Example3. Title. Description. Cylindrical Hole in an Infinite MohrCoulomb Medium


 Naomi Dorsey
 1 years ago
 Views:
Transcription
1 Example3 Title Cylindrical Hole in an Infinite MohrCoulomb Medium Description The problem concerns the determination of stresses and displacements for the case of a cylindrical hole in an infinite elastoplastic medium subjected to insitu stresses. The medium is assumed to be linearly elastic, perfectly plastic, with a failure surface defined by the MohrCoulomb criterion. This problem tests the MohrCoulomb plasticity model, the planestrain condition and axisymmetric geometry. An isotropic insitu stress state exists with stresses equal to 30 MPa (tension positive). It is assumed that the problem is symmetric about both the horizontal and vertical axes. The radius of the hole is 1 m and is assumed to be small compared to the length of the cylinder. This permits the use of the planestrain condition. Cylindrical hole 6 c Pa 30 Fig. 3.1 Cylindrical Hole in an Infinite MohrCoulomb Medium
2 Verification Examples Analytical Solution The yield zone radius, R o, is given analytically by a theoretical model based on the solution of Salencon (1969): 1 K 1 p 2 Po q Kp 1 Ro a K p 1 P i q K p 1 where: a = radius of hole; K p 1 sin ; 1 sin q 2ctan 45 2 ; P o = initial insitu stress magnitude; and P = internal pressure. i The radial stress at the elastic/plastic interface is: 1 re 2Po q K 1 p the stresses in the plastic zone are: q q r r Pi Kp 1 Kp 1 a K p 1 q q r Kp Pi Kp 1 Kp 1 a K p 1 where r = distance to the center of the hole. 2
3 Example3 The stresses in the elastic zone are: 2 Ro r Po Po re 2 Ro Po Po re r r The displacements in the elastic and plastic regions are given by Salencon (1969). For the elastic region: u r 2Po q Ro Ro Po K p 1 2G r and for the plastic region: r ur 2G q 2 1 Po K p K R R K K K a r 2 Kp1 Kps1 p q o o Pi p ps p 1 KpKps 1 q r 1 Pi Kp K ps Kp 1 a K p 1 where: K ps 1 sin ; 1 sin = dilatation angle; = Poisson s ratio; and G = shear modulus. 3
4 Verification Examples GTS MODEL The problem is first modeled as a twodimensional planestrain calculation using quartersymmetry. The boundary conditions applied to the model are shown in Fig The outer boundary is located 10 m (five hole diameters) from the hole center. The model contains 900 rectangular elements oriented in a radial pattern, as indicated in Fig This pattern minimizes the influence of the grid on localization effects. Y P 0 10m P 0 1m X 1m 10m Fig. 3.2 Geometry and mesh for planestrain model quartersymmetry The problem is also modeled using axisymmetric geometry. Fig. 3.3 shows the boundary conditions, and the mesh created for this calculation 4
5 Example3 Y Axis of Symmetry 1m Cylindrical hole 10m P 0 X Fig. 3.3 Geometry and mesh for axisymmetric model At last, the problem is also modeled using 3D solid elements. The same mesh and boundary condition as those of planestrain model are applied to this model, except that there is a dimension along the thickness direction. All models are subjected to an isotropic compressive stress of 30 MPa. The initial stress state is applied throughout each model first. 5
6 Verification Examples MODEL 1 Analysis Type Unit System Dimension Element Material Boundary Condition Load Case 2D planestrain material nonlinear analysis Width Height Hole radius m, N 10.0 m 10.0 m 1.0 m 4node quadrilateral planestrain element Modulus of elasticity E = MPa Poisson s ratio = Yield criteria MohrCoulomb Cohesion c = 3.45 MPa Friction angle Dilatancy angle Left end Bottom end = 30 = 30 Constrain D X Constrain D Y Initial isotropic insitu compressive prestress of 30 MPa. Edge pressure of 30 MPa at right and top ends. 6
7 Example3 MODEL 2 Analysis Type Unit System 2D axisymmetric material nonlinear analysis m, N Dimension Width Height 10.0 m 10.0 m Element Hole radius 1.0 m 4node quadrilateral axisymmetric element Modulus of elasticity E = MPa Poisson s ratio = Material Yield criteria Cohesion Friction angle Dilatancy angle MohrCoulomb c = 3.45 MPa = 30 = 30 Boundary Condition Top & Bottom end Constrain D Y Load Case Initial isotropic insitu compressive prestress of 30 MPa. Edge pressure of 30 MPa at right end. 7
8 Verification Examples MODEL 3 Analysis Type Unit System 3D solid material nonlinear analysis m, N Dimension Width Height Depth Hole radius 10.0 m 10.0 m 0.2 m 1.0 m Element 8node hexahedron solid element Modulus of elasticity E = MPa Poisson s ratio = Material Boundary Condition Yield criteria Cohesion Friction angle Dilatancy angle Left end Bottom end MohrCoulomb c = 3.45 MPa = 30 = 30 Constrain D X Constrain D Y Load Case Initial isotropic insitu compressive prestress of 30 MPa. Face pressure of 30 MPa at right & top faces. 8
9 Example3 Results Fig. 3.4, 3.5 and 3.6 show a direct comparison between GTS results and the analytical solution along a radial line for the quartersymmetry case. Normalized stresses, r Po and Po, are plotted versus normalized radius ra in Fig. 3.4, while normalized displacement ur a is plotted versus normalized radius in Fig Fig. 3.6 shows the yield ratio. For the axisymmetric geometry, Fig. 3.7, 3.8 and 3.9 show a direct comparison between GTS results and the analytical solution. And for the 3D solid geometry, Fig. 3.10, 3.11 and 3.12 show a direct comparison between GTS results and the analytical solution. 9
10 Verification Examples (a) Contour of Stress along Xdirection Normalized Stress Analytical(radial) Analytical(tangential) GTS(radial) GTS(tangential) Normalized Radius (b) Graph of tangential and radial stresses Fig. 3.4 Comparison of tangential and radial stresses (model 1) 10
11 Example3 (a) Contour of displacement magnitude Analytical GTS (model 1) Normalized Displacement Normalized radius (b) Graph of normalized radial displacement Fig. 3.5 Comparison of radial displacement (model 1) 11
12 Verification Examples Fig. 3.6 Plot of equivalent plastic strain (model 1) (a) Contour of stresses along X and Z direction 12
13 Example Normalized Stress Analytical(radial) 0.4 Analytical(tangential) GTS(radial) 0.2 GTS(tangential) Normalized Radius (b) Graph of normalized radial and tangential stresses Fig. 3.7 Comparison of normalized radial and tangential stresses (model 2) (a) Contour of displacement magnitude 13
14 Verification Examples Analytical GTS (model 2) Normalized Displacement Normalized radius (b) Graph of normalized radial displacement Fig. 3.8 Comparison of radial displacement (model 2) Fig. 3.9 Plot of equivalent plastic strain (model 2) 14
15 Example3 (a) Contour of stress along Xdirection Normalized Stress Analytical(radial) 0.4 Analytical(tangential) GTS(radial) 0.2 GTS(tangential) Normalized Radius (b) Graph of normalized radial and tangential stresses Fig Comparison of normalized radial and tangential stresses (model 3) 15
16 Verification Examples (a) Contour of displacement magnitude Analytical GTS (model 3) Normalized Displacement Normalized radius (b) Graph of normalized radial displacement Fig Comparison of normalized radial displacement (model 3) 16
17 Example3 Fig Plot of equivalent plastic strain (model 3) 17
18 Verification Examples Comparison of Results The yield zone radius values and errors are tabulated below for all three models. As these tables show, the error is less than 4.15%, and this shows that the GTS results are reasonable. Yield zone radius Yield zone Radius Unit: m GTS (mesh dependent) Analytical model 1 model 2 model 3 Value Ratio (%) Value Ratio (%) Value Ratio (%) Reference Salencon, J., Contraction QuasiStatique D une Cavite a Symetrie Spherique Ou Cylindrique Dans Un Milieu Elastoplastique, Annales Des Ponts Et Chaussees, No. 4, 1969, pp
Finite Element Solutions for Geotechnical Engineering
Release Notes Release Date: July, 2015 Product Ver.: GTSNX 2015 (v2.1) Integrated Solver Optimized for the next generation 64bit platform Finite Element Solutions for Geotechnical Engineering Enhancements
More information4 Cylindrical Hole in an Infinite HoekBrown Medium
Cylindrical Hole in an Infinite HoekBrown Medium 41 4 Cylindrical Hole in an Infinite HoekBrown Medium 4.1 Problem Statement Stresses and displacements are calculated for the case of a cylindrical hole
More informationRecent Research on EPS Geofoam Seismic Buffers. Richard J. Bathurst and Saman Zarnani GeoEngineering Centre at Queen srmc Canada
Recent Research on EPS Geofoam Seismic Buffers Richard J. Bathurst and Saman Zarnani GeoEngineering Centre at Queen srmc Canada What is a wall (SEISMIC) buffer? A compressible inclusion placed between
More informationComputational models of diamond anvil cell compression
UDC 519.6 Computational models of diamond anvil cell compression A. I. Kondrat yev Independent Researcher, 5944 St. Alban Road, Pensacola, Florida 32503, USA Abstract. Diamond anvil cells (DAC) are extensively
More informationELASTIC CALCULATIONS OF LIMITING MUD PRESSURES TO CONTROL HYDRO FRACTURING DURING HDD
North American Society for Trenchless Technology (NASTT) NODIG 24 New Orleans, Louisiana March 2224, 24 ELASTIC CALCULATIONS OF LIMITING MUD PRESSURES TO CONTROL HYDRO FRACTURING DURING HDD Matthew
More informationSoil strength. the strength depends on the applied stress. water pressures are required
Soil Strength Soil strength u Soils are essentially frictional materials the strength depends on the applied stress u Strength is controlled by effective stresses water pressures are required u Soil strength
More informationAN IMPORTANT PITFALL OF PSEUDOSTATIC FINITE ELEMENT ANALYSIS
AN IMPORTANT PITFALL OF PSEUDOSTATIC FINITE ELEMENT ANALYSIS S. Kontoe, L. Pelecanos & D.M. Potts ABSTRACT: Finite Element (FE) pseudostatic analysis can provide a good compromise between simplified
More informationModule 7: Micromechanics Lecture 29: Background of Concentric Cylinder Assemblage Model. Introduction. The Lecture Contains
Introduction In this lecture we are going to introduce a new micromechanics model to determine the fibrous composite effective properties in terms of properties of its individual phases. In this model
More informationTuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE
1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & FreeBody Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for
More informationEMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain  Axial Loading
MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain  Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain  Axial Loading Statics
More information1.5 STRESSPATH METHOD OF SETTLEMENT CALCULATION 1.5 STRESSPATH METHOD OF SETTLEMENT CALCULATION
Module 6 Lecture 40 Evaluation of Soil Settlement  6 Topics 1.5 STRESSPATH METHOD OF SETTLEMENT CALCULATION 1.5.1 Definition of Stress Path 1.5. Stress and Strain Path for Consolidated Undrained Undrained
More informationStressStrain Behavior
StressStrain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.
More informationEffect of Strain Hardening on Unloading of a Deformable Sphere Loaded against a Rigid Flat A Finite Element Study
Effect of Strain Hardening on Unloading of a Deformable Sphere Loaded against a Rigid Flat A Finite Element Study Biplab Chatterjee, Prasanta Sahoo 1 Department of Mechanical Engineering, Jadavpur University
More informationBrittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm
Lecture 6 Brittle Deformation Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm WW Norton, unless noted otherwise Brittle deformation EarthStructure (2 nd
More informationPlane and axisymmetric models in Mentat & MARC. Tutorial with some Background
Plane and axisymmetric models in Mentat & MARC Tutorial with some Background Eindhoven University of Technology Department of Mechanical Engineering Piet J.G. Schreurs Lambèrt C.A. van Breemen March 6,
More informationPILESUPPORTED RAFT FOUNDATION SYSTEM
PILESUPPORTED RAFT FOUNDATION SYSTEM Emre Biringen, Bechtel Power Corporation, Frederick, Maryland, USA Mohab Sabry, Bechtel Power Corporation, Frederick, Maryland, USA Over the past decades, there has
More informationProf. B V S Viswanadham, Department of Civil Engineering, IIT Bombay
56 Module 4: Lecture 7 on Stressstrain relationship and Shear strength of soils Contents Stress state, Mohr s circle analysis and Pole, Principal stressspace, Stress pathsin pq space; MohrCoulomb failure
More informationModelling Progressive Failure with MPM
Modelling Progressive Failure with MPM A. Yerro, E. Alonso & N. Pinyol Department of Geotechnical Engineering and Geosciences, UPC, Barcelona, Spain ABSTRACT: In this work, the progressive failure phenomenon
More informationStrength of Material. Shear Strain. Dr. Attaullah Shah
Strength of Material Shear Strain Dr. Attaullah Shah Shear Strain TRIAXIAL DEFORMATION Poisson's Ratio Relationship Between E, G, and ν BIAXIAL DEFORMATION Bulk Modulus of Elasticity or Modulus of Volume
More informationEarth Pressure Theory
Lateral Earth Pressure Page 1 Earth Pressure Theory Examples of Retaining Walls Lateral Earth Pressure Page 2 AtRest, Active and Passive Earth Pressure Wednesday, August 17, 2011 12:45 PM Atrest condition
More informationA CLOSER LOOK AT THE BRAZILIAN TEST AND ITS MODE OF FAILURE Arvid Landva, GEMTEC Limited, Fredericton, New Brunswick, Canada
A CLOSER LOOK AT THE BRAZILIAN TEST AN ITS MOE OF FAILURE Arvid Landva, GEMTEC Limited, Fredericton, New Brunswick, Canada ABSTRACT Timoshenko (1934) showed that a compressive line load applied perpendicularly
More information6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and
6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile
More informationCode_Aster. SDLS07  Clean modes of an envelope spherical thin
Titre : SDLS07  Modes propres d'une enveloppe sphérique m[...] Date : 28/07/2015 Page : 1/13 SDLS07  Clean modes of an envelope spherical thin Summary: This test from guide VPCS makes it possible to
More informationNumerical Modeling of Direct Shear Tests on Sandy Clay
Numerical Modeling of Direct Shear Tests on Sandy Clay R. Ziaie Moayed, S. Tamassoki, and E. Izadi Abstract Investigation of sandy clay behavior is important since urban development demands mean that sandy
More informationMATERIAL ELASTIC ANISOTROPIC command
MATERIAL ELASTIC ANISOTROPIC command.. Synopsis The MATERIAL ELASTIC ANISOTROPIC command is used to specify the parameters associated with an anisotropic linear elastic material idealization. Syntax The
More informationThe Frictional Regime
The Frictional Regime Processes in Structural Geology & Tectonics Ben van der Pluijm WW Norton+Authors, unless noted otherwise 1/25/2016 10:08 AM We Discuss The Frictional Regime Processes of Brittle Deformation
More informationEnhancing Prediction Accuracy In Sift Theory
18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS Enhancing Prediction Accuracy In Sift Theory J. Wang 1 *, W. K. Chiu 1 Defence Science and Technology Organisation, Fishermans Bend, Australia, Department
More informationME 582 Advanced Materials Science. Chapter 2 Macromechanical Analysis of a Lamina (Part 2)
ME 582 Advanced Materials Science Chapter 2 Macromechanical Analysis of a Lamina (Part 2) Laboratory for Composite Materials Research Department of Mechanical Engineering University of South Alabama, Mobile,
More informationForce and Stress. Processes in Structural Geology & Tectonics. Ben van der Pluijm. WW Norton+Authors, unless noted otherwise 1/9/ :35 PM
Force and Stress Processes in Structural Geology & Tectonics Ben van der Pluijm WW Norton+Authors, unless noted otherwise 1/9/2017 12:35 PM We Discuss Force and Stress Force and Units (Trigonometry) Newtonian
More informationPlane Strain Test for Metal Sheet Characterization
Plane Strain Test for Metal Sheet Characterization Paulo Flores 1, Felix Bonnet 2 and AnneMarie Habraken 3 1 DIM, University of Concepción, Edmundo Larenas 270, Concepción, Chile 2 ENS  Cachan, Avenue
More informationProductioninduced stress change in and above a reservoir pierced by two salt domes: A geomechanical model and its applications
Productioninduced stress change in and above a reservoir pierced by two salt domes: A geomechanical model and its applications Peter Schutjens, Jeroen Snippe, Hassan Mahani, Jane Turner, Joel Ita and
More informationMechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering
Mechanics Of Solids Suraj kr. Ray (surajjj2445@gmail.com) Department of Civil Engineering 1 Mechanics of Solids is a branch of applied mechanics that deals with the behaviour of solid bodies subjected
More informationPressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials
Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials Pressure Vessels: In the previous lectures we have discussed elements subjected
More informationStress Integration for the DruckerPrager Material Model Without Hardening Using the Incremental Plasticity Theory
Journal of the Serbian Society for Computational Mechanics / Vol. / No., 008 / pp. 8089 UDC: 59.74:004.0 Stress Integration for the Druckerrager Material Model Without Hardening Using the Incremental
More information6. NONLINEAR PSEUDOSTATIC ANALYSIS OF ADOBE WALLS
6. NONLINEAR PSEUDOSTATIC ANALYSIS OF ADOBE WALLS Blondet et al. [25] carried out a cyclic test on an adobe wall to reproduce its seismic response and damage pattern under inplane loads. The displacement
More informationMECH 401 Mechanical Design Applications
MECH 401 Mechanical Design Applications Dr. M. O Malley Master Notes Spring 008 Dr. D. M. McStravick Rice University Updates HW 1 due Thursday (11708) Last time Introduction Units Reliability engineering
More informationStability analysis of a borehole wall during horizontal directional drilling
Tunnelling and Underground Space Technology 22 (2007) 620 632 Tunnelling and Underground Space Technology incorporating Trenchless Technology Research www.elsevier.com/locate/tust Stability analysis of
More informationDynamic Analysis of a Reinforced Concrete Structure Using Plasticity and Interface Damage Models
Dynamic Analysis of a Reinforced Concrete Structure Using Plasticity and Interface Damage Models I. Rhee, K.J. Willam, B.P. Shing, University of Colorado at Boulder ABSTRACT: This paper examines the global
More informationDynamics Manual. Version 7
Dynamics Manual Version 7 DYNAMICS MANUAL TABLE OF CONTENTS 1 Introduction...11 1.1 About this manual...11 2 Tutorial...21 2.1 Dynamic analysis of a generator on an elastic foundation...21 2.1.1 Input...21
More informationUSER S MANUAL. 1D Seismic Site Response Analysis Example. University of California: San Diego.
USER S MANUAL 1D Seismic Site Response Analysis Example http://www.soilquake.net/ucsdsoilmodels/ University of California: San Diego August 2, 2017 Table of Contents USER'S MANUAL TABLE OF CONTENTS Page
More information14. LSDYNA Forum 2016
14. LSDYNA Forum 2016 A Novel Approach to Model Laminated Glass R. Böhm, A. Haufe, A. Erhart DYNAmore GmbH Stuttgart 1 Content Introduction and Motivation Common approach to model laminated glass New
More informationMECHANICS OF MATERIALS
Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:
More informationNumerical modelling of induced tensile stresses in rock in response to impact loading
Numerical modelling of induced tensile stresses in rock in response to impact loading M.T. Mnisi, D.P. Roberts and J.S. Kuijpers Council for Scientific and Industrial Research (CSIR): Natural Resources
More informationWellbore stability analysis in porous carbonate rocks using cap models
Wellbore stability analysis in porous carbonate rocks using cap models L. C. Coelho 1, A. C. Soares 2, N. F. F. Ebecken 1, J. L. D. Alves 1 & L. Landau 1 1 COPPE/Federal University of Rio de Janeiro, Brazil
More informationCOMPARISON OF CONSTITUTIVE SOIL MODELS FOR THE SIMULATION OF DYNAMIC ROLLER COMPACTION
European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012) J. Eberhardsteiner et.al. (eds.) Vienna, Austria, September 1014, 2012 COMPARISON OF CONSTITUTIVE SOIL MODELS
More informationPRELIMINARY PREDICTION OF SPECIMEN PROPERTIES CLT and 1 st order FEM analyses
OPTIMAT BLADES Page 1 of 24 PRELIMINARY PREDICTION OF SPECIMEN PROPERTIES CLT and 1 st order FEM analyses first issue Peter Joosse CHANGE RECORD Issue/revision date pages Summary of changes draft 241002
More informationAnalysis of asymmetric radial deformation in pipe with local wall thinning under internal pressure using strain energy method
Analysis of asymmetric radial deformation in pipe with local wall thinning under internal pressure using strain energy method V.M.F. Nascimento Departameto de ngenharia Mecânica TM, UFF, Rio de Janeiro
More informationIntroduction to Engineering Materials ENGR2000. Dr. Coates
Introduction to Engineering Materials ENGR2 Chapter 6: Mechanical Properties of Metals Dr. Coates 6.2 Concepts of Stress and Strain tension compression shear torsion Tension Tests The specimen is deformed
More informationDouble punch test for tensile strength of concrete, Sept (7018) PB224770/AS (NTIS)
Lehigh University Lehigh Preserve Fritz Laboratory Reports Civil and Environmental Engineering 1969 Double punch test for tensile strength of concrete, Sept. 1969 (7018) PB224770/AS (NTIS) W. F. Chen
More informationCrack Tip Plastic Zone under Mode I Loading and the Nonsingular T zz stress
Crack Tip Plastic Zone under Mode Loading and the Nonsingular T stress Yu.G. Matvienko Mechanical Engineering Research nstitute of the Russian Academy of Sciences Email: ygmatvienko@gmail.com Abstract:
More informationModule 2: Thermal Stresses in a 1D Beam Fixed at Both Ends
Module 2: Thermal Stresses in a 1D Beam Fixed at Both Ends Table of Contents Problem Description 2 Theory 2 Preprocessor 3 Scalar Parameters 3 Real Constants and Material Properties 4 Geometry 6 Meshing
More informationDETERMINING THE STRESS PATTERN IN THE HH RAILROAD TIES DUE TO DYNAMIC LOADS 1
PERIODICA POLYTECHNICA SER. CIV. ENG. VOL. 46, NO. 1, PP. 125 148 (2002) DETERMINING THE STRESS PATTERN IN THE HH RAILROAD TIES DUE TO DYNAMIC LOADS 1 Nándor LIEGNER Department of Highway and Railway Engineering
More informationBolted Busbar Connections with Slotted Bolt Holes
Bolted Busbar Connections with Slotted Bolt Holes RAINA TZENEVA 1, YANKO SLAVTCHEV 2 and VALERI MLADENOV 3 1 Department of Electrical Apparatus, Faculty of Electrical Engineering, Technical University
More information2D Embankment and Slope Analysis (Numerical)
2D Embankment and Slope Analysis (Numerical) Page 1 2D Embankment and Slope Analysis (Numerical) Sunday, August 14, 2011 Reading Assignment Lecture Notes Other Materials FLAC Manual 1. 2. Homework Assignment
More informationSHELL STRUCTURES. THEORY AND APPLICATIONS
The 5th Conference SHELL STRUCTURES. THEORY AND APPLICATIONS Janowice * 1518 October MODERATE ROTATION THEORY FEM ANALYSIS OF LAMINATED ANISOTROPIC COMPOSITE PLATES AND SHELLS I. Kreja 1 ) and R. Schmidt
More informationModel tests and FEmodelling of dynamic soilstructure interaction
Shock and Vibration 19 (2012) 1061 1069 1061 DOI 10.3233/SAV20120712 IOS Press Model tests and FEmodelling of dynamic soilstructure interaction N. Kodama a, * and K. Komiya b a Waseda Institute for
More informationCHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS
CHAPTER THE EFFECTS OF FORCES ON MATERIALS EXERCISE 1, Page 50 1. A rectangular bar having a crosssectional area of 80 mm has a tensile force of 0 kn applied to it. Determine the stress in the bar. Stress
More informationCritical condition study of borehole stability during air drilling
158 Pet.Sci.(2009)6:158165 DOI 10.1007/s1218200900259 Critical condition study of borehole stability during air drilling Deng Jingen 1, Zou Linzhan 1, Tan Qiang 1, Yan Wei 1, Gao Deli 1, Zhang Hanlin
More informationTHEORY OF PLATES AND SHELLS
THEORY OF PLATES AND SHELLS S. TIMOSHENKO Professor Emeritus of Engineering Mechanics Stanford University S. WOINOWSKYKRIEGER Professor of Engineering Mechanics Laval University SECOND EDITION MCGRAWHILL
More informationTHREE DIMENSIONAL STRESS ANALYSIS OF THE T BOLT JOINT
THREE DIMENSIONAL STRESS ANALYSIS OF THE T BOLT JOINT Víctor Martínez 1, Alfredo Güemes 2, Norbert Blanco 1, Josep Costa 1 1 Escola Politècnica Superior. Universitat de Girona. Girona, Spain (17071) 2
More informationSOIL MECHANICS AND PLASTIC ANALYSIS OR LIMIT DESIGN*
157 SOIL MECHANICS AND PLASTIC ANALYSIS OR LIMIT DESIGN* BY D. C. DRUCKER and W. PRAGER Brown University 1. Introduction. Problems of soil mechanics involving stability of slopes, bearing capacity of foundation
More informationU.S. South America Workshop. Mechanics and Advanced Materials Research and Education. Rio de Janeiro, Brazil. August 2 6, Steven L.
Computational Modeling of Composite and Functionally Graded Materials U.S. South America Workshop Mechanics and Advanced Materials Research and Education Rio de Janeiro, Brazil August 2 6, 2002 Steven
More information**********************************************************************
Department of Civil and Environmental Engineering School of Mining and Petroleum Engineering 333 Markin/CNRL Natural Resources Engineering Facility www.engineering.ualberta.ca/civil Tel: 780.492.4235
More informationChapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING )
Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) 5.1 DEFINITION A construction member is subjected to centric (axial) tension or compression if in any cross section the single distinct stress
More informationReservoir Geomechanics with ABAQUS
Reservoir Geomechanics with ABAQUS B. Bostrøm and E. Skomedal Statoil ASA, Norway Abstract: The coupled hydromechanical behavior of two North Sea highpressure/hightemperature gascondensate fields during
More informationUNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.
UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude
More informationDebonding process in composites using BEM
Boundary Elements XXVII 331 Debonding process in composites using BEM P. Prochazka & M. Valek Czech Technical University, Prague, Czech Republic Abstract The paper deals with the debonding fibermatrix
More informationUnified elastoplastic finite difference and its application
Appl. Math. Mech. Engl. Ed., 344, 457 474 013 DOI 10.1007/s1048301316837 c Shanghai University and SpringerVerlag Berlin Heidelberg 013 Applied Mathematics and Mechanics English Edition Unified elastoplastic
More informationThe Design of Polyurethane Parts: Using Closed Solutions and Finite Element Analysis to Obtain Optimal Results
The Design of Polyurethane Parts: Using Closed Solutions and Finite Element Analysis to Obtain Optimal Results By: Richard Palinkas George Nybakken Ian Laskowitz Chemtura Corporation Overview How does
More informationTMHL TMHL (Del I, teori; 1 p.) SOLUTION I. II.. III. Fig. 1.1
TMHL6 2040830 (Del I, teori; p.). Fig.. shows three cases of sharp cracks in a sheet of metal. In all three cases, the sheet is assumed to be very large in comparison with the crack. Note the different
More informationBulk Metal Forming II
Bulk Metal Forming II Simulation Techniques in Manufacturing Technology Lecture 2 Laboratory for Machine Tools and Production Engineering Chair of Manufacturing Technology Prof. Dr.Ing. Dr.Ing. E.h.
More informationANSYS Mechanical Basic Structural Nonlinearities
Lecture 4 Rate Independent Plasticity ANSYS Mechanical Basic Structural Nonlinearities 1 Chapter Overview The following will be covered in this Chapter: A. Background Elasticity/Plasticity B. Yield Criteria
More informationMining. Slope stability analysis at highway BR153 using numerical models. Mineração. Abstract. 1. Introduction
Mining Mineração http://dx.doi.org/10.1590/037044672015690040 Ricardo Hundelshaussen Rubio Engenheiro Industrial / Doutorando Universidade Federal do Rio Grande do Sul  UFRS Departamento de Engenharia
More informationModeling the bond of GFRP and concrete based on a damage evolution approach
Modeling the ond of GFRP and concrete ased on a damage evolution approach Mohammadali Rezazadeh 1, Valter Carvelli 2, and Ana Veljkovic 3 1 Dep. Architecture, Built environment and Construction engineering,
More informationExperimental and theoretical characterization of Li 2 TiO 3 and Li 4 SiO 4 pebbles
Experimental and theoretical characterization of Li 2 TiO 3 and Li 4 SiO 4 s D. Aquaro 1 N. Zaccari ABSTRACT Dipartimento di Ingegneria Meccanica Nucleare e della Produzione University of Pisa (Italy)
More informationFunctional Simulation of Harmonic Drive with S.M.A. Wave Generator
Functional Simulation of Harmonic Drive with S.M.A. Wave Generator VIORELIONUT BIZAU, ION VELA, OVIDIU MILOS, ALINA VISAN, IONCORNEL MITULETU Center of Advanced Research, Design and Technology CARDT
More informationOnedimensional ratchetting Twodimensional ratchetting Response of unified models Response of 2M1C model Response of polycrystalline models
Ratchetting Onedimensional ratchetting Twodimensional ratchetting Response of unified models Response of 2M1C model Response of polycrystalline models Still an open problem Ratchetting effects Primary
More informationStability Analysis of Earth Retaining Walls
6 th International Advanced echnologies Symposium (IAS 11), 1618 May 11, Elazığ, urkey Stability Analysis of Earth Retaining Walls L. Belabed 1 and J. Yahiaoui 2 1 University of Guelma, Algeria, drbelabed@yahoo.de
More informationImpact of a FixedLength Rigid Cylinder on an ElasticPlastic Homogeneous Body
Raja R. Katta Andreas A. Polycarpou 1 email: polycarp@illinois.edu Department of Mechanical Science and Engineering, University of Illinois at UrbanaChampaign, Urbana, IL 61801 Impact of a FixedLength
More informationAfter lecture 16 you should be able to
Lecture 16: Design of paper and board packaging Advanced concepts: FEM, Fracture Mechanics After lecture 16 you should be able to describe the finite element method and its use for paper based industry
More information7.4 The Elementary Beam Theory
7.4 The Elementary Beam Theory In this section, problems involving long and slender beams are addressed. s with pressure vessels, the geometry of the beam, and the specific type of loading which will be
More informationin Ice Crushing Failure
Yield and Plastic Deformation in Ice Crushing Failure TERRANCE D. RALSTON ABSTRACT Plasticity theory has been widely used to describe the deformation and failure of metals, soils, rocks, and concrete.
More informationCh 5 Strength and Stiffness of Sands
Ch. 5  Strength and Stiffness of Sand Page 1 Ch 5 Strength and Stiffness of Sands Reading Assignment Ch. 5 Lecture Notes Sections 5.15.7 (Salgado) Other Materials Homework Assignment Problems 59, 512,
More informationThe Mohr Stress Diagram. Edvard Munch as a young geologist!
The Mohr Stress Diagram Edvard Munch as a young geologist! Material in the chapter is covered in Chapter 7 in Fossen s text The Mohr Stress Diagram A means by which two stresses acting on a plane of known
More informationShear Strength of Soils
Shear Strength of Soils Soil strength Most of problems in soil engineering (foundations, slopes, etc.) soil withstands shear stresses. Shear strength of a soil is defined as the capacity to resist shear
More informationASSESSMENT OF DYNAMICALLY LOADED CRACKS IN FILLETS
ASSESSMENT OF DNAMICALL LOADED CRACKS IN FILLETS Uwe Zencker, Linan Qiao, Bernhard Droste Federal Institute for Materials Research and Testing (BAM) 12200 Berlin, Germany email: zencker@web.de Abstract
More informationTHEME A. Analysis of the elastic behaviour of La Aceña archgravity dam
THEME A Analysis of the elastic behaviour of La Aceña archgravity dam Gjorgi KOKALANOV, Professor, Faculty of Civil Eng., Skopje, Republic of Macedonia Ljubomir TANČEV, Professor, Faculty of Civil Eng.,
More informationDilation occurrence analysis in gas storage based on the different constitutive models response
Journal of Applied Mathematics and Physics, 014, *, ** Published Online **** 014 in SciRes. http://www.scirp.org/journal/jamp http://dx.doi.org/10.436/jamp.014.***** Dilation occurrence analysis in gas
More informationNumerical Characterization of Concrete Heterogeneity
Vol. Materials 5, No. Research, 3, 2002Vol. 5, No. 3, Statistical 309314, 2002. Characterization of the Concrete Numerical Modeling of Size Effect In Heterogeneity 2002 309 Numerical Characterization
More informationSDLS505  Buckling of a cylindrical envelope under external pressure
Titre : SDLS505  Flambement d une enveloppe cylindrique s[...] Date : 03/05/2016 Page : 1/10 SDLS505  Buckling of a cylindrical envelope under external pressure Summary: This test represents a calculation
More informationModelling the excavation damaged zone in CallovoOxfordian claystone with strain localisation
Modelling the excavation damaged zone in CallovoOxfordian claystone with strain localisation B. Pardoen  F. Collin  S. Levasseur  R. Charlier Université de Liège ArGEnCo ALERT Workshop 2012 Aussois,
More informationSoil Dynamics and Earthquake Engineering
Soil Dynamics and Earthquake Engineering 30 (2010) 1361 1376 Contents lists available at ScienceDirect Soil Dynamics and Earthquake Engineering journal homepage: www.elsevier.com/locate/soildyn Finite
More informationWELLBORE STABILITY ANALYSIS IN CHEMICALLY ACTIVE SHALE FORMATIONS
S911 WELLBORE SABILIY ANALYSIS IN CHEMICALLY ACIVE SHALE FORMAIONS by XiangChao SHI *, Xu YANG, YingFeng MENG, and Gao LI State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest
More informationFiniteElement Analysis of Stress Concentration in ASTM D 638 Tension Specimens
Monika G. Garrell, 1 Albert J. Shih, 2 Edgar LaraCurzio, 3 and Ronald O. Scattergood 4 Journal of Testing and Evaluation, Vol. 31, No. 1 Paper ID JTE11402_311 Available online at: www.astm.org FiniteElement
More informationCONTACT MODEL FOR A ROUGH SURFACE
23 Paper presented at Bucharest, Romania CONTACT MODEL FOR A ROUGH SURFACE Sorin CĂNĂNĂU Polytechnic University of Bucharest, Dep. of Machine Elements & Tribology, ROMANIA s_cananau@yahoo.com ABSTRACT
More informationUNIT I SIMPLE STRESSES AND STRAINS
Subject with Code : SM1(15A01303) Year & Sem: IIB.Tech & ISem SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) UNIT I SIMPLE STRESSES
More informationA NEW SIMPLIFIED AND EFFICIENT TECHNIQUE FOR FRACTURE BEHAVIOR ANALYSIS OF CONCRETE STRUCTURES
Fracture Mechanics of Concrete Structures Proceedings FRAMCOS3 AEDFCATO Publishers, D79104 Freiburg, Germany A NEW SMPLFED AND EFFCENT TECHNQUE FOR FRACTURE BEHAVOR ANALYSS OF CONCRETE STRUCTURES K.
More informationBasic Energy Principles in Stiffness Analysis
Basic Energy Principles in Stiffness Analysis StressStrain Relations The application of any theory requires knowledge of the physical properties of the material(s) comprising the structure. We are limiting
More informationFinal Design Project: Biodiesel Settling Tank Analysis
MESSIAH COLLEGE ENGR 495 Finite Element Methods Tuesday, December 16, 2003 : Biodiesel Settling Tank Analysis Brandon Apple Jon Bitterman Becky Gast Kyle McNamara ENGR 495 Finite Element Methods 1 Abstract
More informationChapter 7. Highlights:
Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true
More information