1131UCIAING CIF RAG, MN, PLYWOOD CYLINDERS IN AXIAL COMPRESSION

Size: px
Start display at page:

Download "1131UCIAING CIF RAG, MN, PLYWOOD CYLINDERS IN AXIAL COMPRESSION"

Transcription

1 1131UCIAING CIF RAG, MN, PLYWD CYLINDERS IN AXIAL CMPRESSIN I nieftnatiett IkavictuciLn4-114cattirmyd March 1 &6 INFRMAIMN REV AND REAFFIRML 1962 No LAN CPY Please return to: Wood Engineering Research Forest Products Laboratory Madison, Wisconsin r giii ifinitin HiiiM1111 UNITED STATES DEPARTMENT F AGRICULTURE FREST PRDUCTS LABRATRY FREST SERVICE MADISN 5, WISCNSIN In Cooperation with the University of Wisconsin

2 BUCKLING F LNG, THIN, PLYWD CYLINDERS IN AXIAL CMPRESSIN! By H. W. MARCH, Head Mathematician C. B. NRRIS, Principal Engineer and E. W. KUENZI, Junior Engineer Forest Products Laboratory, Forest Service U. S. Department of Agriculture Introduction This preliminary report presents a curve for the buckling stress of long, thin, plywood cylinders plotted as a function of a parameter which is determined by the construction and elastic constants of the plywood. The curve expresses the results of an approximate mathematical analysis. The results of a rather extensive series of tests are compared with those predicted by the theoretical treatment. The buckling stresses determined by test show considerable scatter. This was to be expected from the results of tests that are to be found in the literature on the buckling of thin metal cylinders and also from theoretical considerations. It was pointed out by Coxl and by von Karman, Dunn, and Tsien± that the behavior of a cylinder buckling under axial compression is analogous to that of a column with a nonlinear elastic support. The buckling load of such This is one of a series of progress reports prepared by the Forest Products Laboratory relating to the use of wood in aircraft issued in cooperation with the Army-Navy-Civil Committee on Aircraft Design Criteria. riginal report published in Maintained at Madison, Wis., in cooperation with the University of Wisconsin. 3 Cox, H. L. Jour. Roy. Aero. Soc. 44:230, von Karman, Th.,, Dunn, L. G., and Tsien, H. S. Jour. Aero. Sciences 7:276, Also Tsien, H. S. Jour. Aero. Sciences 9:373, Report No Agriculture-Madison

3 a column is highly sensitive to initial irregularities of shape or material properties. This sensitivity is greater in the case of a cylinder because of the additional dimension in which irregularities and their effects can be manifested. Theoretical Curve and Formula The buckling stress p of a long cylinder will be represented by the formula p.ke L7 (1) where k is a constant depending upon the construction of the plywood from which the cylinder is made, E L is the Young's modulus parallel to the grain of the wood In the veneei's of the plywood, all considered to be of the same species, h is the thickness of the cylinder, and r is its radius. The constants E 1, E2, Ea, Eb, 'LT, (TL,' and LT as defined in... Forest Products Laboratory Reports Nos and 1316 all enter in the determination of the factor k of equation (1) for cylinders of rotary-cut plywood. It was found that a smooth curve could be drawn which would represent quite well the values of k plotted against the ratio E 1 The values of... k for various types of (E ie2) Douglas-fir plywood are given in table 1. The calculations were based upon the following tentative values of the constants of Douglasfir at 10 percent moisture content: E L = 1,960,000 pounds per square inch ET = 113, 200 pounds per square inch 11 LT = 123,800 pounds per square inch The values of Poisson's ratios, a- LT and cr TL were taken to be and 0.019; respectively. These are theva 17 ues_ 5 for spruce. The results would not be materially affected by considerable changes in Jenkin, C. F. Report on Materials of Construction Used in Aircraft Aeronautics Research Committee. (London 1920). Report No

4 these ratios. The values of k in table 1 are represented by the points denoted by crosses (x) in figure 1. The curve of this figure is a smoothed curve drawn through these points. In formula (1) the constant k appears as a factor multiplying EL. The use of the curve of figure 1 for cylinders made of plywood of other species than Douglas-fir implies that a moderate change in the ratio of the modulus of rigidity fl.lt to Young's modulus E L does not greatly affect the values of k and that the same statement is true for changes in the relevant Poisson's ratios. The effect of a change in the ratio of ET to E L is taken into account in the calculation of the argument El li 1 + E. A few calculations made for p T increased by 50 percent (E showed an increase in k of 5 percent or less. A survey of the steps in which the Poisson's ratios enter into the calculations indicates that the influence of moderate. changes in their values would be small. For the same reasons it appears that the curve of figure 1 can be used for cylinders made of plywood with quarter-sliced veneers. The difference in the values of ER and ET would be taken into account in the calculation of El and Ez while the usual differences between PLR and i LLT do not appear to be great enough to be serious. When a cylindei-77 made of plywood with veneers of different species, it appears that EL in formula (1) should be the modulus of the predominant spee-fg. Results of Tests with Grain of Face Plies in the Axial or Circumferential Direction The results of tests of birch and poplar plywood cylinders under axial compression are shown in figure le Each point represents the mean of the buckling stresses of several cylinders of the same construction and dimensions. In figure 2 each point represents the buckling stress of a single cylinder. A detailed description of the tests will appear in a separate report. For cylinders inches in diameter, the thicknesses ranged from inch to 0.07 inch while for those 18 inches in diameter the thickness ranged from 0.06 inch to 0.11 inch. The length of the cylinders varied from twice the diameter to four times the diameter for the cylinders 10.5 inches in diameter and was equal to about twice the diameter for the larger cylinders. From tests on isotropic cylinders made by other observers and from a few exploratory tests made on plywood cylinders to determine the influence of length on buckling stress, it appears that the buckling stress Report No

5 of a cylinder whose length is equal to or greater than twice its diameter does not differ greatly from that of a very long cylinder. n this basis, the buckling stresses of the cylinders tested are compared with those predicted by formula (1) for infinitely long cylinders of the same construction. Further tests are in progress to determine the effect of length on buckling stress. Although the cylinders were well made and were free from obvious imperfections of shape or material, the observed buckling stresses show considerable scatter. There is ample reason from the theoretical standpoint for expecting this behavior because the buckling stress is extremely sensitive to minute initial imperfections. A similar scatter of experimental buckling stresses in the case of isotropic cylinders has been noted by previous observers. The curve of figures 1 and 2 was constructed using a certain minimum value of k for each type of plywood. With the aid of the theory to be presented in a later report, it can be seen that a buckling stress can be attained that is greater than the stress associated with this, minimum value of k. Also in the case of a considerable imperfection, failure may be initiated by large bending stresses in the vicinity of the imperfection. The failing compressive stress may under these circumstances be less than that given by the curve of figures 1 and 2. These reasons for scatter exist in addition to the unavoidable lack of complete agreement of the elastic constants of the plywood of the cylinder and those of the minor test specimens used for the determination of these constants. Reduction of Bucklin. Stress in Vicinity o Stress at Proportional Limit in Compression It is evident that the buckling stress may be expected to be reduced if the axial compressive stress approaches the stress of the plywood at proportional limit in compression. In figure 3 the ratio of the observed buckling stress to the stress at proportional limit is plotted for each group of cylinders against the ratio of the computed buckling stress from the curve of figure 1, to the stress at proportional limit. For each group of cylinders represented by a point in figure 3 the stress at proportional limit in compression was determined from minor test specimens. The general tendency of the plotted points to fall farther below the line A, whose slope is 1, as the point (1, 1) on this line is approached reflects the influence of the approach of the axial compressive stress to the stress at proportional limit in compression. Report No

6 Results of Tests with Grain of Face Plies at an An le of 45 to the Axial Direction The mathematical analysis assumes that the grain of the face plies of the cylinders is either vertical or horizontal, that is, parallel or perpendicular to the axial direction. The results of tests, shown in figures 1, 2, and 3 are for such cylinders. Tests on a number of cylinders having the grain of the face plies at an angle of 45 * to the axial direction indicate that for these cylinders the buckling stress is intermediate between the buckling stresses of two cylinders of plywood of the same construction, one having the grain of the face plies vertical, the other having this grain horizontal. The results of such tests are shown in figure 4 which is similar to figure 3 where the grain of face plies was either horizontal or vertical. The computed stress was taken to be the average of the computed stresses of two cylinders of the same construction, one having the grain of the face plies horizontal, the other having this grain vertical. Conclusion In conclusion, it should be emphasized that the mathematical analysis leading to the construction of the curve of figure 1 involved the use of approximate methods. However, it appears to disclose the influence of important factors such as the construction of the plywood on the buckling stress of cylinders. Because of the steepness of the theoretical curve at the extreme right and left hand portions, a great deal of variability of test results is to be expected in these regions. Consequently, it appears advisable to avoid, when possible, the use of types of plywood for which the ratio is small or (E 1 +E2) nearly equal to unity. Suitable limiting values of this ratio would appear to be its values as shown in table 1 for three-ply construction with the face plies one-half as thick as the core and with these plies horizontal and vertical, respectively. Report No

7 LC) IC) co en NI I-- 44 N c)*,ic), CD CY' Ill In N co r--4 0' r 4 Q r -4 r-4 NI r...4 N r CD C CD r--4 r 4 r r-4 r-1 r-4 o 0 Ø on Ln 00,r).r14 C NV 0' p-f re),11.0 in 00 N r-1 C N re) -di In cfc a) r-t7 I W o oo o Lc) CD 0 C) 1.n N ' N 00 C C '41 '.44 N. in C r..."1 444 Lrl C N C.0.44 IC) 6* C CD on t.n.0 N -,44 '44 cr) in f'"a N. N e--1 LC) 0 N n0 N- C LC) CD N. 00 "t 11"--4 CD I.C1 CD 0 0 (:).."'"4 00 N 00 Cr).0 it.0 III IC) CD,---4 (1) U 44 0 r.-1 r-4 r cvi CC, fa t-1 r-4 r A -4-) 4-) g g 0 0 CU CI) CD CD Pi N P ;-1 a) a) a) a) 4d r.-4 0 r-.1 0,-4 a) (.) ct3 c) td c) al ,-4 P -i P rt P r-4 r.4 r-4 T-1 r-1 r-4 p-f r--1 r-4 r--4 r-4 r-4 N r-1 r--1 (4n3 N N] - r N N N. N N N N r-4 r-4 r 1 r-1 r-1 r-1 r r--1 cn IC) 0' 0' Report No. 1322

8 nd. CH 4., ) '<---E--- k rui 0,11 0 < 0 11, ', Ln 4 < ,. g 2 ' H pil Pi, ) c) 4., rn e) -'4.1 aim $-4 CA 4 4) tul P PI 4 (r -,64 0 $4 g 4,4.r.gi ii./....$4 (I3 4-) 0 rd 07 *ri LL1 (r) A aj :1 +) 0 LL, o -4-, P4 IE4 0 C.) Pi c, (2 () rd t) k (r) co. 4. g.4.1 ;-1 CD W as H rd *t-1 r-4 <1. 'r LQ g H H 0 id P 0,rd, 74 rno ; H 00 < 0 00 LL r-i W0 k 0 P.--1 "PH $.4 Pa 43 v) 1.1- U 4-4 IA m r-i r-1 a) V- d-- v) Cs o ch as a) p4 4,,C1 0 l V1 4-1 k > 0 <.) W 0).4-4 4) %) rd a) Pi n#' (r) LQ in v) L.,1 Z +,,s1 +.,,s4 P., 0 $4 o < 1-., ' , c 4., 4) C CD 4. gr4 N 1/4Q CT LL.1 L) 02 Pt 1> s:. v) 0 oc 4-, 0 gl 01 1/2 4-, T-1 CD.r.i 0 > E.1 ',, CH A (1) 0 0 CD,i L.),, _,,61 4-, rd...(1 r-i P p, CD / cc (' "q CD 4-) 4-, *r-4, cr) L,l N <t 4;) Z9) 1 0 ).:1 SI Ik)..-1 t5 rn < 0.c, '21 ' In 0. (.,. Ill (,) 0 QL Q CD Z C( n1 C) n1 '7 C) Q k Cr Q QQ Z 1Z L i 3Z 2 C L Q1. L i ' ' LL1 Li k 0 0 in cc2 0 0 ni n1 Q QL LL1 0.J J< Li Z Z LL1 LQ 0 i-- (r).-, Q) CD ''(.44 Lvx10<lo QD LL1 -.1 P CDC d nd (1) (1) 4-) 1E1 ti a3 it:; 0 02 CD r PI a) a) p., cd rd il 40 1,4 $4 07 H a) Pi Pi a) a) cp (13 4-, (.4 4) 4) ecl $4 0,--n 4-, P P 4-, P40 H r-4 4X4 C Ct $4 03 CA * '.L(1 4. (D % q8. 7'4 4) 4) L,-) ----., -I- ca,,i _ -4-, A A $4 5 fd. ril P1 4-, 4-, 0 LLI w 0,-t u2 r4 a).,-1 o a) o th fzi r51 $-4 rci CD 5:1 Pi o -,-4 2 T-4 AD '14-4 Si 4) o 45 A en P a) cd 4 a) a) 4-, 43 4) A 4- Pi A A 02 15,1 rd 4-) Pa 1, E-4 H pi sr-1 ra t'' 02 st-1 CD cd A.--1 rd rci pi cf) 4-,.H3,1 t>a o co 40 ww o r--i c) 34.) cd CZ.-4 4) 4-) t> rd 0 W S-4 0) C 4-, H -P W CD er4 Po CD W 03 C) et-4 "4 (12 cr) o; 54.' N) 14 (44 ;4 Pi 'd C.) Ei ri W 1E1 *r4 4. (1) 0 4) 07 H ;04 $400.,-f Cd CS r.-1 0 Pt. fai ch fa..,--s cd 0 co P 44) -, et-4 X) $4 Fl c) a) 4) cv. 40 T _, rdo P 4) P ) 0 1:1 'V CI P.t ) -r.).-c1 c4-1 r-4 Hw A *-1 cd a) c.) 0 I>. P 43 0 I m 'i(u -.4 it gi i 1.4 pi rd sr4 4-4 I. C p, 43 0 r--1 ed rci.---1 $ g a) g Ct W 40 rat ', 02..r-1 k al, ar-1 4-, a, 0) 4-) to 4) Pa A He 0) A U * ) 4, 64 Wr rn 0\ (r) 0 N

9

10

11

12

13 SUBJECT LISTS F PUBLICATINS ISSUED BY THE FREST PRDUCTS LABRATRY The following are obtainable free on request from the Director, Forest Products Laboratory, Madison 5, Wisconsin: Box and Crate Construction and Packaging Data Chemistry of Wood and Derived Products Fungus Defects in Forest Products and Decay in Trees Glue, Glued Products, and Veneer Growth, Structure, and Identification of Wood List of 'publications on Mechanical Properties and Structural Uses of Wood and Wood Products Partial list of publications for Architects, Builders, Engineers, and Retail Lumbermen Fire Protection Logging, Milling, and Utilization of Timber Products Pulp and Paper Seasoning of Wood Structural Sandwich, Plastic Laminates, and Wood-Base Aircraft Components Wood Finishing Wood Preservation Partial list of publications for Furniture Manufacturers, Woodworkers and Teachers of Woodshop Practice Note: Since Forest Products Laboratory publications are so varied in subject no single list is issued. Instead a list is made up for each Laboratory division. Twice a year, December 31 and June 30, a list is made up showing new reports for the previous six months. This is the only item sent regularly to the Laboratory's mailing list. Anyone who has asked for and received the proper subject lists and who has had his name placed on the mailing list can keep up to date on Forest Products Laboratory publications. Each subject list carries descriptions of all other subject lists.

A S:AIPLIE DEVICE FOP DETECTING COMPRESSION WCC1D

A S:AIPLIE DEVICE FOP DETECTING COMPRESSION WCC1D A S:AIPLIE DEVICE FOP DETECTING COMPRESSION WCC1D Revised June 1953 Reprinted December 1962 LOAN COPY No. 1390 sogio1101111111i!num Please return to: Wood Engineering Research Forest Products Laboratory

More information

A STUDY OF THE STRENGTH OF SHORT AND INTERMEDIATE WOOD COLUMNS BY EXPERIMENTAL AND ANALYTICAL METHODS

A STUDY OF THE STRENGTH OF SHORT AND INTERMEDIATE WOOD COLUMNS BY EXPERIMENTAL AND ANALYTICAL METHODS UNITED STATES DEPARTMENT OF AGRICULTURE. FOREST SERVICE. FOREST PRODUCTS LABORATORY. MADISON, WIS A STUDY OF THE STRENGTH OF SHORT AND INTERMEDIATE WOOD COLUMNS BY EXPERIMENTAL AND ANALYTICAL METHODS January

More information

BUCKLING COEFFICIENTS FOR SANDWICH CYLINDERS OF FINITE LENGTH UNDER UNIFORM EXTERNAL LATERAL PRESSURE

BUCKLING COEFFICIENTS FOR SANDWICH CYLINDERS OF FINITE LENGTH UNDER UNIFORM EXTERNAL LATERAL PRESSURE U.S. DEPARTMENT OF AGRICULTURE FOREST SERVICE FOREST PRODUCTS LABORATORY MADlSON, WIS. In Cooperation with the University of Wisconsin U. S. FOREST SERVICE RESEARCH NOTE FPL-0104 SEPTEMBER 1965 BUCKLING

More information

PLASTIC FLOW THROUGHOUT VOLUME OF THIN ADHESIVE!BONDS. No March 1958 (.2. Will In' iriculture ROOM. Mum mina

PLASTIC FLOW THROUGHOUT VOLUME OF THIN ADHESIVE!BONDS. No March 1958 (.2. Will In' iriculture ROOM. Mum mina iriculture ROOM (.2 PLASTIC FLOW THROUGHOUT VOLUME OF THIN ADHESIVE!BONDS No. 2092 March 1958 11 Will In' Mum mina FOREST PRODUCTS LABORATORY MADISON 5, WISCONSIN UNITED STATES DEPARTMENT OF AGRICULTURE

More information

COMPRESSIVE EUCICLING CURVES MR SANDWICH PANELS WITH ISOTROPIC FACINGS AND ISOTROPIC OR ORTI1OTROIPIC CORES. No Revised January 1958

COMPRESSIVE EUCICLING CURVES MR SANDWICH PANELS WITH ISOTROPIC FACINGS AND ISOTROPIC OR ORTI1OTROIPIC CORES. No Revised January 1958 SRICULTU RE ROOM I COMPRESSIVE EUCICLING CURVES MR SANDWICH PANELS WITH ISOTROPIC FACINGS AND ISOTROPIC OR ORTI1OTROIPIC CORES No 1854 Revised January 1958 This Report is One of a Series Issued in Cooperation

More information

ELASTIC STAIBILITY CIF TUE FACINGS Of HAT SANDWICI-1 PANELS WIASI SUBJECTED TO COMBINED EDGEWISE STRESSES

ELASTIC STAIBILITY CIF TUE FACINGS Of HAT SANDWICI-1 PANELS WIASI SUBJECTED TO COMBINED EDGEWISE STRESSES ELASTIC STAIBILITY CIF TUE FACINGS Of HAT SANDWICI-1 PANELS WIASI SUBJECTED TO COMBINED EDGEWISE STRESSES Information Reviewed and Reaffirmed Aucust 1955 NFORMA-tiON RE'4,E\AE.'L; n PE.1-17;9';f2,. This!Report

More information

EFFECT OF ELLIPTIC OR CIRCULAR HOLES ON THE STRESS DISTRIBUTION IN PLATES

EFFECT OF ELLIPTIC OR CIRCULAR HOLES ON THE STRESS DISTRIBUTION IN PLATES EFFECT OF ELLIPTIC OR CIRCULAR HOLES ON THE STRESS DISTRIBUTION IN PLATES OF WOOD OR PLYWOOD CONSIDERED AS ORTHOTROPIC MATERIALS Information Revied and Reaffirmed March 1956 No. 1510 EFFECT OF ELLIPTIC

More information

MIETI-IODS OF CALCULATING THE STRENGTH AND MODULUS Of!ELASTICITY. OF PLYWOOD IN COMIPPESSION

MIETI-IODS OF CALCULATING THE STRENGTH AND MODULUS Of!ELASTICITY. OF PLYWOOD IN COMIPPESSION MIETI-IDS F CALCULATING TE STRENGT AND MDULUS f!elasticity. F PLYWD IN CMIPPESSIN Revised September 1955 INFRMATIN REVIEWED AN REAFFIRMED 196 No. 1315 UNITED STATES DEPARTMENT F AGRICULTURE FREST SERVICE

More information

(laod No \' V,R A " FI- 1 4, <4. ELASTIC STABILITY Of CYLINDRICAL SANDWICH SHELLS UNDER AXIAL AND LATERAL LOAD. July 1955

(laod No \' V,R A  FI- 1 4, <4. ELASTIC STABILITY Of CYLINDRICAL SANDWICH SHELLS UNDER AXIAL AND LATERAL LOAD. July 1955 ELASTIC STABILITY Of CYLIDRICAL SADWICH SHELLS UDER AXIAL AD LATERAL LOAD (laod o. 1852 July 1955 This Report is One of a Series Issued ha Cooperation with the AC-23 PAEL O SADWICH COSTRUCTIO of the Departments

More information

DEFLECTION OF BEAMS WlTH SPECIAL REFERENCE TO SHEAR DEFORMATIONS

DEFLECTION OF BEAMS WlTH SPECIAL REFERENCE TO SHEAR DEFORMATIONS DEFLECTION OF BEAMS WlTH SPECIAL REFERENCE TO SHEAR DEFORMATIONS THE INFLUENCE OF THE FORM OF A WOODEN BEAM ON ITS STIFFNESS AND STRENGTH-I (REPRINT FROM NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS REPORT

More information

THEORETICAL DESIGN OF A NAILED OR BOLTED JOINT UNDER LATERAL LOAD 1. Summary

THEORETICAL DESIGN OF A NAILED OR BOLTED JOINT UNDER LATERAL LOAD 1. Summary THEORETICAL DESIGN OF A NAILED OR BOLTED JOINT UNDER LATERAL LOAD 1 BY EDWARD W. KUENZI, 2 Engineer Forest Products Laboratory,3 Forest Service U. S. Department of Agriculture Summary This report presents

More information

MINIMUM WEIGHT STRUCTURAL SANDWICH

MINIMUM WEIGHT STRUCTURAL SANDWICH U.S. DEPARTMENT OF AGRICULTURE FOREST SERVICE FOREST PRODUCTS LABORATORY MADISON, WIS. In Cooperation with the University of Wisconsin U.S.D.A. FOREST SERVICE RESEARCH NOTE Revised NOVEMBER 1970 MINIMUM

More information

TORSION OF SANDWICH PANELS OF TRAPEZOIDAL, TPIANGUIAP, AND RECTANGULAR CROSS SECTIONS

TORSION OF SANDWICH PANELS OF TRAPEZOIDAL, TPIANGUIAP, AND RECTANGULAR CROSS SECTIONS !CULTURE ROOM TORSION OF SANDWICH PANELS OF TRAPEZOIDAL, TPIANGUIAP, AND RECTANGULAR CROSS SECTIONS June 1960 No. 1874 This Report Is One of a Series Issued in Cooperation with the ANC-23 PANEL ON COMPOSITE

More information

ri [11111 IlL DIRECTIONAL PROPERTIES Of GLASS-FABRIC-BASE PLASTIC LAMINATE PANELS Of SIZES THAT DO NOT IBUCICLE (P-Q1lAtVjr) No.

ri [11111 IlL DIRECTIONAL PROPERTIES Of GLASS-FABRIC-BASE PLASTIC LAMINATE PANELS Of SIZES THAT DO NOT IBUCICLE (P-Q1lAtVjr) No. Supplement to DIRECTIONAL PROPERTIES Of GLASS-FABRIC-BASE PLASTIC LAMINATE PANELS Of SIZES THAT DO NOT IBUCICLE (P-Q1lAtVjr) No. 1803-13 November 1955 This Report is One of a Series issued hi Cooperation

More information

STRESSES WITHIN CURVED LAMINATED BEAMS OF DOUGLAS-FIR

STRESSES WITHIN CURVED LAMINATED BEAMS OF DOUGLAS-FIR UNITED STATES DEPARTMENT OF AGRICULTURE. FOREST SERVICE - FOREST PRODUCTS LABORATORY - MADISON, WIS. STRESSES WITHIN CURVED LAMINATED BEAMS OF DOUGLAS-FIR NOVEMBER 1963 FPL-020 STRESSES WITHIN CURVED LAMINATED

More information

STRESSED-SKIN PANEL DEFLECTIONS AND STRESSES USDA FOREST SERVICE RESEARCH PAPER

STRESSED-SKIN PANEL DEFLECTIONS AND STRESSES USDA FOREST SERVICE RESEARCH PAPER STRESSED-SKIN PANEL DEFLECTIONS AND STRESSES USDA FOREST SERVICE RESEARCH PAPER FPL 251 1975 U. S. DEPARTMENT OF AGRICULTURE FOREST SERVICE FOREST PRODUCTS LABORATORY MADISON, WISCONSIN ABSTRACT This paper

More information

BUCKLING COEFFICIENTS FOR SIMPLY SUPPORTED, FLAT, RECTANGULAR SANDWICH PANELS UNDER BIAXIAL COMPRESSION

BUCKLING COEFFICIENTS FOR SIMPLY SUPPORTED, FLAT, RECTANGULAR SANDWICH PANELS UNDER BIAXIAL COMPRESSION U. S. FOREST SERVICE RESEARCH PAPER FPL 135 APRIL 1970 BUCKLING COEFFICIENTS FOR SIMPLY SUPPORTED, FLAT, RECTANGULAR SANDWICH PANELS UNDER BIAXIAL COMPRESSION FOREST PRODUCTS LABORATORY, FOREST SERVICE

More information

Commentary on Factors Affecting Transverse Vibration Using an Idealized Theoretical Equation

Commentary on Factors Affecting Transverse Vibration Using an Idealized Theoretical Equation United States Department of Agriculture Forest Service Forest Products Laboratory Research Note FPL RN 076 Commentary on Factors Affecting Transverse Vibration Using an Idealized Theoretical Equation Joseph

More information

STRENGTH AND STIFFNESS REDUCTION OF LARGE NOTCHED BEAMS

STRENGTH AND STIFFNESS REDUCTION OF LARGE NOTCHED BEAMS STRENGTH AND STIFFNESS REDUCTION OF LARGE NOTCHED BEAMS By Joseph F. Murphy 1 ABSTRACT: Four large glulam beams with notches on the tension side were tested for strength and stiffness. Using either bending

More information

Tvestigated using the quadratic form of the Tsai-Wu strength theory [I].

Tvestigated using the quadratic form of the Tsai-Wu strength theory [I]. Evaluation of Strength the TensorPolynomial Theory for Wood J. Y. L IU* Forest Products Laboratory, Forest Service U.S. Department of Agriculture, Madison, Wisconsin 53705 (Received October 10, 1983) (Revised

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

FLEXURE OF STRUCTURAL SANDWICH CONSTRUCTION

FLEXURE OF STRUCTURAL SANDWICH CONSTRUCTION FLEXURE OF STRUCTURAL SANDWICH CONSTRUCTION December 1951 INFORMATION REVIEWED AND REAFFIRMED 1958 LOAN COPY Please return to: Wood Engineering Research Forest Products Laboratory Madison, Wisconsin 53705

More information

March No In Cooperation with the University of Wisconsin

March No In Cooperation with the University of Wisconsin March 1956 No. In Cooperation with the University of Wisconsin STRESSES IN WOOD MEMBERS SUBJECTED TO COMBINED COLUMN AND BEAM ACTION.* J. A. NEWLIN and G. W. TRAYER. INTRODUCTION. This publication is one

More information

Laminated Beams of Isotropic or Orthotropic Materials Subjected to Temperature Change

Laminated Beams of Isotropic or Orthotropic Materials Subjected to Temperature Change United States Department of Agriculture Forest Service Forest Products Laboratory Research Paper FPL 375 June 1980 Laminated Beams of Isotropic or Orthotropic Materials Subjected to Temperature Change

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

NDE of wood-based composites with longitudinal stress waves

NDE of wood-based composites with longitudinal stress waves NDE of wood-based composites with longitudinal stress waves Robert J. Ross Roy F. Pellerin Abstract The research presented in this paper reveals that stress wave nondestructive testing techniques can be

More information

THE TRANSVERSE OFF-AXIS STIFFNESS AND STRENGTH OF SOFTWOODS. Abstract

THE TRANSVERSE OFF-AXIS STIFFNESS AND STRENGTH OF SOFTWOODS. Abstract THE TRANSVERSE OFF-AXIS STIFFNESS AND STRENGTH OF SOFTWOODS Carl S. Moden 1, Jessica Polycarpe 1 and Lars A. Berglund 2 1 Dept. of Aeronautical and Vehicle Engineering The Royal Institute of Technology

More information

WRINI CLING Of THE FACINGS OF SANDWICH CONSTRUCTION %EJECTED TO EDGEWISE COMPRESSION Sandwich Constructions Having Honeycomb Cores

WRINI CLING Of THE FACINGS OF SANDWICH CONSTRUCTION %EJECTED TO EDGEWISE COMPRESSION Sandwich Constructions Having Honeycomb Cores WRINI CLING Of THE FACINGS OF SANDWICH CONSTRUCTION %EJECTED TO EDGEWISE COMPRESSION Sandwich Constructions Having Honeycomb Cores June 1953 This Report is One of a Series Issued in Cooperation with the

More information

~,. :'lr. H ~ j. l' ", ...,~l. 0 '" ~ bl '!; 1'1. :<! f'~.., I,," r: t,... r':l G. t r,. 1'1 [<, ."" f'" 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'..

~,. :'lr. H ~ j. l' , ...,~l. 0 ' ~ bl '!; 1'1. :<! f'~.., I,, r: t,... r':l G. t r,. 1'1 [<, . f' 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'.. ,, 'l t (.) :;,/.I I n ri' ' r l ' rt ( n :' (I : d! n t, :?rj I),.. fl.),. f!..,,., til, ID f-i... j I. 't' r' t II!:t () (l r El,, (fl lj J4 ([) f., () :. -,,.,.I :i l:'!, :I J.A.. t,.. p, - ' I I I

More information

L u m b e r M e l a m i n e H a r d w o o d P l y w o o d A r c h i t e c t u r a l P a n e l s C o l o r e d C a u l k P a r t i c l e B o a r d E

L u m b e r M e l a m i n e H a r d w o o d P l y w o o d A r c h i t e c t u r a l P a n e l s C o l o r e d C a u l k P a r t i c l e B o a r d E L u m b e r M e l a m i n e H a r d w o o d P l y w o o d A r c h i t e c t u r a l P a n e l s C o l o r e d C a u l k P a r t i c l e B o a r d E P L Y W O O D x o t i c L u m b e r M D F V e n e e r

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode Unit 2 : Software Process O b j ec t i ve This unit introduces software systems engineering through a discussion of software processes and their principal characteristics. In order to achieve the desireable

More information

Executive Committee and Officers ( )

Executive Committee and Officers ( ) Gifted and Talented International V o l u m e 2 4, N u m b e r 2, D e c e m b e r, 2 0 0 9. G i f t e d a n d T a l e n t e d I n t e r n a t i o n a2 l 4 ( 2), D e c e m b e r, 2 0 0 9. 1 T h e W o r

More information

1.103 CIVIL ENGINEERING MATERIALS LABORATORY (1-2-3) Dr. J.T. Germaine Spring 2004 LABORATORY ASSIGNMENT NUMBER 6

1.103 CIVIL ENGINEERING MATERIALS LABORATORY (1-2-3) Dr. J.T. Germaine Spring 2004 LABORATORY ASSIGNMENT NUMBER 6 1.103 CIVIL ENGINEERING MATERIALS LABORATORY (1-2-3) Dr. J.T. Germaine MIT Spring 2004 LABORATORY ASSIGNMENT NUMBER 6 COMPRESSION TESTING AND ANISOTROPY OF WOOD Purpose: Reading: During this laboratory

More information

Design of Beams (Unit - 8)

Design of Beams (Unit - 8) Design of Beams (Unit - 8) Contents Introduction Beam types Lateral stability of beams Factors affecting lateral stability Behaviour of simple and built - up beams in bending (Without vertical stiffeners)

More information

$D33 VOID VOLUME IN WOOD

$D33 VOID VOLUME IN WOOD $D33 ou S ucatculat1ns f TH E VID VLUME IN WD Y UNITED STATES DEPARTMENT F AGRICULTURE FREST SERVIC E FREST PRDUCTS LABRATR Y Madison, Wisconsi n In Cooperation with the University of Wisconsin December

More information

NYIT Instructors: Alfred Sanabria and Rodrigo Suarez

NYIT Instructors: Alfred Sanabria and Rodrigo Suarez NYIT Instructors: Alfred Sanabria and Rodrigo Suarez Massive stone columns, used from Stonehenge to Ancient Greece were stabilized by their own work With steel and concrete technology columns have become

More information

CITY OF LOS ALAMITOS. Register of Major Expenditures. August 18, To Approve. To Ratify

CITY OF LOS ALAMITOS. Register of Major Expenditures. August 18, To Approve. To Ratify TEM. 7 CTY F LS ALAMTS Register of Mjor Ependitures August 18, 214 Pges: To Approve 1-3 53, 431. 2 Mjor rrnts 8/ 18/ 214 Subtotl 53, 431. 2 To Rtify Pges: 4-5 146, 476. 74 Advnce rrnts 7/ 28/ 214 6 217,

More information

Hardened Concrete. Lecture No. 16

Hardened Concrete. Lecture No. 16 Hardened Concrete Lecture No. 16 Fatigue strength of concrete Modulus of elasticity, Creep Shrinkage of concrete Stress-Strain Plot of Concrete At stress below 30% of ultimate strength, the transition

More information

Substituting T-braces for continuous lateral braces on wood truss webs

Substituting T-braces for continuous lateral braces on wood truss webs Substituting T-braces for continuous lateral braces on wood truss webs By heryl Anderson, Frank Woeste, PE, and Donald Bender, PE Introduction W eb bracing in trusses is essential for several reasons.

More information

Maan Jawad Global Engineering & Technology Camas, Washington, U.S.A.

Maan Jawad Global Engineering & Technology Camas, Washington, U.S.A. Proceedings of the ASME 018 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries ETAM018 April 3-5, 018, Seattle, WA, USA ETAM018-6737 ALLOWABLE

More information

2 (27) 3 (26) 4 (21) 5 (18) 6 (8) Total (200) Periodic Table

2 (27) 3 (26) 4 (21) 5 (18) 6 (8) Total (200) Periodic Table Chem 3311 Sammakia Fall 2009 Midterm 1 Student ID page points: 2 (27) 3 (26) 4 (21) 5 (18) 6 (8) Total (200) Periodic Table e Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn

More information

Structural behaviour of traditional mortise-and-tenon timber joints

Structural behaviour of traditional mortise-and-tenon timber joints Structural behaviour of traditional mortise-and-tenon timber joints Artur O. Feio 1, Paulo B. Lourenço 2 and José S. Machado 3 1 CCR Construtora S.A., Portugal University Lusíada, Portugal 2 University

More information

Empirical Prediction of Shear Modulus and Young's Modulus of Plywood Panels

Empirical Prediction of Shear Modulus and Young's Modulus of Plywood Panels Empirical Prediction of Shear Modulus and Young's Modulus of Plywood Panels By Edmond P. Saliklis Assistant Professor of Civil and Environmental Engineering 3 Alumni Hall of Engineering Lafayette College,

More information

EFFECTIVE THICKNESS OF PAPER: APPRAISAL AND FURTHER DEVELOPMENT

EFFECTIVE THICKNESS OF PAPER: APPRAISAL AND FURTHER DEVELOPMENT EFFECTIVE THICKNESS OF PAPER: APPRAISAL AND FURTHER DEVELOPMENT USDA FOREST SERVICE RESEARCH PAPER FPL 287 1977 U.S. DEPARTMENT OF AGRICULTURE FOREST SERVICE FOREST PRODUCTS LABORATORY MADISON, WIS. Abstract

More information

Lecture 7, Foams, 3.054

Lecture 7, Foams, 3.054 Lecture 7, Foams, 3.054 Open-cell foams Stress-Strain curve: deformation and failure mechanisms Compression - 3 regimes - linear elastic - bending - stress plateau - cell collapse by buckling yielding

More information

MECHANICS LAB AM 317 EXP 5 COLUMN BEHAVIOR BUCKLING

MECHANICS LAB AM 317 EXP 5 COLUMN BEHAVIOR BUCKLING MECHANICS LAB AM 317 EX 5 COLUMN BEHAVIOR BUCKLING I. OBJECTIVES I.1 To determine the effect the slenderness ratio has on the load carrying capacity of columns of varying lengths. I. To observe short,

More information

fl W12111 L5N

fl W12111 L5N fl 41@ W1111 471,1516In15 o (1@ ) Imn5o td&& -miet9cqi c, 1119- bdo&-).6)./ 'MI 9 tg&&d L5N li@wymut4lp51:nfrthnnhiict46n-m'imilimlingnywimtpuctvuivi iru o cinuniulviu 1:411.,IJJIMg11.7f1Y91 11?ITri nct

More information

THE INSTITUTE OF PAPER CHEMISTRY, APPLETON, WISCONSIN

THE INSTITUTE OF PAPER CHEMISTRY, APPLETON, WISCONSIN BASE-LIE THE ISTITUTE OF PAPER CHEMISTRY, APPLETO, WISCOSI COTIUOUS BASE-LIE STUDY (MODIFIED) (MILL CORRUGATIG MEDIUM DATA FOR JAUARY, FEBRUARY, MARCH, 198) Project 69- Report Fifty-One A Progress Report

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 10 Columns

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 10 Columns EMA 370 Mechanics & Materials Science (Mechanics of Materials) Chapter 10 Columns Columns Introduction Columns are vertical prismatic members subjected to compressive forces Goals: 1. Study the stability

More information

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

More information

Created by T. Madas MIXED SURD QUESTIONS. Created by T. Madas

Created by T. Madas MIXED SURD QUESTIONS. Created by T. Madas MIXED SURD QUESTIONS Question 1 (**) Write each of the following expressions a single simplified surd a) 150 54 b) 21 7 C1A, 2 6, 3 7 Question 2 (**) Write each of the following surd expressions as simple

More information

Simulation of Mechanical and Thermal Properties for Sandwich Panels with Cellular Wood Cores

Simulation of Mechanical and Thermal Properties for Sandwich Panels with Cellular Wood Cores Paper 4 Simulation of Mechanical and Thermal Properties for Sandwich Panels with Cellular Wood Cores E. Labans, K. Kalnins and A. Bikovs Institute of Materials and Structures Riga Technical University,

More information

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9 OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

More information

TEMPERATURES OBTAINED IN TIMBERS WHEN THE SURFACE TEMPERATURE IS CHANGED AFTER VARIOUS PERIODS OF HEATING

TEMPERATURES OBTAINED IN TIMBERS WHEN THE SURFACE TEMPERATURE IS CHANGED AFTER VARIOUS PERIODS OF HEATING TEMPERATURES OBTAINED IN TIMBERS WHEN THE SURFACE TEMPERATURE IS CHANGED AFTER VARIOUS PERIODS OF HEATING April 1946 No. R1609 UNITED STATES DEPARTMENT OF AGRICULTURE FOREST SERVICE FOREST PRODUCTS LABORATORY

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

Optimum Fiber Distribution in Singlewall Corrugated Fiberboard

Optimum Fiber Distribution in Singlewall Corrugated Fiberboard United States Department of Agriculture Forest Service Forest Products Laboratory Research Paper FPL 348 1979 Optimum Fiber Distribution in Singlewall Corrugated Fiberboard Abstract Determining optimum

More information

Static Bending Moment Capacity of T-Type Gusset-Plate Joints in Oriented Strandboard

Static Bending Moment Capacity of T-Type Gusset-Plate Joints in Oriented Strandboard ORAL PRESENTATION Static Bending Moment Capacity of T-Type Gusset-Plate Joints in Oriented Strandboard Samet Demirel 1, and Jilei Zhang 2 1 Res. Asst. Dr., Karadeniz Technical University, Trabzon Turkey;

More information

Properties of Southern Pine in Relation to Strength Grading of Dimension Lumber

Properties of Southern Pine in Relation to Strength Grading of Dimension Lumber U. S. FOREST SERVICE RESEARCH PAPER FPL-64 JULY U.S. DEPARTMENT OF AGRICULTURE FOREST SERVICE FOREST PRODUCTS LABORATORY MADISON, WISCONSIN Properties of Southern Pine in Relation to Strength Grading of

More information

Compression perpendicular to the grain

Compression perpendicular to the grain Compression perpendicular to the grain Univ.-Prof. Dr.-Ing. Hans Joachim Blass Dr.-Ing. Rainer Görlacher Universität Karlsruhe Kaiserstr. 1 71 Karlsruhe Blass@holz.uka.de Goerlacher@holz.uka.de Summary

More information

Example-3. Title. Description. Cylindrical Hole in an Infinite Mohr-Coulomb Medium

Example-3. Title. Description. Cylindrical Hole in an Infinite Mohr-Coulomb Medium Example-3 Title Cylindrical Hole in an Infinite Mohr-Coulomb Medium Description The problem concerns the determination of stresses and displacements for the case of a cylindrical hole in an infinite elasto-plastic

More information

11. FLEXURAL RIGIDITY OF A RECTANGULAR. STRIP Of SANDWICI-I CONSTRUCTION. Original report dated February 1944

11. FLEXURAL RIGIDITY OF A RECTANGULAR. STRIP Of SANDWICI-I CONSTRUCTION. Original report dated February 1944 FLEXURAL RIGIDITY OF A RECTANGULAR STRIP Of SANDWICI-I CONSTRUCTION Original report dated February 944 Information Reviewed and Reaffirmed September 96 No. 505 LOAN COPY Please return to: Wood Engineering

More information

N = N A Pb A Pb. = ln N Q v kt. = kt ln v N

N = N A Pb A Pb. = ln N Q v kt. = kt ln v N 5. Calculate the energy for vacancy formation in silver, given that the equilibrium number of vacancies at 800 C (1073 K) is 3.6 10 3 m 3. The atomic weight and density (at 800 C) for silver are, respectively,

More information

MATERIAL ELASTIC ANISOTROPIC command

MATERIAL ELASTIC ANISOTROPIC command MATERIAL ELASTIC ANISOTROPIC command.. Synopsis The MATERIAL ELASTIC ANISOTROPIC command is used to specify the parameters associated with an anisotropic linear elastic material idealization. Syntax The

More information

Last 4 Digits of USC ID:

Last 4 Digits of USC ID: Chemistry 05 B Practice Exam Dr. Jessica Parr First Letter of last Name PLEASE PRINT YOUR NAME IN BLOCK LETTERS Name: Last 4 Digits of USC ID: Lab TA s Name: Question Points Score Grader 8 2 4 3 9 4 0

More information

Section Downloads. Section Downloads. Handouts & Slides can be printed. Other documents cannot be printed Course binders are available for purchase

Section Downloads. Section Downloads. Handouts & Slides can be printed. Other documents cannot be printed Course binders are available for purchase Level II: Section 04 Simplified Method (optional) Section Downloads Section Downloads Handouts & Slides can be printed Version.0 Other documents cannot be printed Course binders are available for purchase

More information

Part IB EXPERIMENTAL ENGINEERING MODEL STRUCTURES. 1. To compare the behaviour of various different linear-elastic structures with simple theory.

Part IB EXPERIMENTAL ENGINEERING MODEL STRUCTURES. 1. To compare the behaviour of various different linear-elastic structures with simple theory. Part IB EXPERIMENTAL ENGINEERING SUBJECT: INTEGRATED COURSEWORK LOCATION: STRUCTURES TEACHING LAB EXPERIMENT: A2 (SHORT) MODEL STRUCTURES OBJECTIVES 1. To compare the behaviour of various different linear-elastic

More information

Radiometric Dating (tap anywhere)

Radiometric Dating (tap anywhere) Radiometric Dating (tap anywhere) Protons Neutrons Electrons Elements on the periodic table are STABLE Elements can have radioactive versions of itself called ISOTOPES!! Page 1 in your ESRT has your list!

More information

LATERAL STABILITY OF DEEP BEAMS WITH SHEAR-BEAM SUPPORT

LATERAL STABILITY OF DEEP BEAMS WITH SHEAR-BEAM SUPPORT U. FOREST SERVICE RESEARCH PAPER FPL 43 OCTOBER U. S. DEPARTMENT OF AGRICULTURE FOREST SERVICE FOREST PRODUCTS LABORATORY MADISON, WIS. LATERAL STABILITY OF DEEP BEAMS WITH SHEAR-BEAM SUPPORT The FOREST

More information

CORRELATING OFF-AXIS TENSION TESTS TO SHEAR MODULUS OF WOOD-BASED PANELS

CORRELATING OFF-AXIS TENSION TESTS TO SHEAR MODULUS OF WOOD-BASED PANELS CORRELATING OFF-AXIS TENSION TESTS TO SHEAR MODULUS OF WOOD-BASED PANELS By Edmond P. Saliklis 1 and Robert H. Falk 2 ABSTRACT: The weakness of existing relationships correlating off-axis modulus of elasticity

More information

RELATIONSHIP BETWEEN RADIAL COMPRESSIVE MODULUS OF ELASTICITY AND SHEAR MODULUS OF WOOD Jen Y. Liu Research Engineer

RELATIONSHIP BETWEEN RADIAL COMPRESSIVE MODULUS OF ELASTICITY AND SHEAR MODULUS OF WOOD Jen Y. Liu Research Engineer RELATIONSHIP BETWEEN RADIAL COMPRESSIVE MODULUS OF ELASTICITY AND SHEAR MODULUS OF WOOD Jen Y. Liu Research Engineer and Robert J. Ross Supervisory Research Engineer USDA Forest Service Forest Products

More information

REVIEW OF BUCKLING MODE AND GEOMETRY EFFECTS ON POSTBUCKLING STRENGTH OF CORRUGATED CONTAINERS

REVIEW OF BUCKLING MODE AND GEOMETRY EFFECTS ON POSTBUCKLING STRENGTH OF CORRUGATED CONTAINERS PVP-VoI. 343, Development, Validation, and Application of Inelastic Methods for Structural Analysis and Design ASME 1996 REVIEW OF BUCKLING MODE AND GEOMETRY EFFECTS ON POSTBUCKLING STRENGTH OF CORRUGATED

More information

Ğ ğ ğ Ğ ğ Öğ ç ğ ö öğ ğ ŞÇ ğ ğ

Ğ ğ ğ Ğ ğ Öğ ç ğ ö öğ ğ ŞÇ ğ ğ Ğ Ü Ü Ü ğ ğ ğ Öğ ş öğ ş ğ öğ ö ö ş ğ ğ ö ğ Ğ ğ ğ Ğ ğ Öğ ç ğ ö öğ ğ ŞÇ ğ ğ l _.j l L., c :, c Ll Ll, c :r. l., }, l : ö,, Lc L.. c l Ll Lr. 0 c (} >,! l LA l l r r l rl c c.r; (Y ; c cy c r! r! \. L : Ll.,

More information

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2 Samantha Ramirez, MSE Stress The intensity of the internal force acting on a specific plane (area) passing through a point. Δ ΔA Δ z Δ 1 2 ΔA Δ x Δ y ΔA is an infinitesimal size area with a uniform force

More information

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009 Schedule H-6.lb SOUTHWSTRN LCTRIC POWR COMPANY SCHDUL H-6.1b NUCLAR UNIT OUTAG DATA For the Test Year nded March 31, 29 This schedule is not applicable to SVvPCO. 5 Schedule H-6.1 c SOUTHWSTRN LCTRIC POWR

More information

Part 1 is to be completed without notes, beam tables or a calculator. DO NOT turn Part 2 over until you have completed and turned in Part 1.

Part 1 is to be completed without notes, beam tables or a calculator. DO NOT turn Part 2 over until you have completed and turned in Part 1. NAME CM 3505 Fall 06 Test 2 Part 1 is to be completed without notes, beam tables or a calculator. Part 2 is to be completed after turning in Part 1. DO NOT turn Part 2 over until you have completed and

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts

More information

MIL-HDBK-5H 1 December 1998

MIL-HDBK-5H 1 December 1998 Effects of temperature and of thermal exposure on strength and certain other properties are presented graphically. Methods for determining these curves differ and are described below. Tensile ultimate

More information

Unit 18 Other Issues In Buckling/Structural Instability

Unit 18 Other Issues In Buckling/Structural Instability Unit 18 Other Issues In Buckling/Structural Instability Readings: Rivello Timoshenko Jones 14.3, 14.5, 14.6, 14.7 (read these at least, others at your leisure ) Ch. 15, Ch. 16 Theory of Elastic Stability

More information

IBIJCIKLING Of CUM, 'PLYWOOD PLATES IN AXIAL COMPRESSION

IBIJCIKLING Of CUM, 'PLYWOOD PLATES IN AXIAL COMPRESSION IBIJCIKLIG f CUM, 'PLYWD PLATES I AXIAL CMPRESSI Information Reviewed and Reaffirmed January 1953 IFRMATI REVIEWEb AD REAFFIRMED 16 This Report is ne of a Series Issued in Cooperation with the ARMY-AVY-CIVIL

More information

THE EFFECTIVE STIFFNESS CF A STIFFENER ATTACIAID IC A FLAT PLYWOOD PLATE. No taermaileft,revietved-end-lkattimed. LW Copy.

THE EFFECTIVE STIFFNESS CF A STIFFENER ATTACIAID IC A FLAT PLYWOOD PLATE. No taermaileft,revietved-end-lkattimed. LW Copy. THE EFFECTIVE STIFFNESS CF A STIFFENER ATTACIAID IC A FLAT PLYWOOD PLATE taermaileft,revietved-end-lkattimed Mardi-1466- INFORMATiON RE'/IEWED AND REAFFIRMED 196 No. 1557 LW Copy Please return to: Wood

More information

Buckling Resistance Assessment of a Slender Cylindrical Shell Axially Compressed

Buckling Resistance Assessment of a Slender Cylindrical Shell Axially Compressed Mechanics and Mechanical Engineering Vol. 14, No. 2 (2010) 309 316 c Technical University of Lodz Buckling Resistance Assessment of a Slender Cylindrical Shell Axially Compressed Jakub Marcinowski Institute

More information

Machine Direction Strength Theory of Corrugated Fiberboard

Machine Direction Strength Theory of Corrugated Fiberboard Thomas J. Urbanik 1 Machine Direction Strength Theory of Corrugated Fiberboard REFERENCE: Urbanik.T.J., Machine Direction Strength Theory of Corrugated Fiberboard, Journal of Composites Technology & Research,

More information

If anything confuses you or is not clear, raise your hand and ask!

If anything confuses you or is not clear, raise your hand and ask! CHM 1045 Dr. Light s Section December 10, 2002 FINAL EXAM Name (please print) Recitation Section Meeting Time This exam consists of six pages. Make sure you have one of each. Print your name at the top

More information

CORRELATING OFF-AXIS TENSION TESTS TO SHEAR MODULUS OF WOOD-BASED PANELS

CORRELATING OFF-AXIS TENSION TESTS TO SHEAR MODULUS OF WOOD-BASED PANELS CORRELATING OFF-AXIS TENSION TESTS TO SHEAR MODULUS OF WOOD-BASED PANELS By Edmond P. Saliklis 1 and Robert H. Falk ABSTRACT: The weakness of existing relationships correlating off-axis modulus of elasticity

More information

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS

More information

Evolution of Tenacity in Mixed Mode Fracture Volumetric Approach

Evolution of Tenacity in Mixed Mode Fracture Volumetric Approach Mechanics and Mechanical Engineering Vol. 22, No. 4 (2018) 931 938 c Technical University of Lodz Evolution of Tenacity in Mixed Mode Fracture Volumetric Approach O. Zebri LIDRA Laboratory, Research team

More information

Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus. Case study

Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus. Case study Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus Case study 2 In field of Physics, it explains how an object deforms under an applied force Real rigid bodies are elastic we can

More information

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58. Physical Chemistry II Test Name: KEY CHEM 464 Spring 18 Chapters 7-11 Average = 1. / 16 6 questions worth a total of 16 points Planck's constant h = 6.63 1-34 J s Speed of light c = 3. 1 8 m/s ħ = h π

More information

Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland

Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland Agricultural Science 1B Principles & Processes in Agriculture Mike Wheatland (m.wheatland@physics.usyd.edu.au) Outline - Lectures weeks 9-12 Chapter 6: Balance in nature - description of energy balance

More information

1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION 1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION

1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION 1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION Module 6 Lecture 40 Evaluation of Soil Settlement - 6 Topics 1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION 1.5.1 Definition of Stress Path 1.5. Stress and Strain Path for Consolidated Undrained Undrained

More information

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,

More information

Mechanics of Materials Primer

Mechanics of Materials Primer Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus

More information

[5] Stress and Strain

[5] Stress and Strain [5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law

More information

EDGEWISE COMPRESSIVE STREW -Ill Of PANELS AND FIATWISE FLEXURAL STREW -Hi Of STRIPS Of SANDWICH CONSTRUCTIONS

EDGEWISE COMPRESSIVE STREW -Ill Of PANELS AND FIATWISE FLEXURAL STREW -Hi Of STRIPS Of SANDWICH CONSTRUCTIONS EDGEWISE COMPRESSIVE STREW -Ill Of PANELS AND FIATWISE FLEXURAL STREW -Hi Of STRIPS Of SANDWICH CONSTRUCTIONS November 1951 INFORMATION REVIEWED AND REAFFIRMED 1958 LOAN COPY Please return to: Wood Engineering

More information

to introduce the principles of stability and elastic buckling in relation to overall buckling, local buckling

to introduce the principles of stability and elastic buckling in relation to overall buckling, local buckling to introduce the principles of stability and elastic buckling in relation to overall buckling, local buckling In the case of elements subjected to compressive forces, secondary bending effects caused by,

More information

CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS

CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS Concepts of Stress and Strain 6.1 Using mechanics of materials principles (i.e., equations of mechanical equilibrium applied to a free-body diagram),

More information

Final Design Project: Biodiesel Settling Tank Analysis

Final Design Project: Biodiesel Settling Tank Analysis MESSIAH COLLEGE ENGR 495 Finite Element Methods Tuesday, December 16, 2003 : Biodiesel Settling Tank Analysis Brandon Apple Jon Bitterman Becky Gast Kyle McNamara ENGR 495 Finite Element Methods 1 Abstract

More information

Estimation and Confidence Intervals for Parameters of a Cumulative Damage Model

Estimation and Confidence Intervals for Parameters of a Cumulative Damage Model United States Department of Agriculture Forest Service Forest Products Laboratory Research Paper FPL-RP-484 Estimation and Confidence Intervals for Parameters of a Cumulative Damage Model Carol L. Link

More information