A STUDY OF THE STRENGTH OF SHORT AND INTERMEDIATE WOOD COLUMNS BY EXPERIMENTAL AND ANALYTICAL METHODS

Size: px
Start display at page:

Download "A STUDY OF THE STRENGTH OF SHORT AND INTERMEDIATE WOOD COLUMNS BY EXPERIMENTAL AND ANALYTICAL METHODS"

Transcription

1 UNITED STATES DEPARTMENT OF AGRICULTURE. FOREST SERVICE. FOREST PRODUCTS LABORATORY. MADISON, WIS A STUDY OF THE STRENGTH OF SHORT AND INTERMEDIATE WOOD COLUMNS BY EXPERIMENTAL AND ANALYTICAL METHODS January 1964 FPL-028

2 FOREST SERVICE REGIONAL EXPERIMENT STATlONS AND FOREST PRODUCTS LABORATORY PROGRAM LOCATIONS HEADQUARTERS OF REGIONAL FOREST EXPERIMENT STATIONS FOREST PRODUCTS LABORATORY WASHINGTON - BELTSVILLE Forest Service regional experiment stations and Forest Products Laboratory

3 A STUDY OF THE STRENGTH OF SHORT AND INTERMEDIATE WOOD COLUMNS BY EXPERIMENTAL AND ANALYTICAL METHODS 1 By JOHN E. FAIRKER, Engineer 2 Forest Products Laboratory, Forest Service U.S. Department of Agriculture ---- Summary Wood columns of various lengths in two species were evaluated for strength and the results analyzed by several methods. Experimental stress-strain data were obtained over a 6-inch gage length from specimens 10 inches in length. The data thus obtained were used to predict buckling loads given by the tangent modulus theory. In one species, the average experimental results for short; and intermediate columns of the grade used agreed very closely with the tangent modulus predictions. In the other species, average experimental results went above tangent modulus predictions for the short columns and below for the intermediate columns. Several analytical approximations were developed to predict tangent modulus buckling loads, The Ramberg-Osgood equation for stress versus strain and Timoshenko s equation for tangent modulus versus strain yielded Satisfactory results. A hyperbolic equation for stress versus strain did not yield satisfactory results, The approximate theoretical tangent modulus buckling loads of the columns with L/d equal to 15 and 20 were determined by Southwell s method. The results that were obtained by Southwell s method agreed very closely with theory for intermediate columns of one species, but were too high for intermediate columns of the other species. 1 This study was made in partial fulfillment of the requirements for the Master of Science degree in Civil Engineering from the University of Wisconsin. 2 Maintained at Madison, Wis., in cooperation with the University of Wisconsin. FPL - 028

4 General Considerations of Elastic and Inelastic Buckling 3 The Euler equation ( 3 ) for predicting the buckling load of columns that are not stressed above the proportional limit gives the smallest load at which the original straight form of equilibrium of a centrally loaded ideal column becomes unstable. The problem can be formulated mathematically by applying an infinitesimally small disturbance to the originally straight column and then investigating whether this bent form of equilibrium can be maintained by the axial load acting alone when the disturbance is removed. The idea of applying and removing a small disturbance is not important in elastic buckling. The time when the disturbance is applied and when it is removed have no effect on the Euler buckling load. However, for inelastic buckling, disturbances applied and removed at different levels of stress produce different buckling loads ( 12 ). Engesser ( 2 ) and Considère ( 1 ) were the first to recognize the problem of inelastic buckling in However, the load at which a column fails by inelastic buckling is still open to question. Shanley ( 7 ) recognized the paradox in the reduced modulus theory of inelastic buckling and showed that the load predicted by this theory could not be realized in actuality. He concluded that the tangent modealus theory was correct for predicting the maximum load at which a perfect centrally loaded column will remain straight. Wang ( 12 ) defines the buckling load of a column stressed beyond the proportional limit as the smallest axial load at which the bent form of equilibrium of an originally straight and centrally loaded column, resulting from the action of a small disturbance, becomes stable. The application of a small disturbance requires further discussion. A disturbance can be a small force or moment which is applied and removed at will. If the disturbance is applied before the axial load, P, reaches the buckling load and is then removed, the ideal column will return to its original straight form when no fiber is stressed beyond the proportional limit. When some or all of the fibers are stressed beyond the proportional limit, the column will assume a bent form different from the bent form realized while the disturbance is acting. Thus the original bent form taken during the action of the small disturbance is not a stable form of equilibrium. If the disturbance is applied when P is equal to the buckling load and then removed, the bent form will remain unchanged because it is a stable form. 3 Underlined numbers in parentheses refer to Literature Cited at the end of this report. FPL

5 The two extreme cases of inelastic buckling will now be considered. If a column is loaded to its critical, stress and then the disturbance is applied and immediately removed, there is a reversal of strain and the buckling load is given by the double or reduced modulus theory. At the other extreme, if the disturbance is applied before the compressive stress reaches the proportional limit and is removed at a value of load such that the bent form of the column is stable, there is no reversal of strain and the buckling load is given by the tangent modulus theory. Test results have shown that the buckling loads of short columns approach the double modulus load and that the buckling loads of long columns we closer to the tangent modulus load. Approaching the problem realistically, disturbances in the testing machine will always be present during the testing process. A short column is relatively insensitive to disturbances, so that it is probable that the column will not bend until the proportional limit is exceeded, For this case, a reversal of strain takes place and the buckling load approaches the double modulus load. A slender column is more sensitive to disturbances, so that bending will take place before the proportional limit is reached, For this case, there is no reversal of strain and the buckling load is given by the tangent modulus theory. The possibility of using the tangent modulus theory to determine the effect of strengthreducing characteristics on wood columns of intermediate length was investigated by Byars. 4 One purpose of this study was to determine if the tangent modulus theory could be used to predict the maximum loads of short and intermediate wood columns of structural grade with such characteristics as hots and initial eccentricity, Theoretically, the tangent modulus theory is valid only for centrally loaded, homogeneous, straight columns. Approximations to the theory can be obtained if the point of application of the load is adjusted to compensate for the nonhomogeneity of the material and the initial curvature. However, in this study an attempt was made to predict the maximum loads of wood columns loaded on the geometric center, since this is the reference point used in design work, Because of the variation of tangent modulus values obtained in tests of structural grade columns, another purpose of this study was to determine if a mathematical expression with certain parameters could be used as an approximation for the experimental compressive stress-strain curves. The mathematically expressed curve does not have to approximate the actual stress-strain curve very closely, but the two curves must have approximately the same slope at the same level of stress, so that the predicted buckling loads will be close to the actual maximum loads. 4 Byars, Edward F. Analytical and Experimental Determination of Buckling Loads of Wood Columns by the Tangent Modulus (Engesser) Theory. Ph. D. Thesis, Department of Theoretical and Applied Mechanics, University of Illinois, FPL

6 A third purpose of this study was to determine if Southwell s method of plotting deflection divided by load versus deflection for each column tested could be used to predict the critical (buckling) load of the corresponding straight column loaded so that the eccentricity is zero. Experimental Procedure Preparation and Matching of Material The column material was Construction Grade Douglas-fir and No. 1 SR (stress-rated) southern pine. All material received had been air dried, and the pieces were 4 by 4 inches by 12 feet, nominal. A 1-inch section was cut from each end of the 12-foot pieces for the purposes of determining specific gravity and moisture content. Assuming a linear variation of moisture content and specific gravity along the length of the 12-foot pieces, an effort was made to match the different lengths of columns for specific gravity and size and location of knots. Each species was cut into six sets, which contained lengths of 10, 18, 36, 54, and 72 inches. Test Procedure Compression Specimens.- The compression specimens were 4 by4 by 10 inches. Before testing, the ends of each specimen were dried in an oven for 2 to 3 minutes to reduce the possibility of the failure occurring outside of the gage length. The compression measuring devices used on all four sides were Marten s mirrors, with a 6-inch gage length (fig. 1), calibrated so that the sum of the two scale readings of the compression of opposite sides gave the average compression for the two sides. The two sets of values thus obtained were averaged to obtain the average compression. The end supports used were double-roller devices, so that bending could take place about any plane. The point of loadingwas taken as the geometric center as a start and then adjusted until approximately equal compression readings were recorded up to a load of 15,000 pounds. Once the approximate elastic center was located, the specimen was tested to failure, with compression readings being taken on all four sides at 5,000-pound increments up to 30,000 pounds and then 2,000-pound increments to failure (tables 1 and 2). The loading machine was hydraulic with a 100,000-pound range. The rate of loading was set at a constant compression rate of inch per inch of length per minute. FPL

7 Short and Intermediate Columns.- The short and intermediate columns were 18, 36, 54, and 72 inches long with a 4- by 4-inch cross section, nominal. All the columns were tested in a hydraulic loading machine at a constant rate of strain of inch per inch of length per minute. The load was applied at the geometric center, and the lateral movement of the column at midheight was obtained by the use of Ames dials mounted on the machine (fig. 2). For the 18-, 36-, and 54-inch lengths, four dials with a maximum travel of 1/2 inch were used one dial on each side. For the 72-inch length, two dials with a maximum travel of 1 inch were used on adjacent faces. Deflection readings were taken at 5,000-pound increments to failure. The maximum load was also recorded. The end supports were the same as those used for the compression specimens, The initial curvature of each column was obtained by holding a straightedge on the curved face and measuring the offset at midheight. Determination of Tangent Modulus from Experimental Results The values of tangent modulus at different stress levels were determined for each compression specimen by dividing an increment of stress by an increment of strain. For example, a value of the tangent modulus at a stress corresponding to a load of 36,000 pounds was obtained by calculating the difference in stresses corresponding to loads of 38,000 pounds and 34,000 pounds, and dividing this value by the difference in strains obtained at loads of 38,000 pounds and 34,000 pounds. Only values of load and compression recorded in tests were used to obtain tangent modulus values, so that it was assumed that the slope at any test point could be approximated by the slope of a straight line drawn through the two test points immediately above and below the test point at which the tangent modulus was desired. From the curves of tangent modulus versus stress for each compression specimen, average values of tangent modulus versus stress were obtained for each species (figs. 3 and 4). For southern pine, average values of tangent modulus were obtained at each selected stress level (table 3). For Douglas-fir, the individual stress-strain curves varied so widely that at a selected stress level near the average maximum stress, one specimen curve yielded a considerable value for the tangent modulus and another curve yielded no value at all because the selected stress level was greater than the maximum stress for that specimen. For this reason, better average values were obtained by averaging the stress at selected values of tangent modulus (table 4). FPL

8 With average values of stress versus tangent modulus, Euler s generalized formula, (1) where P = load, A = area, E = tangent modulus, L/d = slenderness ratio, was used to T calculate values of slenderness ratio (L/d) versus stress (figs. 5 and 6 solid lines). The two curves predict the buckling loads of straight columns of comparable material, loaded so that eccentricity due to nonhomogeneity is zero and strain reversal does not occur. Determination of Tangent Modulus from Analytical Approximations Ramberg-Osgood Equation for Stress versus Strain Ramberg and Osgood ( 6 ) proposed an analytical expression of the type (2) where e = total strain, S = stress, E = modulus of elasticity, (e p ) = maximum plastic max strain, S = maximum stress, and B = the measured slope of a straight line drawn max through the experimentally determined points of log (S/S ) versus log (e ). max p Approximating the plastic strain of structural materials as a power function has as its basis the fact that it gives results whichapproximate a probability function. Shanley ( 8 ) shows that statistics can be a very useful tool in analyzing the results of a number of tests. Expressing the plastic strain in terms of a power function will approximate actual results very closely if the amount of slip (plastic strain) depends on certain factors which have a random distribution. If equation (2) is differentiated and inverted, an expression for the tangent modulus in terms of stress is obtained as follows: FPL

9 (3) Figures 7 and 8 are typical examples of the relation of stress ratio to plastic strain; they show that the experimental results obtained approximate straight lines, except for values of stress close to the maximum, The average values of the quantities in equation (3) that were used to compute values of tangent modulus versus stress are shown in tables 5 and 6. Equation (3) yields a family of curves for different values of B with values of tangent modulus at the maximum stress which are greater than zero for all finite values of B. However, the experimental stress-strain results show that the slope at maximum stress approaches zero in most cases. Tables 7 and 8 show that the values of tangent modulus obtained from the Ramberg-Osgood formula for levels of stress near maximum are higher than values obtained directly from experimental curves. Timoshenko Equation for Tangent Modulus versus Stress An analytical expression for the tangent modulus to be used in Euler s generalized formula is given by Timoshenko ( 11 ): (4) where ds/de denotes the derivative of stress with respect to strain, E is the tangent T modulus, E is the modulus of elasticity, S is the maximum direct stress, S is the max stress at which the tangent modulus is desired and c is a parameter which is a constant for each material, The value of c for pine wood suggested in the reference is However, a closer approximation to the experimental results was obtained by taking c = 0.80 for the southern pine that was tested. For the Douglas-fir that was tested, a value of c = 0.90 was found to yield an approximation close to the experimental results. The only way that is known to determine the value of the parameter, c, that will approximate the test results is by trial and error. An approximate value for c can be obtained by observing a typical stress-strain curve for the material. As c approaches 1.0, the stress-strain curve approaches Hooke s law, S = Ee. The typical stress-strain curve for Douglas-fir has a sharper bend at the knee than the one for southern pine, so that c has a higher value for Douglas-fir (compare tables 9 and 10). FPL

10 The equation for tangent modulus versus stress as given by Timoshenko was integrated to determine the equation for stress versus strain: Equation (5) is seen to be complicated. However, it does give a good approximation to the average experimental stress-strain curves, as shown in tables 9 and 10. (5) Hyperbolic Equation for Stress versus Strain A rectangular hyperbola of the form, (6) with asymptotes, S = Ee and S = S, was developed to approximate the experimental remax sults. The value of the parameter, k, determines the degree of curvature. As k approaches zero, the hyperbola approaches its two asymptotes. Taking the derivative of the above equation, an equation for tangent modulus versus strain is obtained (7) The use of this analytical relationship in Euler s generalized formula requires a lengthy procedure. If the tangent modulus is desired at a selected value of stress, the strain that corresponds to the selected stress must be obtained from the hyperbolic relationship of stress versus strain. The value of strain is then used in equation (7) to determine the value of the tangent modulus at the selected value of stress. Southwell s Method of Determining Buckling Loads and Eccentricities Theoretical Basis Southwell ( 9 ) developed an important procedure for determining the buckling load of a perfect column using the load versus deflection data from a test of an imperfect column. FPL

11 If the strut is not straight initially, and if y is the initial deflection of the centerline, o the condition for equilibrium is (8) If the deflected shape can be expressed as a Fourier sine series and if the load, P, is a considerable fraction of the buckling load, P, then the deflection at the center can be cr approximated as (9) where a is the deflection reading at midheight referred to the initial position and a is the o deflection at midheight. Rearranging equation ( 9 ), a linear equation of the form (10) is obtained. A plot of a/p versus a yields a straight line with an inverse slope which is a measure of the theoretical buckling loadandanx-axis intercept which is a measure of the initial deflection. Timoshenko ( 11 ) shows that Southwell s method can be applied to a column loaded eccentrically. The approximate expression that is obtained for the case of initial curvature and some eccentpicity in the point of application of the load is (11) where y is the deflection at midheight referred to the initial position, a is the initial c o deflection at midheight, and e is the eccentricity at midheight of the load which may be produced by an error in centering the load and nonhomogeneity of the material. Wang ( 12 ) shows that Southwell s method can be applied to the case of inelastic buckling. If P is a large portion of P such that EI approximately a constant expressed as cr (12) FPL

12 where E is the tangent modulus corresponding to the stress on the convex side and E is 1 2 the tangent modulus corresponding to the stress on the concave or opposite side, then EI in equation (8) can be replaced by EI and equation (9) is a close approximation to the theory where P for the case is given by the expression cr If the tangent modulus is assumed to be approximately constant over the stress range existing across the section, then equation (13) can be written in the form known as the tangent modulus, or Euler s generalized formula, equation (1). Wang ( 12 ) states, The assumption of constant tangent modulus is usually justified by arguing that the bending is only slight; however, it would be interesting to see the influence of such an approximation on the magnitude of the buckling load. Wang ( 12 ) summarizes the importance of Southwell s method as: Actually, Southwell s method represents a much greater achievement than is usually recognized, This is because, for imperfect columns, the buckling load is not defined, and all actual columns are more or less imperfect; thus, in the strict sense, actual testing of buckling is impossible. Southwell s method, however, provides a theoretically sound basis for analyzing the experimental data--from the test results of an imperfect column the buckling load of the corresponding perfect column can be estimated. Application to Experimental Results Southwell s method agrees with theory only if the curvature is small because equation (8) is valid only for small curvature. However, deflection readings for a small amount of curvature are small, so that the ratio of deflection to load is not determined with a high degree of accuracy. Also, if the curvature is expressed as a series, the first term, given by equation (9), of the series will not necessarily dominate the expression for deflection. However, Southwell states ( 9 ), Trial alone can reveal whether the method will be successful in any particular instance. If the problem is approached from an analytical viewpoint, it can be shown that Southwell s method will predict the approximate buckling load, P, if the load-deflection cr curve approximates a rectangular hyperbola with asymptotes (14) (15) FPL

13 The equation of the hyperbola is seen to be where k is a constant. If the curve given by equation (16) passes through the origin, it can be shown that equation (16) can be rearranged and reduced to (16) (17) which is the same as equation (10). Therefore, the approximate theoretical buckling load can be obtained by this method if the load deflection curve approximates a rectangular hyperbola. The deflections that were obtained in the experimental part of this report were not the true deflections due to buckling alone. The total movement of each column at midheight, which included movement of the ends as they rotated on the semicylindrical surfaces, was measured. Therefore, the deflection readings obtained for this report were greater than the deflections due to buckling. As the deflectionat midheight increased, the movement of the ends increased also. Southwell s method was applied to the 54- and 72-inch columns that were tested. Many of the columns which contained knots failed in such a way that the knot acted as a hinge. For this type of buckling, Southwell s method was not valid because the curvature could not be expressed as a sine function. An idea of whether Southwell s method was valid can be obtained by observing figures 9 to 12 representing typical test columns. If the load-deflection curve approaches asymptotically the value of load given by the inverse slope of the straight line, then Southwell s method was a good approximation of the theoretical buckling load. Figures 9 and 11 show that for southern pine, Southwell s method yields values for buckling loads which are much too high. Figures 10 and 12 show that Southwell s method yielded a fairly close approximation of the buckling loads of the Douglas - fir intermediate columns. Tables 11 and 12 show the amount of initial deflection at midheight that was measured and the approximate eccentricity due to nonhomogeneity that was obtained by Southwell s method for each column of intermediate length. The effect of initial curvature and eccentricity may be observed by comparing the maximum test load with the approximate buckling load. FPL

14 Discussion of Results The southern pine specimens were No. 1 SR (stress-rated) Grade. The material was fairly uniform with many of the specimens containing the pith. All of the southern pine specimens contained knots with a maximum size of about 1.5 inches, The Douglas-fir specimens were Construction Grade. In contrast with the southern pine, the Douglas-fir specimens had a great deal of variability in rate of growth and specific gravity. The majority of the Douglas-fir specimens contained at least one knot with a maximum size of about 1.5 inches, but a few of the specimens contained no knots at all, The stress-strain results for southern pine obtained from compression specimens 10 inches in length showed very little variation. Figure 3 shows that no definite proportional limit was observed and that the tangent modulus was not constant for small values of stress. The low average value of the modulus of elasticity for southern pine was considered to be caused indirectly by the knots. The slope of grain around most of the knots was considerable. An idea of how much the slope of grain affected the modulus of elasticity can be obtained by observing table 1 which shows the distance from the geometric center to the point of application of the load. Each specimen was loaded first with the load acting at the geometric center. However, due to the slope of grain around the knots, the strains observed on the sides that contained knots were greater than the strains observed on the sides with negligible slope of grain. Therefore, the point of application of the load had to be moved away from the sides with the knots to obtain equal strain readings. Sunley ( 10 ) also found that knots decreased the value of the modulus of elasticity. The analytical approximations yielded results which were very close to the results obtained by using the average experimental tangent modulus values (tables 7 and 8, figs. 5 and 6). The Ramberg-Osgood approximation for stress versus strain was the only analytical expression in which all the parameters were determined from the experimental results. The method requires a large amount of work to determine the value of the parameter, B, for each species, but once a suitable value is found for a given material, the method yields satisfactory results. The Ramberg-Osgood empirical stress-strain expression follows the average experimental stress-strain curve very closely until the stress nears its maximum value, Therefore, the method is very accurate for predicting the strength of centrally loaded intermediate columns, but it predicts failure loads of short columns (L/d<10) that are too high. Timoshenko s empirical expression for the tangent modulus in terms of stress required fitting the expression to experimental values by assuming values for the parameter, c. FPL

15 Once suitable values for the two species were found, the empirical expression yielded results which were easily and rapidly obtained and which approximated the experimental tangent modulus curves very closely for all values of slenderness ratio (figs. 5 and 6). The rectangular hyperbolic formula for stress versus strain required fitting the equation to the experimental values by assuming values for the parameter, k. However, the determination of values of tangent modulus at different levels of stress from equations (6) and (7) is a lengthy process, and the results were not considered to be satisfactory. Values of the parameter, k, were found for each species such that the results approximated those obtained from experimental values for intermediate columns but were too conservative for short columns (figs. 5 and 6). If a value of k is chosen such that equations (6) and (7) are good approximations for short columns, the predictions for intermediate columns will be too high. Theoretically, the maximum loads that were observed for short and intermediate columns should have been less than those predicted by the tangent modulus theory because nearly all of the columns were tested with an eccentricity due to nonhomogeneity and curvature (tables 11 and 12). Figure 5 shows that the average results for the southern pine short and intermediate columns fall very close to the tangent modulus curve. One explanation may be that the average tangent modulus values were higher for the short and intermediate columns than they were for the compression specimens. Each set of columns of different lengths was matched for specific gravity and moisture content, as shown in tables 1, 2, and 13 to 16. An effort was made to include the same size and number of knots in each specimen of a set regardless of the length of the specimen. A 1-inch knot within the 6-inch gage length for which strain was measured may cause a slope of grain over a considerable portion of the gage length. Therefore, the tangent modulus obtained is affected considerably by the strain taking place near the knot. For a longer specimen containing the same size knot and degree of slope of grain, the amount of strain near the knot is a small portion of the total strain, so that the tangent modulus values for the longer specimens should be higher. The above explanation is believed to be the reason for the results obtained for southern pine. However, no direct proof of the matching for tangent modulus for the different lengths was obtained. Knots were found to have little effect on the tangent modulus for the Douglas-fir specimens. A low specific gravity was the major factor in reducing the average value of modulus of elasticity for Douglas-fir. Figure 6 shows that the average results for Douglas-fir intermediate columns fall below the.tangent modulus curve. Figure 6 also shows that the average buckling stress determined by Southwell s method for the intermediate columns falls very close to the results FPL

16 predicted by the tangent modulus theory. However, figure 5 shows that the average buckling stress determined by Southwell s method for the southern pine intermediate columns falls very close to the Euler curve. The fact that Southwell s method agrees with theory for the Douglas-fir intermediate columns and not for the southern pine requires an explanation. One explanation may come from the observation of the curvature of the columns as they buckled. Many of the southern pine columns buckled such that a knot acted as a hinge and the curvature approximated two straight lines. For this case, the theory used to obtain Southwell s method is not valid. In contrast, the majority of Douglas-fir columns buckled such that the curvature could be expressed as a sine function, and for this case the theory behind Southwell s method is valid. Conclusions The conclusions that were drawn from this study are as follows: (1) The tangent modulus theory predicts values of maximum loads that are too high for intermediate, structural grade, wood columns loaded at the geometric center. The discussion suggests a possible reason why the experimental results for the southern pine intermediate columns fall close to the tangent modulus curve. (2) The Ramberg-Osgood expression for stress-strain can be used to obtain accurate values of tangent modulus at all levels of stress, except near ultimate, once suitable values of the parameters are determined by experiment. (3) Timoshenko s expression for tangent modulus versus stress can be used to obtain accurate values of tangent modulus at all levels of stress, but it requires fitting to experimental results by trial and error. (4) The rectangular hyperbolic formula for stress-strain did not fit the experimental stress-strain curves satisfactorily at all levels of stress. (5) Southwell s method is valid for predicting the critical loads of the corresponding straight and homogeneous columns if the curvature can be expressed as a sine function such that the load-deflection curves approximate rectangular hyperbolas which become asymptotic to the horizontal lines, P = P cr (6) Predictions of the maximum loads attained by structural grade wood columns of intermediate length, loaded at the geometric center, require the use of formulas which take into account eccentricity of loading ( 4, 5, 10 ). FPL

17 Literature Cited FPL

18 FPL

19

20

21

22

23 FPL-028

24 FPL-028

25 FPL-028

26 FPL-028

27 FPL-028

28 FPL-028

29 FPL-028

30 FPL-028

31 FPL-028

32 FPL-028

33

34

35

36

37 Figure 1.--Test setup for compression specimens, showing Marten s mirrors on a 4- by 4- by 10-inch specimen. Z M FPL-028

38 Figure 2.--Test setup for short and intermediate columns. Four Ames dials, one on each side, were used with columns of 18, 36, and 54 inches. For the 72-inch length, two dials were used on two adjacent faces. FPL-028 Z M

39 Figure 3.--Average stress-strain and stress-tangent modulus curves for the sample of southern pine, No. 1 SR grade.

40 M Figure 4.--Average stress-strain and stress-tangent modulus curves for the sample of Douglas-fir, Construction grade.

41 M Figure 5.--Curves of stress versus slenderness ratio showing a comparison of test results with experimental and analytical tangent modulus predictions for a sample of southern pine. No. 1 SR grade.

42 M Figure 6.--Curves of stress versus slenderness ratio showing a comparison of test results with experimental and analytical tangent modulus predictions for a sample of Douglars-fir, Construction grade.

43 M Figure 7.--The Ramberg-Osgood equation of stress ratio versus plastic strain as applied to specimen of southern pine, No. 1 SR grade (No. P-2-10-SK).

44 Figure 8.--The Ramberg-Osgood equation of stress ratio versus plastic strain as applied to specimen of Douglas-fir, Construction grade (No. F-8-10-C).

45 M Figure 9--Load versus deflection and deflection/load versus deflection for specimen of southern pine. No. 1 SR grade (No. P LK).

46 M Figure Load versus deflection and deflection/load versus deflection for specimen of Douglas-fir, Construction grade (No. F-8-54-C).

47 M Figure 11.--Load versus deflection and deflection/load versus deflection for Compression specimen of southern pine, No. 1 SR grade (No. P-4-54-SK).

48 M Figure 12.--Load versus deflection and deflection/load versus deflection for specimen of Douglas-fir, Constuction grade (NO. F-4-72-LK).

49 PUBLICATION LISTS ISSUED BY THE FOREST PRODUCTS LABORATORY The following lists of publications deal with investigative projects of the Forest Products Laboratory or relate to special interest groups and are available upon request: Architects, Builders, Engineers, Growth, Structure, and and Retail Lumbermen Identification of Wood Box, Crate, and Packaging Data Chemistry of Wood Drying of Wood Fire Protection Fungus and Insect Defects in Forest Products Furniture Manufacturers, Woodworkers, and Teachers of Woodshop Practice Glue and Plywood Logging, Milling, and Utilization of Timber Products Mechanical Properties of Timber structural sandwich, Plastic Laminates, and Wood-Base Components Thermal Properties of Wood Wood Fiber Products Wood Finishing Subjects Wood Preservation Note: Since Forest Products Laboratory publications are so varied in subject matter, no single catalog of titles is issued. Instead, a listing is made for each area of Laboratory research, Twice a year, December 31 and June 30, a list is compiled showing new reports for the previous 6 months. This is the only item sent regularly to the Laboratory mailing roster, and it serves to keep current the various subject matter listings. Names may be added to the mailing roster upon request.

BUCKLING COEFFICIENTS FOR SANDWICH CYLINDERS OF FINITE LENGTH UNDER UNIFORM EXTERNAL LATERAL PRESSURE

BUCKLING COEFFICIENTS FOR SANDWICH CYLINDERS OF FINITE LENGTH UNDER UNIFORM EXTERNAL LATERAL PRESSURE U.S. DEPARTMENT OF AGRICULTURE FOREST SERVICE FOREST PRODUCTS LABORATORY MADlSON, WIS. In Cooperation with the University of Wisconsin U. S. FOREST SERVICE RESEARCH NOTE FPL-0104 SEPTEMBER 1965 BUCKLING

More information

Properties of Southern Pine in Relation to Strength Grading of Dimension Lumber

Properties of Southern Pine in Relation to Strength Grading of Dimension Lumber U. S. FOREST SERVICE RESEARCH PAPER FPL-64 JULY U.S. DEPARTMENT OF AGRICULTURE FOREST SERVICE FOREST PRODUCTS LABORATORY MADISON, WISCONSIN Properties of Southern Pine in Relation to Strength Grading of

More information

STRESSES WITHIN CURVED LAMINATED BEAMS OF DOUGLAS-FIR

STRESSES WITHIN CURVED LAMINATED BEAMS OF DOUGLAS-FIR UNITED STATES DEPARTMENT OF AGRICULTURE. FOREST SERVICE - FOREST PRODUCTS LABORATORY - MADISON, WIS. STRESSES WITHIN CURVED LAMINATED BEAMS OF DOUGLAS-FIR NOVEMBER 1963 FPL-020 STRESSES WITHIN CURVED LAMINATED

More information

ME 354, MECHANICS OF MATERIALS LABORATORY COMPRESSION AND BUCKLING

ME 354, MECHANICS OF MATERIALS LABORATORY COMPRESSION AND BUCKLING ME 354, MECHANICS OF MATERIALS LABATY COMPRESSION AND BUCKLING PURPOSE 01 January 2000 / mgj The purpose of this exercise is to study the effects of end conditions, column length, and material properties

More information

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir Unit III Theory of columns 1 Unit III Theory of Columns References: Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength of Materials", Tata

More information

March No In Cooperation with the University of Wisconsin

March No In Cooperation with the University of Wisconsin March 1956 No. In Cooperation with the University of Wisconsin STRESSES IN WOOD MEMBERS SUBJECTED TO COMBINED COLUMN AND BEAM ACTION.* J. A. NEWLIN and G. W. TRAYER. INTRODUCTION. This publication is one

More information

RE-EXAMINATION OF YLINEN AND OTHER COLUMN EQUATIONS

RE-EXAMINATION OF YLINEN AND OTHER COLUMN EQUATIONS RE-EXAMINATION OF YLINEN AND OTHER COLUMN EQUATIONS By John J. Zahn 1 ABSTRACT: In 1991, Ylinen s column equation was adopted for the design of wood columns in the United States. Ylinen originally derived

More information

Chapter 12 Elastic Stability of Columns

Chapter 12 Elastic Stability of Columns Chapter 12 Elastic Stability of Columns Axial compressive loads can cause a sudden lateral deflection (Buckling) For columns made of elastic-perfectly plastic materials, P cr Depends primarily on E and

More information

1131UCIAING CIF RAG, MN, PLYWOOD CYLINDERS IN AXIAL COMPRESSION

1131UCIAING CIF RAG, MN, PLYWOOD CYLINDERS IN AXIAL COMPRESSION 1131UCIAING CIF RAG, MN, PLYWD CYLINDERS IN AXIAL CMPRESSIN I nieftnatiett IkavictuciLn4-114cattirmyd March 1 &6 INFRMAIMN REV AND REAFFIRML 1962 No. 1322 LAN CPY Please return to: Wood Engineering Research

More information

DEFLECTION OF BEAMS WlTH SPECIAL REFERENCE TO SHEAR DEFORMATIONS

DEFLECTION OF BEAMS WlTH SPECIAL REFERENCE TO SHEAR DEFORMATIONS DEFLECTION OF BEAMS WlTH SPECIAL REFERENCE TO SHEAR DEFORMATIONS THE INFLUENCE OF THE FORM OF A WOODEN BEAM ON ITS STIFFNESS AND STRENGTH-I (REPRINT FROM NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS REPORT

More information

THEORETICAL DESIGN OF A NAILED OR BOLTED JOINT UNDER LATERAL LOAD 1. Summary

THEORETICAL DESIGN OF A NAILED OR BOLTED JOINT UNDER LATERAL LOAD 1. Summary THEORETICAL DESIGN OF A NAILED OR BOLTED JOINT UNDER LATERAL LOAD 1 BY EDWARD W. KUENZI, 2 Engineer Forest Products Laboratory,3 Forest Service U. S. Department of Agriculture Summary This report presents

More information

ELASTIC STAIBILITY CIF TUE FACINGS Of HAT SANDWICI-1 PANELS WIASI SUBJECTED TO COMBINED EDGEWISE STRESSES

ELASTIC STAIBILITY CIF TUE FACINGS Of HAT SANDWICI-1 PANELS WIASI SUBJECTED TO COMBINED EDGEWISE STRESSES ELASTIC STAIBILITY CIF TUE FACINGS Of HAT SANDWICI-1 PANELS WIASI SUBJECTED TO COMBINED EDGEWISE STRESSES Information Reviewed and Reaffirmed Aucust 1955 NFORMA-tiON RE'4,E\AE.'L; n PE.1-17;9';f2,. This!Report

More information

PLASTIC FLOW THROUGHOUT VOLUME OF THIN ADHESIVE!BONDS. No March 1958 (.2. Will In' iriculture ROOM. Mum mina

PLASTIC FLOW THROUGHOUT VOLUME OF THIN ADHESIVE!BONDS. No March 1958 (.2. Will In' iriculture ROOM. Mum mina iriculture ROOM (.2 PLASTIC FLOW THROUGHOUT VOLUME OF THIN ADHESIVE!BONDS No. 2092 March 1958 11 Will In' Mum mina FOREST PRODUCTS LABORATORY MADISON 5, WISCONSIN UNITED STATES DEPARTMENT OF AGRICULTURE

More information

STRENGTH AND STIFFNESS REDUCTION OF LARGE NOTCHED BEAMS

STRENGTH AND STIFFNESS REDUCTION OF LARGE NOTCHED BEAMS STRENGTH AND STIFFNESS REDUCTION OF LARGE NOTCHED BEAMS By Joseph F. Murphy 1 ABSTRACT: Four large glulam beams with notches on the tension side were tested for strength and stiffness. Using either bending

More information

MECHANICS LAB AM 317 EXP 5 COLUMN BEHAVIOR BUCKLING

MECHANICS LAB AM 317 EXP 5 COLUMN BEHAVIOR BUCKLING MECHANICS LAB AM 317 EX 5 COLUMN BEHAVIOR BUCKLING I. OBJECTIVES I.1 To determine the effect the slenderness ratio has on the load carrying capacity of columns of varying lengths. I. To observe short,

More information

Mechanical Design in Optical Engineering

Mechanical Design in Optical Engineering OPTI Buckling Buckling and Stability: As we learned in the previous lectures, structures may fail in a variety of ways, depending on the materials, load and support conditions. We had two primary concerns:

More information

EFFECT OF ELLIPTIC OR CIRCULAR HOLES ON THE STRESS DISTRIBUTION IN PLATES

EFFECT OF ELLIPTIC OR CIRCULAR HOLES ON THE STRESS DISTRIBUTION IN PLATES EFFECT OF ELLIPTIC OR CIRCULAR HOLES ON THE STRESS DISTRIBUTION IN PLATES OF WOOD OR PLYWOOD CONSIDERED AS ORTHOTROPIC MATERIALS Information Revied and Reaffirmed March 1956 No. 1510 EFFECT OF ELLIPTIC

More information

Comparison of Euler Theory with Experiment results

Comparison of Euler Theory with Experiment results Comparison of Euler Theory with Experiment results Limitations of Euler's Theory : In practice the ideal conditions are never [ i.e. the strut is initially straight and the end load being applied axially

More information

Strength of Lumber Under Combined Bending and Compression

Strength of Lumber Under Combined Bending and Compression United States Department of Agriculture Forest Service Forest Products Laboratory Research Paper FPL 391 Strength of Lumber Under Combined Bending and Compression Abstract It is conjectured that the addition

More information

Critical Load columns buckling critical load

Critical Load columns buckling critical load Buckling of Columns Buckling of Columns Critical Load Some member may be subjected to compressive loadings, and if these members are long enough to cause the member to deflect laterally or sideway. To

More information

NDE of wood-based composites with longitudinal stress waves

NDE of wood-based composites with longitudinal stress waves NDE of wood-based composites with longitudinal stress waves Robert J. Ross Roy F. Pellerin Abstract The research presented in this paper reveals that stress wave nondestructive testing techniques can be

More information

Commentary on Factors Affecting Transverse Vibration Using an Idealized Theoretical Equation

Commentary on Factors Affecting Transverse Vibration Using an Idealized Theoretical Equation United States Department of Agriculture Forest Service Forest Products Laboratory Research Note FPL RN 076 Commentary on Factors Affecting Transverse Vibration Using an Idealized Theoretical Equation Joseph

More information

LATERAL STABILITY OF DEEP BEAMS WITH SHEAR-BEAM SUPPORT

LATERAL STABILITY OF DEEP BEAMS WITH SHEAR-BEAM SUPPORT U. FOREST SERVICE RESEARCH PAPER FPL 43 OCTOBER U. S. DEPARTMENT OF AGRICULTURE FOREST SERVICE FOREST PRODUCTS LABORATORY MADISON, WIS. LATERAL STABILITY OF DEEP BEAMS WITH SHEAR-BEAM SUPPORT The FOREST

More information

MODULE C: COMPRESSION MEMBERS

MODULE C: COMPRESSION MEMBERS MODULE C: COMPRESSION MEMBERS This module of CIE 428 covers the following subjects Column theory Column design per AISC Effective length Torsional and flexural-torsional buckling Built-up members READING:

More information

Optimum Fiber Distribution in Singlewall Corrugated Fiberboard

Optimum Fiber Distribution in Singlewall Corrugated Fiberboard United States Department of Agriculture Forest Service Forest Products Laboratory Research Paper FPL 348 1979 Optimum Fiber Distribution in Singlewall Corrugated Fiberboard Abstract Determining optimum

More information

STRESSED-SKIN PANEL DEFLECTIONS AND STRESSES USDA FOREST SERVICE RESEARCH PAPER

STRESSED-SKIN PANEL DEFLECTIONS AND STRESSES USDA FOREST SERVICE RESEARCH PAPER STRESSED-SKIN PANEL DEFLECTIONS AND STRESSES USDA FOREST SERVICE RESEARCH PAPER FPL 251 1975 U. S. DEPARTMENT OF AGRICULTURE FOREST SERVICE FOREST PRODUCTS LABORATORY MADISON, WISCONSIN ABSTRACT This paper

More information

Unit 18 Other Issues In Buckling/Structural Instability

Unit 18 Other Issues In Buckling/Structural Instability Unit 18 Other Issues In Buckling/Structural Instability Readings: Rivello Timoshenko Jones 14.3, 14.5, 14.6, 14.7 (read these at least, others at your leisure ) Ch. 15, Ch. 16 Theory of Elastic Stability

More information

ENCE 455 Design of Steel Structures. III. Compression Members

ENCE 455 Design of Steel Structures. III. Compression Members ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland Compression Members Following subjects are covered:

More information

Tvestigated using the quadratic form of the Tsai-Wu strength theory [I].

Tvestigated using the quadratic form of the Tsai-Wu strength theory [I]. Evaluation of Strength the TensorPolynomial Theory for Wood J. Y. L IU* Forest Products Laboratory, Forest Service U.S. Department of Agriculture, Madison, Wisconsin 53705 (Received October 10, 1983) (Revised

More information

A S:AIPLIE DEVICE FOP DETECTING COMPRESSION WCC1D

A S:AIPLIE DEVICE FOP DETECTING COMPRESSION WCC1D A S:AIPLIE DEVICE FOP DETECTING COMPRESSION WCC1D Revised June 1953 Reprinted December 1962 LOAN COPY No. 1390 sogio1101111111i!num Please return to: Wood Engineering Research Forest Products Laboratory

More information

Chapter 5 Compression Member

Chapter 5 Compression Member Chapter 5 Compression Member This chapter starts with the behaviour of columns, general discussion of buckling, and determination of the axial load needed to buckle. Followed b the assumption of Euler

More information

What Every Engineer Should Know About Structures

What Every Engineer Should Know About Structures What Every Engineer Should Know About Structures Part C - Axial Strength of Materials by Professor Patrick L. Glon, P.E. This is a continuation of a series of courses in the area of study of physics called

More information

to introduce the principles of stability and elastic buckling in relation to overall buckling, local buckling

to introduce the principles of stability and elastic buckling in relation to overall buckling, local buckling to introduce the principles of stability and elastic buckling in relation to overall buckling, local buckling In the case of elements subjected to compressive forces, secondary bending effects caused by,

More information

Lecture Slides. Chapter 4. Deflection and Stiffness. The McGraw-Hill Companies 2012

Lecture Slides. Chapter 4. Deflection and Stiffness. The McGraw-Hill Companies 2012 Lecture Slides Chapter 4 Deflection and Stiffness The McGraw-Hill Companies 2012 Chapter Outline Force vs Deflection Elasticity property of a material that enables it to regain its original configuration

More information

MEMS Report for Lab #3. Use of Strain Gages to Determine the Strain in Cantilever Beams

MEMS Report for Lab #3. Use of Strain Gages to Determine the Strain in Cantilever Beams MEMS 1041 Report for Lab #3 Use of Strain Gages to Determine the Strain in Cantilever Beams Date: February 9, 2016 Lab Instructor: Robert Carey Submitted by: Derek Nichols Objective: The objective of this

More information

Structural Mechanics Column Behaviour

Structural Mechanics Column Behaviour Structural Mechanics Column Behaviour 008/9 Dr. Colin Caprani, 1 Contents 1. Introduction... 3 1.1 Background... 3 1. Stability of Equilibrium... 4. Buckling Solutions... 6.1 Introduction... 6. Pinned-Pinned

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 10 Columns

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 10 Columns EMA 370 Mechanics & Materials Science (Mechanics of Materials) Chapter 10 Columns Columns Introduction Columns are vertical prismatic members subjected to compressive forces Goals: 1. Study the stability

More information

March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE

March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE Chapter 4 Deflection and Stiffness 1 2 Chapter Outline Spring Rates Tension, Compression, and Torsion Deflection Due to Bending Beam Deflection Methods Beam Deflections by Superposition Strain Energy Castigliano

More information

Static Bending Moment Capacity of T-Type Gusset-Plate Joints in Oriented Strandboard

Static Bending Moment Capacity of T-Type Gusset-Plate Joints in Oriented Strandboard ORAL PRESENTATION Static Bending Moment Capacity of T-Type Gusset-Plate Joints in Oriented Strandboard Samet Demirel 1, and Jilei Zhang 2 1 Res. Asst. Dr., Karadeniz Technical University, Trabzon Turkey;

More information

Compression Members. ENCE 455 Design of Steel Structures. III. Compression Members. Introduction. Compression Members (cont.)

Compression Members. ENCE 455 Design of Steel Structures. III. Compression Members. Introduction. Compression Members (cont.) ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland Compression Members Following subjects are covered:

More information

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1.

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1. C3 Flexural Members C3.1 Bending The nominal flexural strength [moment resistance], Mn, shall be the smallest of the values calculated for the limit states of yielding, lateral-torsional buckling and distortional

More information

Appendix G Analytical Studies of Columns

Appendix G Analytical Studies of Columns Appendix G Analytical Studies of Columns G.1 Introduction Analytical parametric studies were performed to evaluate a number of issues related to the use of ASTM A103 steel as longitudinal and transverse

More information

needed to buckle an ideal column. Analyze the buckling with bending of a column. Discuss methods used to design concentric and eccentric columns.

needed to buckle an ideal column. Analyze the buckling with bending of a column. Discuss methods used to design concentric and eccentric columns. CHAPTER OBJECTIVES Discuss the behavior of columns. Discuss the buckling of columns. Determine the axial load needed to buckle an ideal column. Analyze the buckling with bending of a column. Discuss methods

More information

Hardened Concrete. Lecture No. 16

Hardened Concrete. Lecture No. 16 Hardened Concrete Lecture No. 16 Fatigue strength of concrete Modulus of elasticity, Creep Shrinkage of concrete Stress-Strain Plot of Concrete At stress below 30% of ultimate strength, the transition

More information

Lab Exercise #5: Tension and Bending with Strain Gages

Lab Exercise #5: Tension and Bending with Strain Gages Lab Exercise #5: Tension and Bending with Strain Gages Pre-lab assignment: Yes No Goals: 1. To evaluate tension and bending stress models and Hooke s Law. a. σ = Mc/I and σ = P/A 2. To determine material

More information

COLUMNS: BUCKLING (DIFFERENT ENDS)

COLUMNS: BUCKLING (DIFFERENT ENDS) COLUMNS: BUCKLING (DIFFERENT ENDS) Buckling of Long Straight Columns Example 4 Slide No. 1 A simple pin-connected truss is loaded and supported as shown in Fig. 1. All members of the truss are WT10 43

More information

Structures. Shainal Sutaria

Structures. Shainal Sutaria Structures ST Shainal Sutaria Student Number: 1059965 Wednesday, 14 th Jan, 011 Abstract An experiment to find the characteristics of flow under a sluice gate with a hydraulic jump, also known as a standing

More information

NAME: Given Formulae: Law of Cosines: Law of Sines:

NAME: Given Formulae: Law of Cosines: Law of Sines: NME: Given Formulae: Law of Cosines: EXM 3 PST PROBLEMS (LESSONS 21 TO 28) 100 points Thursday, November 16, 2017, 7pm to 9:30, Room 200 You are allowed to use a calculator and drawing equipment, only.

More information

Mechanics of Materials Primer

Mechanics of Materials Primer Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus

More information

3. BEAMS: STRAIN, STRESS, DEFLECTIONS

3. BEAMS: STRAIN, STRESS, DEFLECTIONS 3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets

More information

Chapter 9: Column Analysis and Design

Chapter 9: Column Analysis and Design Chapter 9: Column Analysis and Design Introduction Columns are usually considered as vertical structural elements, but they can be positioned in any orientation (e.g. diagonal and horizontal compression

More information

7.4 The Elementary Beam Theory

7.4 The Elementary Beam Theory 7.4 The Elementary Beam Theory In this section, problems involving long and slender beams are addressed. s with pressure vessels, the geometry of the beam, and the specific type of loading which will be

More information

FIXED BEAMS IN BENDING

FIXED BEAMS IN BENDING FIXED BEAMS IN BENDING INTRODUCTION Fixed or built-in beams are commonly used in building construction because they possess high rigidity in comparison to simply supported beams. When a simply supported

More information

FLEXURE OF STRUCTURAL SANDWICH CONSTRUCTION

FLEXURE OF STRUCTURAL SANDWICH CONSTRUCTION FLEXURE OF STRUCTURAL SANDWICH CONSTRUCTION December 1951 INFORMATION REVIEWED AND REAFFIRMED 1958 LOAN COPY Please return to: Wood Engineering Research Forest Products Laboratory Madison, Wisconsin 53705

More information

INELASTIC BUCKLING ANALYSIS OF AXIALLY COMPRESSED THIN CCCC PLATES USING TAYLOR-MACLAURIN DISPLACEMENT FUNCTION

INELASTIC BUCKLING ANALYSIS OF AXIALLY COMPRESSED THIN CCCC PLATES USING TAYLOR-MACLAURIN DISPLACEMENT FUNCTION ISSN-L: 2223-553, ISSN: 2223-44 Vol 4 No 6 November 2013 INELASTIC BUCKLING ANALYSIS OF AXIALLY COMPRESSED THIN CCCC PLATES USING TAYLOR-MACLAURIN DISPLACEMENT FUNCTION O M Ibearugbulem 1, D O Onwuka 2,

More information

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram CHAPTER NINE COLUMNS 4 b. The modified axial strength in compression is reduced to account for accidental eccentricity. The magnitude of axial force evaluated in step (a) is multiplied by 0.80 in case

More information

Laboratory 4 Topic: Buckling

Laboratory 4 Topic: Buckling Laboratory 4 Topic: Buckling Objectives: To record the load-deflection response of a clamped-clamped column. To identify, from the recorded response, the collapse load of the column. Introduction: Buckling

More information

MINIMUM WEIGHT STRUCTURAL SANDWICH

MINIMUM WEIGHT STRUCTURAL SANDWICH U.S. DEPARTMENT OF AGRICULTURE FOREST SERVICE FOREST PRODUCTS LABORATORY MADISON, WIS. In Cooperation with the University of Wisconsin U.S.D.A. FOREST SERVICE RESEARCH NOTE Revised NOVEMBER 1970 MINIMUM

More information

Laminated Beams of Isotropic or Orthotropic Materials Subjected to Temperature Change

Laminated Beams of Isotropic or Orthotropic Materials Subjected to Temperature Change United States Department of Agriculture Forest Service Forest Products Laboratory Research Paper FPL 375 June 1980 Laminated Beams of Isotropic or Orthotropic Materials Subjected to Temperature Change

More information

Introduction to Structural Member Properties

Introduction to Structural Member Properties Introduction to Structural Member Properties Structural Member Properties Moment of Inertia (I): a mathematical property of a cross-section (measured in inches 4 or in 4 ) that gives important information

More information

TEMPERATURES OBTAINED IN TIMBERS WHEN THE SURFACE TEMPERATURE IS CHANGED AFTER VARIOUS PERIODS OF HEATING

TEMPERATURES OBTAINED IN TIMBERS WHEN THE SURFACE TEMPERATURE IS CHANGED AFTER VARIOUS PERIODS OF HEATING TEMPERATURES OBTAINED IN TIMBERS WHEN THE SURFACE TEMPERATURE IS CHANGED AFTER VARIOUS PERIODS OF HEATING April 1946 No. R1609 UNITED STATES DEPARTMENT OF AGRICULTURE FOREST SERVICE FOREST PRODUCTS LABORATORY

More information

DEPARTMENT OF CIVIL ENGINEERING

DEPARTMENT OF CIVIL ENGINEERING KINGS COLLEGE OF ENGINEERING DEPARTMENT OF CIVIL ENGINEERING SUBJECT: CE 2252 STRENGTH OF MATERIALS UNIT: I ENERGY METHODS 1. Define: Strain Energy When an elastic body is under the action of external

More information

Chapter 4 Deflection and Stiffness

Chapter 4 Deflection and Stiffness Chapter 4 Deflection and Stiffness Asst. Prof. Dr. Supakit Rooppakhun Chapter Outline Deflection and Stiffness 4-1 Spring Rates 4-2 Tension, Compression, and Torsion 4-3 Deflection Due to Bending 4-4 Beam

More information

The University of Texas at Austin

The University of Texas at Austin r The University of Texas at Austin College of Engineering COEFFICIENT OF THERMAL EXPANSION FOR FOUR BATCH DESIGNS AND ONE SOLID GRANITE SPECIMEN by A Report Prepared for FOSTER YEOMAN LIMITED by the CENTER

More information

EFFECTIVE THICKNESS OF PAPER: APPRAISAL AND FURTHER DEVELOPMENT

EFFECTIVE THICKNESS OF PAPER: APPRAISAL AND FURTHER DEVELOPMENT EFFECTIVE THICKNESS OF PAPER: APPRAISAL AND FURTHER DEVELOPMENT USDA FOREST SERVICE RESEARCH PAPER FPL 287 1977 U.S. DEPARTMENT OF AGRICULTURE FOREST SERVICE FOREST PRODUCTS LABORATORY MADISON, WIS. Abstract

More information

NYIT Instructors: Alfred Sanabria and Rodrigo Suarez

NYIT Instructors: Alfred Sanabria and Rodrigo Suarez NYIT Instructors: Alfred Sanabria and Rodrigo Suarez Massive stone columns, used from Stonehenge to Ancient Greece were stabilized by their own work With steel and concrete technology columns have become

More information

9.5 Compression Members

9.5 Compression Members 9.5 Compression Members This section covers the following topics. Introduction Analysis Development of Interaction Diagram Effect of Prestressing Force 9.5.1 Introduction Prestressing is meaningful when

More information

7.5 Elastic Buckling Columns and Buckling

7.5 Elastic Buckling Columns and Buckling 7.5 Elastic Buckling The initial theory of the buckling of columns was worked out by Euler in 1757, a nice example of a theory preceding the application, the application mainly being for the later invented

More information

CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR

CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR 2014-2015 UNIT - 1 STRESS, STRAIN AND DEFORMATION OF SOLIDS PART- A 1. Define tensile stress and tensile strain. The stress induced

More information

Elastic Stability Of Columns

Elastic Stability Of Columns Elastic Stability Of Columns Introduction: Structural members which carry compressive loads may be divided into two broad categories depending on their relative lengths and cross-sectional dimensions.

More information

Machine Direction Strength Theory of Corrugated Fiberboard

Machine Direction Strength Theory of Corrugated Fiberboard Thomas J. Urbanik 1 Machine Direction Strength Theory of Corrugated Fiberboard REFERENCE: Urbanik.T.J., Machine Direction Strength Theory of Corrugated Fiberboard, Journal of Composites Technology & Research,

More information

RELATIONSHIP BETWEEN RADIAL COMPRESSIVE MODULUS OF ELASTICITY AND SHEAR MODULUS OF WOOD Jen Y. Liu Research Engineer

RELATIONSHIP BETWEEN RADIAL COMPRESSIVE MODULUS OF ELASTICITY AND SHEAR MODULUS OF WOOD Jen Y. Liu Research Engineer RELATIONSHIP BETWEEN RADIAL COMPRESSIVE MODULUS OF ELASTICITY AND SHEAR MODULUS OF WOOD Jen Y. Liu Research Engineer and Robert J. Ross Supervisory Research Engineer USDA Forest Service Forest Products

More information

Estimation and Confidence Intervals for Parameters of a Cumulative Damage Model

Estimation and Confidence Intervals for Parameters of a Cumulative Damage Model United States Department of Agriculture Forest Service Forest Products Laboratory Research Paper FPL-RP-484 Estimation and Confidence Intervals for Parameters of a Cumulative Damage Model Carol L. Link

More information

Deep Foundations 2. Load Capacity of a Single Pile

Deep Foundations 2. Load Capacity of a Single Pile Deep Foundations 2 Load Capacity of a Single Pile All calculations of pile capacity are approximate because it is almost impossible to account for the variability of soil types and the differences in the

More information

Mechanical Properties of Materials

Mechanical Properties of Materials Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of

More information

This Technical Note describes how the program checks column capacity or designs reinforced concrete columns when the ACI code is selected.

This Technical Note describes how the program checks column capacity or designs reinforced concrete columns when the ACI code is selected. COMPUTERS AND STRUCTURES, INC., BERKELEY, CALIFORNIA DECEMBER 2001 CONCRETE FRAME DESIGN ACI-318-99 Technical Note This Technical Note describes how the program checks column capacity or designs reinforced

More information

TORSION OF SANDWICH PANELS OF TRAPEZOIDAL, TPIANGUIAP, AND RECTANGULAR CROSS SECTIONS

TORSION OF SANDWICH PANELS OF TRAPEZOIDAL, TPIANGUIAP, AND RECTANGULAR CROSS SECTIONS !CULTURE ROOM TORSION OF SANDWICH PANELS OF TRAPEZOIDAL, TPIANGUIAP, AND RECTANGULAR CROSS SECTIONS June 1960 No. 1874 This Report Is One of a Series Issued in Cooperation with the ANC-23 PANEL ON COMPOSITE

More information

Structures - Experiment 3B Sophomore Design - Fall 2006

Structures - Experiment 3B Sophomore Design - Fall 2006 Structures - Experiment 3B 1.101 Sophomore Design - Fall 2006 Linear elastic behavior of a beam. The objectives of this experiment are to experimentally study the linear elastic behavior of beams under

More information

Physics 8 Monday, November 20, 2017

Physics 8 Monday, November 20, 2017 Physics 8 Monday, November 20, 2017 Pick up HW11 handout, due Dec 1 (Friday next week). This week, you re skimming/reading O/K ch8, which goes into more detail on beams. Since many people will be traveling

More information

SECTION 7 DESIGN OF COMPRESSION MEMBERS

SECTION 7 DESIGN OF COMPRESSION MEMBERS SECTION 7 DESIGN OF COMPRESSION MEMBERS 1 INTRODUCTION TO COLUMN BUCKLING Introduction Elastic buckling of an ideal column Strength curve for an ideal column Strength of practical column Concepts of effective

More information

Physics 8 Monday, November 23, 2015

Physics 8 Monday, November 23, 2015 Physics 8 Monday, November 23, 2015 Handing out HW11, due Friday, December 4. One or two more beam-related examples, then we ll move on to oscillations ( periodic motion ). This week s reading is Mazur

More information

Failure modeling of sawn lumber with a fastener hole

Failure modeling of sawn lumber with a fastener hole ELSEVIER Finite Elements in Analysis and Design 36 (2000) 83-98 FINITE ELEMENTS IN ANALYSIS AND DESIGN www.elsevier.com/locate/finel Failure modeling of sawn lumber with a fastener hole Judsen M. Williams

More information

Part E: Nondestructive Testing

Part E: Nondestructive Testing Part E: Nondestructive Testing Non-destructive Testing General Concepts The Southwell Plot Examples Some Background Underlying General Theory Snap-Through Revisited Effect of Damping Range of Prediction

More information

Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on Exam 3.

Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on Exam 3. ES230 STRENGTH OF MTERILS Exam 3 Study Guide Exam 3: Wednesday, March 8 th in-class Updated 3/3/17 Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on

More information

TINIUS OLSEN Testing Machine Co., Inc.

TINIUS OLSEN Testing Machine Co., Inc. Interpretation of Stress-Strain Curves and Mechanical Properties of Materials Tinius Olsen has prepared this general introduction to the interpretation of stress-strain curves for the benefit of those

More information

Substituting T-braces for continuous lateral braces on wood truss webs

Substituting T-braces for continuous lateral braces on wood truss webs Substituting T-braces for continuous lateral braces on wood truss webs By heryl Anderson, Frank Woeste, PE, and Donald Bender, PE Introduction W eb bracing in trusses is essential for several reasons.

More information

William J. McCutcheon U.S. Department of Agriculture, Forest Service Forest Products Laboratory Madison, Wisconsin 53705

William J. McCutcheon U.S. Department of Agriculture, Forest Service Forest Products Laboratory Madison, Wisconsin 53705 This article appeared in Civil Engineering for Practicing and Design Engineers 2: 207-233; 1983. McCutcheon, William J. Deflections and stresses in circular tapered beams and poles. Civil Eng. Pract. Des,

More information

WORCESTER POLYTECHNIC INSTITUTE

WORCESTER POLYTECHNIC INSTITUTE WORCETER OLYTECHNIC INTITUTE MECHANICAL ENGINEERING DEARTMENT DGN OF MACHINE ELEMENT ME-330, B 018 Lecture 08-09 November 018 Examples w Eccentric load Concentric load w Examples Vestas V80-.0 MWatt Installing

More information

1.103 CIVIL ENGINEERING MATERIALS LABORATORY (1-2-3) Dr. J.T. Germaine Spring 2004 LABORATORY ASSIGNMENT NUMBER 6

1.103 CIVIL ENGINEERING MATERIALS LABORATORY (1-2-3) Dr. J.T. Germaine Spring 2004 LABORATORY ASSIGNMENT NUMBER 6 1.103 CIVIL ENGINEERING MATERIALS LABORATORY (1-2-3) Dr. J.T. Germaine MIT Spring 2004 LABORATORY ASSIGNMENT NUMBER 6 COMPRESSION TESTING AND ANISOTROPY OF WOOD Purpose: Reading: During this laboratory

More information

Bending Load & Calibration Module

Bending Load & Calibration Module Bending Load & Calibration Module Objectives After completing this module, students shall be able to: 1) Conduct laboratory work to validate beam bending stress equations. 2) Develop an understanding of

More information

A study of the critical condition of a battened column and a frame by classical methods

A study of the critical condition of a battened column and a frame by classical methods University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 003 A study of the critical condition of a battened column and a frame by classical methods Jamal A.H Bekdache

More information

Beam Design - Trotin Project

Beam Design - Trotin Project Beam Design - Trotin Project 1. Beam Data Load Type: Uniform Dist. Load Support: Simple Beam Beam Type: Glulam Species: Western Species Grade: 24F-V4 1.8E DF/DF Size: 3.125 x 13.5 Design Span (L): 14.98

More information

On Nonlinear Buckling and Collapse Analysis using Riks Method

On Nonlinear Buckling and Collapse Analysis using Riks Method Visit the SIMULIA Resource Center for more customer examples. On Nonlinear Buckling and Collapse Analysis using Riks Method Mingxin Zhao, Ph.D. UOP, A Honeywell Company, 50 East Algonquin Road, Des Plaines,

More information

Structural Analysis Laboratory. Michael Storaker, Sam Davey and Rhys Witt. JEE 332 Structural Analysis. 4 June 2012.

Structural Analysis Laboratory. Michael Storaker, Sam Davey and Rhys Witt. JEE 332 Structural Analysis. 4 June 2012. Structural Analysis Laboratory Michael Storaker, Sam Davey and Rhys Witt JEE 332 Structural Analysis 4 June 2012 Lecturer/Tutor Shinsuke Matsuarbara 1 Contents Statically Indeterminate Structure Objective...

More information

Towards The. Design of Super Columns. Prof. AbdulQader Najmi

Towards The. Design of Super Columns. Prof. AbdulQader Najmi Towards The Design of Super Columns Prof. AbdulQader Najmi Description: Tubular Column Square or Round Filled with Concrete Provided with U-Links welded to its Walls as shown in Figure 1 Compression Specimen

More information

Automatic Scheme for Inelastic Column Buckling

Automatic Scheme for Inelastic Column Buckling Proceedings of the World Congress on Civil, Structural, and Environmental Engineering (CSEE 16) Prague, Czech Republic March 30 31, 2016 Paper No. ICSENM 122 DOI: 10.11159/icsenm16.122 Automatic Scheme

More information

Laboratory 4 Bending Test of Materials

Laboratory 4 Bending Test of Materials Department of Materials and Metallurgical Engineering Bangladesh University of Engineering Technology, Dhaka MME 222 Materials Testing Sessional.50 Credits Laboratory 4 Bending Test of Materials. Objective

More information

Maan Jawad Global Engineering & Technology Camas, Washington, U.S.A.

Maan Jawad Global Engineering & Technology Camas, Washington, U.S.A. Proceedings of the ASME 018 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries ETAM018 April 3-5, 018, Seattle, WA, USA ETAM018-6737 ALLOWABLE

More information

RELATIONSHIP OF TENSILE STRENGTH OF SOUTHERN PINE DIMENSION LUMBER TO INHERENT CHARACTERISTICS

RELATIONSHIP OF TENSILE STRENGTH OF SOUTHERN PINE DIMENSION LUMBER TO INHERENT CHARACTERISTICS U.S.D.A., FOREST SERVICE RESEARCH PAPER FPL 174 1972 FOREST PRODUCTS LABORATORY FOREST SERVICE U.S. DEPARTMENT OF AGRICULTURE RELATIONSHIP OF TENSILE STRENGTH OF SOUTHERN PINE DIMENSION LUMBER TO INHERENT

More information

FAILURE TIME OF LOADED WOODEN BEAMS DURING FIRE

FAILURE TIME OF LOADED WOODEN BEAMS DURING FIRE FAILURE TIME OF LOADED WOODEN BEAMS DURING FIRE M. H. Do and G. S. Springer* Department of Mechanical Engineering and Applied Mechanics The University of Michigan Ann Arbor, Michigan 48109 (Received May

More information