATION OF NANOSCALE SAMPLES & BIOCHEMICAL INTERFACES: methods and electronc nstrumentaton. MEASURING SMALL CURRENTS When speed comes nto play Why workng at hgher

More information

II. PASSIVE FILTERS. H(j ω) Pass. Stop

II. PASSIVE FILTERS. H(j ω) Pass. Stop II. PASSIE FILTES Frequency-selectve or flter crcuts pass to the output only those nput sgnals that are n a desred range of frequences (called pass band). The ampltude of sgnals outsde ths range of frequences

More information

Root locus ( )( ) The given TFs are: 1. Using Matlab: >> rlocus(g) >> Gp1=tf(1,poly([0-1 -2])) Transfer function: s^3 + 3 s^2 + 2 s

Root locus ( )( ) The given TFs are: 1. Using Matlab: >> rlocus(g) >> Gp1=tf(1,poly([0-1 -2])) Transfer function: s^3 + 3 s^2 + 2 s The given TFs are: 1 1() s = s s + 1 s + G p, () s ( )( ) >> Gp1=tf(1,ply([0-1 -])) Transfer functin: 1 ----------------- s^ + s^ + s Rt lcus G 1 = p ( s + 0.8 + j)( s + 0.8 j) >> Gp=tf(1,ply([-0.8-*i

More information

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas Sectn : Detaled Slutns f Wrd Prblems Unt : Slvng Wrd Prblems by Mdelng wth Frmulas Example : The factry nvce fr a mnvan shws that the dealer pad $,5 fr the vehcle. If the stcker prce f the van s $5,, hw

More information

Problem 1. Refracting Surface (Modified from Pedrotti 2-2)

Problem 1. Refracting Surface (Modified from Pedrotti 2-2) .70 Optc Hmewrk # February 8, 04 Prblem. Reractng Surace (Me rm Pertt -) Part (a) Fermat prncple requre that every ray that emanate rm the bject an pae thrugh the mage pnt mut be chrnu (.e., have equal

More information

III. Operational Amplifiers

III. Operational Amplifiers III. Operatnal Amplfers Amplfers are tw-prt netwrks n whch the utput vltage r current s drectly prprtnal t ether nput vltage r current. Fur dfferent knds f amplfers ext: ltage amplfer: Current amplfer:

More information

Copyright Paul Tobin 63

Copyright Paul Tobin 63 DT, Kevin t. lectric Circuit Thery DT87/ Tw-Prt netwrk parameters ummary We have seen previusly that a tw-prt netwrk has a pair f input terminals and a pair f utput terminals figure. These circuits were

More information

Introduction of Two Port Network Negative Feedback (Uni lateral Case) Feedback Topology Analysis of feedback applications

Introduction of Two Port Network Negative Feedback (Uni lateral Case) Feedback Topology Analysis of feedback applications Lectue Feedback mple ntductn w Pt Netwk Negatve Feedback Un lateal Case Feedback plg nalss eedback applcatns Clse Lp Gan nput/output esstances e:83h 3 Feedback w-pt Netwk z-paametes Open-Ccut mpedance

More information

University of Southern California School Of Engineering Department Of Electrical Engineering

University of Southern California School Of Engineering Department Of Electrical Engineering Unverty f Suthern afrna Sch Of Enneern Deartent Of Eectrca Enneern EE 48: ewrk nent # fa, Due 9/7/ ha Fure : The redrawn cnfuratn f "F P." t b t a Gven the fure, ne can wrte the fwn equatn: λ t t { λ }

More information

Exercises for Frequency Response. ECE 102, Fall 2012, F. Najmabadi

Exercises for Frequency Response. ECE 102, Fall 2012, F. Najmabadi Eecses Fequency espnse EE 0, Fall 0, F. Najabad Eecse : Fnd the d-band an and the lwe cut- equency the aple belw. µ n (W/ 4 A/, t 0.5, λ 0, 0 µf, and µf Bth capacts ae lw- capacts. F. Najabad, EE0, Fall

More information

Prof. Paolo Colantonio a.a

Prof. Paolo Colantonio a.a Pro. Paolo olantono a.a. 3 4 Let s consder a two ports network o Two ports Network o L For passve network (.e. wthout nternal sources or actve devces), a general representaton can be made by a sutable

More information

ANALOG ELECTRONICS I. Transistor Amplifiers DR NORLAILI MOHD NOH

ANALOG ELECTRONICS I. Transistor Amplifiers DR NORLAILI MOHD NOH 241 ANALO LTRONI I Lectures 2&3 ngle Transstor Amplfers R NORLAILI MOH NOH 3.3 Basc ngle-transstor Amplfer tages 3 dfferent confguratons : 1. ommon-emtter ommon-source Ib B R I d I c o R o gnal appled

More information

OP AMP CHARACTERISTICS

OP AMP CHARACTERISTICS O AM CHAACTESTCS Static p amp limitatins EFEENCE: Chapter 5 textbk (ESS) EOS CAUSED BY THE NUT BAS CUENT AND THE NUT OFFSET CUENT Op Amp t functin shuld have fr the input terminals a DC path thrugh which

More information

Waveshapping Circuits and Data Converters. Lesson #17 Comparators and Schmitt Triggers Section BME 373 Electronics II J.

Waveshapping Circuits and Data Converters. Lesson #17 Comparators and Schmitt Triggers Section BME 373 Electronics II J. Waeshappg Crcuts and Data Cnerters Lessn #7 Cmparatrs and Schmtt Trggers Sectn. BME 7 Electrncs II 0 Waeshappg Crcuts and Data Cnerters Cmparatrs and Schmtt Trggers Astable Multbratrs and Tmers ectfers,

More information

Solution to HW14 Fall-2002

Solution to HW14 Fall-2002 Slutin t HW14 Fall-2002 CJ5 10.CQ.003. REASONING AND SOLUTION Figures 10.11 and 10.14 shw the velcity and the acceleratin, respectively, the shadw a ball that underges unirm circular mtin. The shadw underges

More information

Lecture 2 Feedback Amplifier

Lecture 2 Feedback Amplifier Lectue Feedback mple ntductn w-pt Netwk Negatve Feedback Un-lateal Case Feedback plg nalss eedback applcatns Clse-Lp Gan nput/output esstances e:83hkn 3 Feedback mples w-pt Netwk z-paametes Open-Ccut mpedance

More information

CHAPTER 5. Solutions for Exercises

CHAPTER 5. Solutions for Exercises HAPTE 5 Slutins fr Exercises E5. (a We are given v ( t 50 cs(00π t 30. The angular frequency is the cefficient f t s we have ω 00π radian/s. Then f ω / π 00 Hz T / f 0 ms m / 50 / 06. Furthermre, v(t attains

More information

Frequency Response of Amplifiers

Frequency Response of Amplifiers 類比電路設計 (3349-004 Frequency epne f Aplifier h-uan an Natinal hun-h Univerity epartent f Electrical Eneer Overview ead B azavi hapter 6 ntrductin n thi lecture, we tudy the repne f le-tae and differential

More information

( ) 2. 1) Bode plots/transfer functions. a. Draw magnitude and phase bode plots for the transfer function

( ) 2. 1) Bode plots/transfer functions. a. Draw magnitude and phase bode plots for the transfer function ECSE CP7 olution Spring 5 ) Bode plot/tranfer function a. Draw magnitude and phae bode plot for the tranfer function H( ). ( ) ( E4) In your magnitude plot, indicate correction at the pole and zero. Step

More information

WYSE Academic Challenge 2004 Sectional Physics Solution Set

WYSE Academic Challenge 2004 Sectional Physics Solution Set WYSE Acadec Challenge 004 Sectnal Physcs Slutn Set. Answer: e. The axu pssble statc rctn r ths stuatn wuld be: ax µ sn µ sg (0.600)(40.0N) 4.0N. Snce yur pushng rce s less than the axu pssble rctnal rce,

More information

element k Using FEM to Solve Truss Problems

element k Using FEM to Solve Truss Problems sng EM t Slve Truss Prblems A truss s an engneerng structure cmpsed straght members, a certan materal, that are tpcall pn-ned at ther ends. Such members are als called tw-rce members snce the can nl transmt

More information

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune Chapter 7 Flud Systems and Thermal Systems 7.1 INTODUCTION A. Bazune A flud system uses ne r mre fluds t acheve ts purpse. Dampers and shck absrbers are eamples f flud systems because they depend n the

More information

Part a: Writing the nodal equations and solving for v o gives the magnitude and phase response: tan ( 0.25 )

Part a: Writing the nodal equations and solving for v o gives the magnitude and phase response: tan ( 0.25 ) + - Hmewrk 0 Slutin ) In the circuit belw: a. Find the magnitude and phase respnse. b. What kind f filter is it? c. At what frequency is the respnse 0.707 if the generatr has a ltage f? d. What is the

More information

Relationships Between Frequency, Capacitance, Inductance and Reactance.

Relationships Between Frequency, Capacitance, Inductance and Reactance. P Physics Relatinships between f,, and. Relatinships Between Frequency, apacitance, nductance and Reactance. Purpse: T experimentally verify the relatinships between f, and. The data cllected will lead

More information

Bicycle Generator Dump Load Control Circuit: An Op Amp Comparator with Hysteresis

Bicycle Generator Dump Load Control Circuit: An Op Amp Comparator with Hysteresis Bicycle Generatr Dump Lad Cntrl Circuit: An Op Amp Cmparatr with Hysteresis Sustainable Technlgy Educatin Prject University f Waterl http://www.step.uwaterl.ca December 1, 2009 1 Summary This dcument describes

More information

Chapter 7 Four-Wave Mixing phenomena

Chapter 7 Four-Wave Mixing phenomena Chapter 7 Four-Wave Mx phenomena We wll dcu n th chapter the general nonlnear optcal procee wth four nteract electromagnetc wave n a NLO medum. Frt note that FWM procee are allowed n all meda (nveron or

More information

Is current gain generally significant in FET amplifiers? Why or why not? Substitute each capacitor with a

Is current gain generally significant in FET amplifiers? Why or why not? Substitute each capacitor with a FET Sall Snal Mdband Mdel Ntatn: C arables and quanttes are enerally desnated wth an uppercase subscrpt. AC arables and quanttes are enerally desnated wth a lwercase subscrpt. Phasr ntatn wll be used when

More information

Electrical Engineering Department Network Lab.

Electrical Engineering Department Network Lab. Electrcal Engneerng Department Network Lab. Objecte: - Experment on -port Network: Negate Impedance Conerter To fnd the frequency response of a smple Negate Impedance Conerter Theory: Negate Impedance

More information

Section I5: Feedback in Operational Amplifiers

Section I5: Feedback in Operational Amplifiers Sectin I5: eedback in Operatinal mplifiers s discussed earlier, practical p-amps hae a high gain under dc (zer frequency) cnditins and the gain decreases as frequency increases. This frequency dependence

More information

CTN 2/23/16. EE 247B/ME 218: Introduction to MEMS Design Lecture 11m2: Mechanics of Materials. Copyright 2016 Regents of the University of California

CTN 2/23/16. EE 247B/ME 218: Introduction to MEMS Design Lecture 11m2: Mechanics of Materials. Copyright 2016 Regents of the University of California Vlume Change fr a Unaxal Stress Istrpc lastcty n 3D Istrpc = same n all drectns The cmplete stress-stran relatns fr an strpc elastc Stresses actng n a dfferental vlume element sld n 3D: (.e., a generalzed

More information

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o?

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o? Crcuts Op-Amp ENGG1015 1 st Semester, 01 Interactn f Crcut Elements Crcut desgn s cmplcated by nteractns amng the elements. Addng an element changes vltages & currents thrughut crcut. Example: clsng a

More information

Physic 231 Lecture 33

Physic 231 Lecture 33 Physc 231 Lecture 33 Man pnts f tday s lecture: eat and heat capacty: Q cm Phase transtns and latent heat: Q Lm ( ) eat flw Q k 2 1 t L Examples f heat cnductvty, R values fr nsulatrs Cnvectn R L / k Radatn

More information

Microelectronic Circuits II. Ch 8 : Frequency Response

Microelectronic Circuits II. Ch 8 : Frequency Response Micrelectrnic ircuit II h 8 : Frequency ene 8. -Frequency ene f S & E Amlifier NU EE 8.- Intrductin - ain i cntant indeendent f the frequency f the inut nal à infinite andidth à Nt true, - midand : ain

More information

A) 0.77 N B) 0.24 N C) 0.63 N D) 0.31 N E) 0.86 N. v = ω k = 80 = 32 m/s. Ans: (32) 2 = 0.77 N

A) 0.77 N B) 0.24 N C) 0.63 N D) 0.31 N E) 0.86 N. v = ω k = 80 = 32 m/s. Ans: (32) 2 = 0.77 N Q1. A transverse sinusidal wave travelling n a string is given by: y (x,t) = 0.20 sin (2.5 x 80 t) (SI units). The length f the string is 2.0 m and its mass is 1.5 g. What is the magnitude f the tensin

More information

Physics 102. Second Midterm Examination. Summer Term ( ) (Fundamental constants) (Coulomb constant)

Physics 102. Second Midterm Examination. Summer Term ( ) (Fundamental constants) (Coulomb constant) ε µ0 N mp T kg Kuwait University hysics Department hysics 0 Secnd Midterm Examinatin Summer Term (00-0) July 7, 0 Time: 6:00 7:0 M Name Student N Instructrs: Drs. bdel-karim, frusheh, Farhan, Kkaj, a,

More information

A New Fully Controlled Single Phase PFC Buck Topology

A New Fully Controlled Single Phase PFC Buck Topology New Fully ntrlled Sngle Phae PF Buck Tplgy. FENÃ PIES * J. FENN SI entr de utmátca da Unerdade Técnca de ba Prtugal * Ecla Superr de Tecnlga de Setúbal Inttut Pltécnc de Setúbal Prtugal epartament de Engenhara

More information

Ch5 Appendix Q-factor and Smith Chart Matching

Ch5 Appendix Q-factor and Smith Chart Matching Ch5 Appedx -factr ad mth Chart Matchg 5B-1 We-Cha a udwg, F Crcut Deg hery ad Applcat, Chapter 8 -type matchg etwrk w-cmpet Matchg Netwrk hee etwrk ue tw reactve cmpet t trafrm the lad mpedace t the dered

More information

Averaged Modeling of Non-ideal Boost Converter Operating in DCM

Averaged Modeling of Non-ideal Boost Converter Operating in DCM Internatnal Jurnal f Cmputer and lectrcal ngneerng l.3 N. February 793-863 Averaged Mdelng f Nn-deal Bt Cnverter Operatng n DCM Guang-jun Xe Senr Member IACSI Xuan Zha Ha-bn Fang and Hu-fang Xu Abtract

More information

Lesson 5. Thermomechanical Measurements for Energy Systems (MENR) Measurements for Mechanical Systems and Production (MMER)

Lesson 5. Thermomechanical Measurements for Energy Systems (MENR) Measurements for Mechanical Systems and Production (MMER) Lessn 5 Thermmechancal Measurements r Energy Systems (MEN) Measurements r Mechancal Systems and Prductn (MME) A.Y. 205-6 Zaccara (n ) Del Prete We wll nw analyze mre n depth each ne the unctnal blcks the

More information

Analog Electronic Circuits. Prof. Mor M. Peretz

Analog Electronic Circuits. Prof. Mor M. Peretz Pr. Mr M. Peretz Analg Electrnic ircuits 36113671 [1] THE ENTER FOR POWER ELETRONS AND MXEDSGNAL, BENGURON UNVERSTY Analg Electrnic ircuits Pr. Mr M. Peretz The enter r Pwer Electrnics and MixedSignal

More information

BASIC DIRECT-CURRENT MEASUREMENTS

BASIC DIRECT-CURRENT MEASUREMENTS Brwn University Physics 0040 Intrductin BASIC DIRECT-CURRENT MEASUREMENTS The measurements described here illustrate the peratin f resistrs and capacitrs in electric circuits, and the use f sme standard

More information

Single Phase Parallel AC Circuits

Single Phase Parallel AC Circuits Single Phase Parallel AC Circuits 1 Single Phase Parallel A.C. Circuits (Much of this material has come from Electrical & Electronic Principles & Technology by John Bird) n parallel a.c. circuits similar

More information

Flyback Converter in DCM

Flyback Converter in DCM Flyback Converter n CM m 1:n V O V S m I M m 1 1 V CCM: wth O V I I n and S 2 1 R L M m M m s m 1 CM: IM 2 m 1 1 V 1 Borderlne: O VS I n wth V nv 2 1 R 2 L 1 M m s O S m CM f R > R 2n crt 2 L m 2 (1 )

More information

Physics 107 HOMEWORK ASSIGNMENT #20

Physics 107 HOMEWORK ASSIGNMENT #20 Physcs 107 HOMEWORK ASSIGNMENT #0 Cutnell & Jhnsn, 7 th etn Chapter 6: Prblems 5, 7, 74, 104, 114 *5 Cncept Smulatn 6.4 prves the ptn f explrng the ray agram that apples t ths prblem. The stance between

More information

RAMIFICATIONS of POSITION SERVO LOOP COMPENSATION

RAMIFICATIONS of POSITION SERVO LOOP COMPENSATION RAMIFICATIONS f POSITION SERO LOOP COMPENSATION Gerge W. Yunk, P.E. Lfe Fellw IEEE Indural Cnrl Cnulg, Inc. Fnd du Lac, Wcn Fr many year dural pg er dre dd n ue er cmpena he frward p lp. Th wa referred

More information

CHAPTER 3: FEEDBACK. Dr. Wan Mahani Hafizah binti Wan Mahmud

CHAPTER 3: FEEDBACK. Dr. Wan Mahani Hafizah binti Wan Mahmud CHPTER 3: FEEDBCK Dr. Wan Mahan Hafzah bnt Wan Mahmud Feedback ntrductn Types f Feedback dvantages, Characterstcs and effect f Negatve Feedback mplfers Crcuts wth negatve feedback Pstve feedback and Oscllatr

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 2100 Circuit Analysis Lessn 25 Chapter 9 & App B: Passive circuit elements in the phasr representatin Daniel M. Litynski, Ph.D. http://hmepages.wmich.edu/~dlitynsk/ ECE 2100 Circuit Analysis Lessn

More information

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter).

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter). Three charges, all with a charge f 0 are situated as shwn (each grid line is separated by meter). ) What is the net wrk needed t assemble this charge distributin? a) +0.5 J b) +0.8 J c) 0 J d) -0.8 J e)

More information

Reference:W:\Lib\MathCAD\Default\defaults.mcd

Reference:W:\Lib\MathCAD\Default\defaults.mcd 4/9/9 Page of 5 Reference:W:\Lib\MathCAD\Default\default.mcd. Objective a. Motivation. Finite circuit peed, e.g. amplifier - effect on ignal. E.g. how "fat" an amp do we need for audio? For video? For

More information

Linear Amplifiers and OpAmps

Linear Amplifiers and OpAmps Lnear Amplfers and OpAmps eferences: Barbw (pp 7-80), Hayes & Hrwtz (pp 63-40), zzn (Chapter ) Amplfers are tw-prt netwrks n whch the utput ltage r current s drectly prprtnal t ether nput ltage r current.

More information

MICROELECTRONIC CIRCUIT DESIGN Second Edition

MICROELECTRONIC CIRCUIT DESIGN Second Edition MICROELECTRONIC CIRCUIT DESIGN Second Edition Richard C. Jaeger and Travis N. Blalock Answers to Selected Problems Updated 10/23/06 Chapter 1 1.3 1.52 years, 5.06 years 1.5 2.00 years, 6.65 years 1.8 113

More information

ZVS Boost Converter. (a) (b) Fig 6.29 (a) Quasi-resonant boost converter with M-type switch. (b) Equivalent circuit.

ZVS Boost Converter. (a) (b) Fig 6.29 (a) Quasi-resonant boost converter with M-type switch. (b) Equivalent circuit. EEL6246 Pwer Electrnics II Chapter 6 Lecture 6 Dr. Sam Abdel-Rahman ZVS Bst Cnverter The quasi-resnant bst cnverter by using the M-type switch as shwn in Fig. 6.29(a) with its simplified circuit shwn in

More information

FEEDBACK AMPLIFIERS. v i or v s v 0

FEEDBACK AMPLIFIERS. v i or v s v 0 FEEDBCK MPLIFIERS Feedback n mplers FEEDBCK IS THE PROCESS OF FEEDING FRCTION OF OUTPUT ENERGY (VOLTGE OR CURRENT) BCK TO THE INPUT CIRCUIT. THE CIRCUIT EMPLOYED FOR THIS PURPOSE IS CLLED FEEDBCK NETWORK.

More information

Coupled Inductors and Transformers

Coupled Inductors and Transformers Cupled nductrs and Transfrmers Self-nductance When current i flws thrugh the cil, a magnetic flux is prduced arund it. d d di di v= = = dt di dt dt nductance: = d di This inductance is cmmnly called self-inductance,

More information

Electric and magnetic field sensor and integrator equations

Electric and magnetic field sensor and integrator equations Techncal Note - TN12 Electrc and magnetc feld enor and ntegrator uaton Bertrand Da, montena technology, 1728 oen, Swtzerland Table of content 1. Equaton of the derate electrc feld enor... 1 2. Integraton

More information

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS) FE EIEW OPEATIONAL AMPLIFIES (OPAMPS) 1 The Opamp An opamp has two nputs and one output. Note the opamp below. The termnal labeled wth the () sgn s the nvertng nput and the nput labeled wth the () sgn

More information

As an example of the parameter sweeping capabilities of LTSPICE, consider the following elementary high-pass filter circuit:

As an example of the parameter sweeping capabilities of LTSPICE, consider the following elementary high-pass filter circuit: LTSpice Parameter Sweep Tutorial ECE 202 Signals and Systems I Andrew Herdrich Department of Electrical and Computer Engineering Portland State University January 7, 2007 Version 2 AC sweep analyses in

More information

Microwave Noise and LNA Design

Microwave Noise and LNA Design Mcrwav and LA Dgn Mcrwav Crcut,6, JJEOG Outln Bac cncpt : thrmal n Equvalnt n tmpratur, n fgur maurmnt f pav ntwrk Rcvr dgn f trantr hry Maurmnt LA dgn bac LA dgn xampl Mcrwav Crcut,6, JJEOG Bac 3 Mcrwav

More information

Common Gate Amplifier

Common Gate Amplifier mmn Gate Ampler Fure (a) shs a cmmn ate ampler th deal current surce lad. Fure (b) shs the deal current surce mplemented by PMOS th cnstant ate t surce vltae. DD DD G M G M G M (a) (b) Fure. mmn ate ampler.

More information

Homework Assignment No. 3 - Solutions

Homework Assignment No. 3 - Solutions ECE 6440 Summer 2003 Page 1 Homework Aignment o. 3 Problem 1 (10 point) Aume an LPLL ha F() 1 and the PLL parameter are 0.8V/radian, K o 100 MHz/V, and the ocillation frequency, f oc 500MHz. Sketch the

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electronc Crcuts Feedback & Stablty Sectons of Chapter 2. Kruger Feedback & Stablty Confguraton of Feedback mplfer S o S ε S o ( S β S ) o Negate feedback S S o + β β s the feedback transfer functon

More information