1 Introduction. Abstract

Size: px
Start display at page:

Download "1 Introduction. Abstract"

Transcription

1 Abstract This paper presents a three-dimensional numerical model for analysing via finite element method (FEM) the mechanized tunneling in urban areas. The numerical model is meant to represent the typical characteristics of the tunneling process by means of slurry shield tunnel boring machine (slurry shield TBM). Different soil constitutive models already implemented in PLAXIS 3D are employed for assessing the influence of the soil material model on the solution and therefore on the predictions made regarding the tunneling construction process. Further analysis of the numerical results is done in order to assess the model quality and a procedure for choosing the most adequate model is proposed. Keywords: mechanized tunneling, numerical simulation, parameter adaptation. 1 Introduction In July 2010 at the Ruhr-Universität Bochum, Germany, started a new collaborative research center SFB 837 for the research on interaction models in mechanized tunneling. The collaborative project consists of 14 subprojects and it is funded by the German Research Foundation (DFG). This paper is a part of the work within the subproject C2 Methods of system identification for the adaptation of numerical simulation models. Mechanized tunneling is a well established method which allows for tunnel advances in a wide range of soils and rocks. In the last 20 years the use of Slurry shield TBM and Earth pressure balanced shield TBM for excavating tunnels in urban areas became very common for many reasons like higher excavation speed under small overburden, operation in loose ground, and under a water table, the real-time construction of the lining, minimizing at the same time the surface settlements. For the estimation the magnitudes and the distribution of the strains during and 1

2 after the tunnel excavation the choice of a realistic soil constitutive model is very important. In this paper, three different models with increasing levels of complexity are used and their impact on the prediction of the displacements is analyzed. Additional variants of the model with tunnel overburden 1D and 5D are calculated to obtain its influence in the simulation. 2 Description of the Numerical Simulation All numerical simulations are performed with the finite element code PLAXIS 3D, version finite element package developed for three-dimensional analysis of deformation and stability in geotechnical engineering. We used three types of soil constitutive models, which are already implemented in PLAXIS, namely the well known linear elastic perfectly-plastic Mohr-Coulomb (MC) model and two advanced models: Hardening Soil (HS) model and Hardening Soil model with small-strain stiffness (HSsmall). The HS model allows for accounting the plastic collapse (isotropic hardening cap plasticity) as wall as plastic shearing due to deviatoric loading with shear/frictional hardening (deviatoric yielding). For the deviatoric yielding a non-associated and for the cap plasticity an associated plastic flow rule are prescribed. The HS-small model is an extension of the HS model to account for the increased stiffness of soils at small strains, i.e. shear strains lower than ( ). For detailed description of these advanced models see [1], [2] and [3]. The values of the input parameters for the three soil models are listed in Table 1. In order to compare the solutions employing MC model with constant stiffness and the HS type models the Young s modulus used in the MC model is taken to be equal to the one used in the HS model. This way it is believed that we are able to more realistically represent the unloading path during tunneling and it allows us to compare MC and HS models. In this study E (MC) = Eur ref (HS) = kn/m 2. Three dimensional finite element model has been set up after preliminary study of the boundary effects. Because the geometry, material properties, initial and excavation conditions are all symmetric about a vertical plane of symmetry that is parallel to the tunnel axis (i.e. the X-axis), only one-half of the model need to be analyzed (Fig. 1). The model is 60 m long (in the X-axis direction), 40 m wide (in the Y-axis direction) and 45 m deep (in the Z-axis direction). The chosen slurry shield TBM is 9 m long, simulated as a circular plate element, and an area with a total length of 45 m in the Z-direction has be investigated. The tunnel diameter is D=8.5 m and the overburden equals to 1D or 5D. The finite element discretization adopted for the simulation is chosen after studying the effects of the different finite element mesh size on the numerical results, and it is shown in Figure 1. The space occupied by the soil material is discretized using 10-node tetrahedral elements. The number of the elements is about elements with total up to nodes. The shield tunnel lining is often designed using prefabricated concrete ring segments, which are bolted together within the TBM to form the tunnel lining. During erection of the tunnel lining the TBM remains stationary. Once a tunnel lining ring 2

3 has been fully erected, excavation is resumed, until enough soil has been excavated to erect the next lining ring. The lining and the TBM are modeled as a linear elastic plate elements with properties listed in Table 1. The difference between the external diameter of the TBM shield and the newly installed tunnel lining causes a gap between the soil and the lining at the tail end of the TBM (Fig. 2). This gap is filled with grout while the TBM advances. One of the main function of the grout is to prevent large deformations of the surrounding soil and settlements at the ground surface. The gap is modeled as a 16 cm thick soil layer (method 2) where the grout pressure is simulated as an increased water pressure from about 145 kn/m 2 (705 kn/m 2 by overburden equals to 5D) at the tunnel crown to 230 kn/m 2 (790 kn/m 2 by overburden equals to 5D) at the tunnel invert. These values of the grouting pressure are chosen so that there will be a higher (or equal) to the sum of the vertical earth pressure and the ground water pressure (in this case no water table is defined in the simulation). Another way to simulates the grout pressure in PLAXIS is to apply an increasing volumetric strain to this 16 cm thick soil layer. The third way (method 1) to model the action of this grout pressure on the surrounding subsoil is to apply a non-uniformly distributed load directly to the soil elements by deactivating the plate elements in the same place (see Fig. 7). Thereupon it is assumed that the grout has settled enough not to cause additional deformations. The comparison between the calculated displacements at nodes on the ground surface, on the tunnel crown, on the tunnel invert and on the tunnel side wall by calculated following method 1 and method 2 shows a good agreement of the results and no significant differences in the displacements. The advantage to use method 2 is the reduced number of finite elements and the following reduction in the calculation time in about three times. The short calculation time is desirable for the inverse analysis which will be the next step within the subproject C2 and the reason is that the FE-calculation must be run many times during the optimization procedure. The disadvantage of method 1 is that there is no additionally applied pressure from the grouting acting on the tunnel lining, which can lead to a smaller calculated shear forces and bending moments in the lining. The support pressure at the face needed to prevent active failure at the tunnel face is simulated as a non-uniformly distributed pressure, 115 kn/m 2 (675 kn/m 2 by overburden equals to 5D) at the tunnel crown and 200 kn/m 2 (760 kn/m 2 by overburden equals to 5D) at the tunnel invert. The contact between the shield skin (plate elements in our model) with the surrounding ground (soil elements), and between the tunnel lining (plate elements in our model) and the ground is simulated via reducing with 40% the shear strength of the soil at this contact zone. To simulate this behaviour of the soil-structure interaction a special joint elements called in PLAXIS interfaces are applied to the plates on their side in contact with the soil. The excavation process is modeled by means of a quasistatic formulation of the corresponding mathematical model. It results in modeling the excavation process via step-by-step procedure and consequently the advancement of the shield tunneling is applied. In the first step, i.e. first calculation phase, the initial conditions are applied. 3

4 Figure 1: Model geometry and FE discretization. All of the next calculation phases (i.e. excavation stages) are meant to simulate an advance of 1.50 m. The steps which are modeled in a single excavation stage are the following: - excavation of the soil in front of tunnel (deactivation of the finite elements at that place); - applying a support pressure at the tunnel face; - activation of the TBM shield (the next 1.50 m); - applying a back-fill grouting pressure at the back of the TBM; - installing (activation) a new concrete lining ring with width of 1.50 m. In each calculation phase the input for the staged construction is identical, except for its location, which has been shifted in the X-axis direction by 1.50 m each phase. 4

5 Figure 2: Modeling of the back-fill grouting. 3 Evaluating the Influence of the Soil Constitutive Model on the Results Figure 3 demonstrates the results of the shield tunneling simulated with the MC model for the soil material and the effect of uplifting on the ground surface due to unloading during the tunneling process. It is observed that without differentiating between loading and unloading regarding the values of the stiffness modulus the application of the MC model results in an unrealistic lifting or in a less settlements (Fig. 4) of the ground surface associated with unloading due to the excavation of the tunnel. Further it can be observed that the use of HS and HS-small models allows more realistic modeling of the ground surface displacements and in this case there is no uplifting. The HS-small model which incorporates small strain behavior give smaller and more realistic displacements than the displacements calculated using the HS model. Figures 5 and 6 show the results from the benchmark with varying the Young s modulus in the MC model and the comparison with the results if the HS model is used. It was confirmed again that the MC model by using constant stiffness modulus is not able to predict a realistic settlements due to tunnel excavation. 4 Conclusions Three different constitutive models were used for the mechanized tunneling simulation. The well-known linear elastic-perfectly plastic MC model is not well suited for modeling tunnel excavation problems. Therefore advanced models like HS and HSsmall model are required in order to obtain a realistic prediction of the deformations during shield tunneling. In other words the realistic predictions for the deformations during shield tunneling may be done if the employed soil constitutive model takes into 5

6 Figure 3: Vertical displacements on the ground surface in the cross section located at the 18 -th m from the tunnel beginning, overburden equal to 1D. Figure 4: Vertical displacements on the ground surface in the cross section located at the 18 -th m from the tunnel beginning, overburden equal to 5D. 6

7 Figure 5: Vertical displacements on the ground surface in the cross section located at the 18 -th m from the tunnel beginning, overburden equal to 1D. Figure 6: Vertical displacements on the ground surface in the cross section located at the 18 -th m from the tunnel beginning, overburden equal to 5D. 7

8 Soil Parameters Constitutive Model Parameters MC HS HS-small ϕ [ ] ψ [ ] c [kn/m 2 ] E [kn/m 2 ] E ref [kn/m 2 ] E ref oed [kn/m 2 ] Eur ref [kn/m 2 ] G ref [kn/m 2 ] γ [-] p ref [kn/m 2 ] m [-] R f [-] ν [-] ν ur [-] γ unsat [kn/m 3 ] γ sat [kn/m 3 ] R inter [-] Tunnel Lining TBM Parameters Model: linear-elastic d [m] E [kn/m 2 ] γ [kn/m 3 ] ν [-] Table 1: Parameters for the soil models, for the lining and for the TBM. account at least: the non linearity of the stress-strain curve and the stress dependency of the soil stiffness moduli; the different stiffness during loading and unloading. Additionally if the soil model does not take into consideration the nonlinear soil behaviour at small strains this leads to a considerably too soft response, i.e. the calculated deformations are overestimated. Therefore from the three presented in this paper soil constitutive models for simulating the shield tunneling process the most adequate is the Hardening Soil model with small-strain stiffness. 8

9 Figure 7: Different methods to simulate the grouting pressure and a comparison of the calculated deformations (here the surface settlements). The model used is the HS model. Acknowledgments This work was done as part of the C2 project of the DFG Collaborative Research Center 837. M. Datcheva acknowledges the Bulgarian Science Fund under the grant DSAB02/6 for supporting her sabbatical leave to the Ruhr-Universität Bochum enabling her participation in this study. References [1] T. Schanz, P.A. Vermeer and P.G. Bonnier, The hardening soil model: Formulation and verification, Beyond 2000 in Computational Geotechnics - 10 Years of PLAXIS, [2] T. Benz, R. Schwab and P. Vermeer, Small-strain stiffness in geotechnical analyses, Bautechnik, 86: 16-27, doi: /bate [3] R.B.J. Brinkgreve, E. Engin and W.M. Swolfs, PLAXIS 3D Version 2010, Material Models Manual, ISBN-13: , printed in the Netherlands,

10 List of Symbols γ Unit wight [kn/m 3 ] γ unsat Unit wight of the soil with natural humidity [kn/m 3 ] γ sat Unit wight of the water saturated soil [kn/m 3 ] γ 0.7 Level of shear strain at which the secant shear modulus G s is reduced to about 70 % of G 0 (i.e. G s = 0.722G 0 ) [-] ν Poisson s ratio [-] ν ur Poisson s ratio for unloading-reloading [-] ϕ Peak angle of internal friction [ ] ψ Angle of dilatancy [ ] c Cohesion [kn/m 2 ] D Tunnel diameter [m] d Thickness of the concrete tunnel lining [m] E Drained Young s modulus of the soil [kn/m 2 ] E Young s modulus of the concrete lining [kn/m 2 ] E ref 50 Secant stiffness in standard drained triaxial test [kn/m 2 ] E ref oed Tangent stiffness for primary oedometer loading [kn/m 2 ] E ref ur Unloading / reloading stiffness [kn/m 2 ] G ref 0 Shear modulus at very small strains [kn/m 2 ] m Power for stress-level dependency of stiffness [-] p ref Reference stress for stiffnesses [kn/m 2 ] R inter Strength reduction factor for interfaces in PLAXIS [-] R f Failure ratio q f /q a [-] q f Ultimate deviatoric triaxial stress [kn/m 2 ] q a Asymptotic value of the shear strength of the soil [kn/m 2 ] 10

Validation of empirical formulas to derive model parameters for sands

Validation of empirical formulas to derive model parameters for sands Validation of empirical formulas to derive model parameters for sands R.B.J. Brinkgreve Geo-Engineering Section, Delft University of Technology, Delft, Netherlands/Plaxis B.V., Delft, Netherlands E. Engin

More information

SOIL MODELS: SAFETY FACTORS AND SETTLEMENTS

SOIL MODELS: SAFETY FACTORS AND SETTLEMENTS PERIODICA POLYTECHNICA SER. CIV. ENG. VOL. 48, NO. 1 2, PP. 53 63 (2004) SOIL MODELS: SAFETY FACTORS AND SETTLEMENTS Gabriella VARGA and Zoltán CZAP Geotechnical Department Budapest University of Technology

More information

Cyclic lateral response of piles in dry sand: Effect of pile slenderness

Cyclic lateral response of piles in dry sand: Effect of pile slenderness Cyclic lateral response of piles in dry sand: Effect of pile slenderness Rafa S. 1, Rouaz I. 1,Bouaicha A. 1, Abed El Hamid A. 1 Rafa.sidali@gmail.com 1 National Center for Studies and Integrated Researches

More information

Finite Element Solutions for Geotechnical Engineering

Finite Element Solutions for Geotechnical Engineering Release Notes Release Date: July, 2015 Product Ver.: GTSNX 2015 (v2.1) Integrated Solver Optimized for the next generation 64-bit platform Finite Element Solutions for Geotechnical Engineering Enhancements

More information

Towards Efficient Finite Element Model Review Dr. Richard Witasse, Plaxis bv (based on the original presentation of Dr.

Towards Efficient Finite Element Model Review Dr. Richard Witasse, Plaxis bv (based on the original presentation of Dr. Towards Efficient Finite Element Model Review Dr. Richard Witasse, Plaxis bv (based on the original presentation of Dr. Brinkgreve) Journée Technique du CFMS, 16 Mars 2011, Paris 1/32 Topics FEA in geotechnical

More information

Finite Element Investigation of the Interaction between a Pile and a Soft Soil focussing on Negative Skin Friction

Finite Element Investigation of the Interaction between a Pile and a Soft Soil focussing on Negative Skin Friction NGM 2016 Reykjavik Proceedings of the 17 th Nordic Geotechnical Meeting Challenges in Nordic Geotechnic 25 th 28 th of May Finite Element Investigation of the Interaction between a Pile and a Soft Soil

More information

Numerical Analysis of Ground Surface Settlement Induced by Double-O Tube Shield Tunneling

Numerical Analysis of Ground Surface Settlement Induced by Double-O Tube Shield Tunneling Numerical Analysis of Ground Surface Settlement Induced by Double-O Tube Shield Tunneling Shong-Loong Chen 1 ; Shen-Chung Lee 2 ; and Yu-Syuan Wei 3 Abstract: This paper is a case study of the Taoyuan

More information

PLAXIS. Material Models Manual

PLAXIS. Material Models Manual PLAXIS Material Models Manual 2015 Build 7519 TABLE OF CONTENTS TABLE OF CONTENTS 1 Introduction 7 1.1 On the use of different models 7 1.2 Limitations 9 2 Preliminaries on material modelling 13 2.1 General

More information

PLAXIS 3D FOUNDATION Validation Manual. version 1.5

PLAXIS 3D FOUNDATION Validation Manual. version 1.5 PLAXIS 3D FOUNDATION Validation Manual version 1.5 TABLE OF CONTENTS TABLE OF CONTENTS 1 Introduction...1-1 2 Soil model problems with known theoretical solutions...2-1 2.1 Bi-axial test with linear elastic

More information

Influence of Soil Models on Numerical Simulation of Geotechnical works in Bangkok subsoil

Influence of Soil Models on Numerical Simulation of Geotechnical works in Bangkok subsoil Influence of Soil Models on Numerical Simulation of Geotechnical works in Bangkok subsoil Tanapong Rukdeechuai, Pornkasem Jongpradist, Anucha Wonglert, Theerapong Kaewsri Department of Civil Engineering,

More information

Monitoring of underground construction

Monitoring of underground construction Monitoring of underground construction Geotechnical Aspects of Underground Construction in Soft Ground Yoo, Park, Kim & Ban (Eds) 2014 Korean Geotechnical Society, Seoul, Korea, ISBN 978-1-138-02700-8

More information

Comparison of different soil models for excavation using retaining walls

Comparison of different soil models for excavation using retaining walls Comparison of different soil models for excavation using retaining walls Arjun Gaur 1, Ankit Sahay 2 1 Department of Civil Engineering, Delhi Technical Campus, Guru Gobind Singh Indraprastha University,

More information

Simulation of footings under inclined loads using different constitutive models

Simulation of footings under inclined loads using different constitutive models Simulation of footings under inclined loads using different constitutive models J. Hintner, P.A. Vermeer Institute of Geotechnical Engineering, University of Stuttgart, Germany P.-A. von Wolffersdorff

More information

PLAXIS 3D TUNNEL. Material Models Manual version 2

PLAXIS 3D TUNNEL. Material Models Manual version 2 PLAXIS 3D TUNNEL Material Models Manual version 2 TABLE OF CONTENTS TABLE OF CONTENTS 1 Introduction...1-1 1.1 On the use of different models...1-1 1.2 Limitations...1-2 2 Preliminaries on material modelling...2-1

More information

Determination of subgrade reaction modulus of two layered soil

Determination of subgrade reaction modulus of two layered soil 3 r d International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, 28-30 June 2012, Near East University, Nicosia, North Cyprus Determination of subgrade reaction modulus

More information

13 Dewatered Construction of a Braced Excavation

13 Dewatered Construction of a Braced Excavation Dewatered Construction of a Braced Excavation 13-1 13 Dewatered Construction of a Braced Excavation 13.1 Problem Statement A braced excavation is constructed in saturated ground. The excavation is dewatered

More information

PILE-SUPPORTED RAFT FOUNDATION SYSTEM

PILE-SUPPORTED RAFT FOUNDATION SYSTEM PILE-SUPPORTED RAFT FOUNDATION SYSTEM Emre Biringen, Bechtel Power Corporation, Frederick, Maryland, USA Mohab Sabry, Bechtel Power Corporation, Frederick, Maryland, USA Over the past decades, there has

More information

ANALYSIS OF A VERTICAL SEGMENTAL SHAFT USING 2D & 3D FINITE ELEMENT CODES

ANALYSIS OF A VERTICAL SEGMENTAL SHAFT USING 2D & 3D FINITE ELEMENT CODES International Journal of GEOMATE, Aug, 2017, Vol.13, Issue 36, pp.138-146 Geotec., Const. Mat. & Env., ISSN:2186-2990, Japan, DOI: http://dx.doi.org/10.21660/2017.36.88132 ANALYSIS OF A VERTICAL SEGMENTAL

More information

Numerical modeling of diaphragm wall behavior in Bangkok soil using hardening soil model

Numerical modeling of diaphragm wall behavior in Bangkok soil using hardening soil model Geotechnical Aspects of Underground Construction in Soft Ground Viggiani (ed) 212 Taylor & Francis Group, London, ISBN 978--41-68367-8 Numerical modeling of diaphragm wall behavior in Bangkok soil using

More information

TC211 Workshop CALIBRATION OF RIGID INCLUSION PARAMETERS BASED ON. Jérôme Racinais. September 15, 2015 PRESSUMETER TEST RESULTS

TC211 Workshop CALIBRATION OF RIGID INCLUSION PARAMETERS BASED ON. Jérôme Racinais. September 15, 2015 PRESSUMETER TEST RESULTS Jérôme Racinais September 15, 215 TC211 Workshop CALIBRATION OF RIGID INCLUSION PARAMETERS BASED ON PRESSUMETER TEST RESULTS Table of contents 1. Reminder about pressuremeter tests 2. General behaviour

More information

Single Pile Simulation and Analysis Subjected to Lateral Load

Single Pile Simulation and Analysis Subjected to Lateral Load Single Pile Simulation and Analysis Subjected to Lateral Load Jasim M Abbas Ph D Student, Department of Civil and Structural Engineering, Universiti Kebangsaan Malaysia e-mail: jasimalshamary@yahoo.com

More information

Advanced model for soft soils. Modified Cam-Clay (MCC)

Advanced model for soft soils. Modified Cam-Clay (MCC) Advanced model for soft soils. Modified Cam-Clay (MCC) c ZACE Services Ltd August 2011 1 / 62 2 / 62 MCC: Yield surface F (σ,p c ) = q 2 + M 2 c r 2 (θ) p (p p c ) = 0 Compression meridian Θ = +π/6 -σ

More information

ON THE FACE STABILITY OF TUNNELS IN WEAK ROCKS

ON THE FACE STABILITY OF TUNNELS IN WEAK ROCKS 33 rd 33 Annual rd Annual General General Conference conference of the Canadian of the Canadian Society for Society Civil Engineering for Civil Engineering 33 e Congrès général annuel de la Société canadienne

More information

TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL

TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL Qassun S. Mohammed Shafiqu and Maarib M. Ahmed Al-Sammaraey Department of Civil Engineering, Nahrain University, Iraq

More information

Numerical Investigation of the Effect of Recent Load History on the Behaviour of Steel Piles under Horizontal Loading

Numerical Investigation of the Effect of Recent Load History on the Behaviour of Steel Piles under Horizontal Loading Numerical Investigation of the Effect of Recent Load History on the Behaviour of Steel Piles under Horizontal Loading K. Abdel-Rahman Dr.-Ing., Institute of Soil Mechanics, Foundation Engineering and Waterpower

More information

14- Hardening Soil Model with Small Strain Stiffness - PLAXIS

14- Hardening Soil Model with Small Strain Stiffness - PLAXIS 14- Hardening Soil Model with Small Strain Stiffness - PLAXIS This model is the Hardening Soil Model with Small Strain Stiffness as presented in PLAXIS. The model is developed using the user-defined material

More information

2D and 3D Numerical Simulation of Load-Settlement Behaviour of Axially Loaded Pile Foundations

2D and 3D Numerical Simulation of Load-Settlement Behaviour of Axially Loaded Pile Foundations American Journal of Civil Engineering and Architecture, 2017, Vol. 5, No. 5, 187-195 Available online at http://pubs.sciepub.com/ajcea/5/5/2 Science and Education Publishing DOI:10.12691/ajcea-5-5-2 2D

More information

Foundations of High Rise Buildings

Foundations of High Rise Buildings Foundations of High Rise Buildings Prof. Dr.-Ing. Yasser El-Mossallamy Professor of Geotechnical Engineering Ain Shams Univ. Cairo, Egypt c/o Arcadis Consult, Germany y.el-mossallamy@arcadis.de Slide:

More information

The Hardening Soil model with small strian stiffness

The Hardening Soil model with small strian stiffness The Hardening Soil model with small strain stiffness in Zsoil v2011 Rafal OBRZUD GeoMod Ing. SA, Lausanne Content Introduction Framework of the Hardening Soil model Hardening Soil SmallStrain Hardening

More information

Numerical Modeling of Direct Shear Tests on Sandy Clay

Numerical Modeling of Direct Shear Tests on Sandy Clay Numerical Modeling of Direct Shear Tests on Sandy Clay R. Ziaie Moayed, S. Tamassoki, and E. Izadi Abstract Investigation of sandy clay behavior is important since urban development demands mean that sandy

More information

Effect of embedment depth and stress anisotropy on expansion and contraction of cylindrical cavities

Effect of embedment depth and stress anisotropy on expansion and contraction of cylindrical cavities Effect of embedment depth and stress anisotropy on expansion and contraction of cylindrical cavities Hany El Naggar, Ph.D., P. Eng. and M. Hesham El Naggar, Ph.D., P. Eng. Department of Civil Engineering

More information

S. Freitag, B. T. Cao, J. Ninić & G. Meschke

S. Freitag, B. T. Cao, J. Ninić & G. Meschke SFB 837 Interaction Modeling Mechanized Tunneling S Freitag, B T Cao, J Ninić & G Meschke Institute for Structural Mechanics Ruhr University Bochum 1 Content 1 Motivation 2 Process-oriented FE model for

More information

Finite Element analysis of Laterally Loaded Piles on Sloping Ground

Finite Element analysis of Laterally Loaded Piles on Sloping Ground Indian Geotechnical Journal, 41(3), 2011, 155-161 Technical Note Finite Element analysis of Laterally Loaded Piles on Sloping Ground K. Muthukkumaran 1 and N. Almas Begum 2 Key words Lateral load, finite

More information

The Use of Hardening Soil Model with Small-Strain Stiffness for Serviceability Limit State Analyses of GRE Structures

The Use of Hardening Soil Model with Small-Strain Stiffness for Serviceability Limit State Analyses of GRE Structures The Use of Hardening Soil Model with Small-Strain Stiffness for Serviceability Limit State Analyses of GRE Structures 1) Herold, Andreas IBH Herold & Partner Ingenieure, Weimar, Germany 2) von Wolffersdorff,

More information

DERIVATIVE OF STRESS STRAIN, DEVIATORIC STRESS AND UNDRAINED COHESION MODELS BASED ON SOIL MODULUS OF COHESIVE SOILS

DERIVATIVE OF STRESS STRAIN, DEVIATORIC STRESS AND UNDRAINED COHESION MODELS BASED ON SOIL MODULUS OF COHESIVE SOILS International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 7, Jul 2015, pp. 34-43, Article ID: IJCIET_06_07_005 Available online at http://www.iaeme.com/ijciet/issues.asp?jtypeijciet&vtype=6&itype=7

More information

MPM Research Community. Anura3D MPM Software. Verification Manual

MPM Research Community. Anura3D MPM Software. Verification Manual MPM Research Community Anura3D MPM Software Verification Manual Version: 2017.1 12 January 2017 Anura3D MPM Software, Verification Manual Edited by: Miriam Mieremet (Deltares Delft, The Netherlands) With

More information

CONSOLIDATION BEHAVIOR OF PILES UNDER PURE LATERAL LOADINGS

CONSOLIDATION BEHAVIOR OF PILES UNDER PURE LATERAL LOADINGS VOL., NO., DECEMBER 8 ISSN 89-8 -8 Asian Research Publishing Network (ARPN). All rights reserved. CONSOLIDATION BEAVIOR OF PILES UNDER PURE LATERAL LOADINGS Qassun S. Mohammed Shafiqu Department of Civil

More information

Landslide FE Stability Analysis

Landslide FE Stability Analysis Landslide FE Stability Analysis L. Kellezi Dept. of Geotechnical Engineering, GEO-Danish Geotechnical Institute, Denmark S. Allkja Altea & Geostudio 2000, Albania P. B. Hansen Dept. of Geotechnical Engineering,

More information

Evaluation of Constitutive Soil Models for Predicting Movements Caused by a Deep Excavation in Sands

Evaluation of Constitutive Soil Models for Predicting Movements Caused by a Deep Excavation in Sands Evaluation of Constitutive Soil Models for Predicting Movements Caused by a Deep Excavation in Sands Bin-Chen Benson Hsiung and Sy-Dan Dao* Department of Civil Engineering, National Kaohsiung University

More information

Back analysis of staged embankment failure: The case study Streefkerk

Back analysis of staged embankment failure: The case study Streefkerk Back analysis of staged embankment failure: The case study Streefkerk C.M. Bauduin Besix, Brussels, Belgium M. De Vos Belgian Building Research Institute, Brussels, Belgium P.A. Vermeer Institut für Geotechnik,

More information

Triaxial Consolidated Undrained (CU) Test

Triaxial Consolidated Undrained (CU) Test Benchmark Example No. 48 Triaxial Consolidated Undrained (CU) Test SOFiSTiK 218 VERiFiCATiON MANUAL BE48: Triaxial Consolidated Undrained (CU) Test VERiFiCATiON MANUAL, Version 218-7 Software Version:

More information

Destructuration of soft clay during Shield TBM tunnelling and its consequences

Destructuration of soft clay during Shield TBM tunnelling and its consequences Destructuration of soft clay during Shield TBM tunnelling and its consequences Hirokazu Akagi Abstract It is very important to prevent ground settlement associated with shield TBM tunnelling in soft ground

More information

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION October 1-17,, Beijing, China DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION Mohammad M. Ahmadi 1 and Mahdi Ehsani 1 Assistant Professor, Dept. of Civil Engineering, Geotechnical Group,

More information

A circular tunnel in a Mohr-Coulomb medium with an overlying fault

A circular tunnel in a Mohr-Coulomb medium with an overlying fault MAP3D VERIFICATION EXAMPLE 9 A circular tunnel in a Mohr-Coulomb medium with an overlying fault 1 Description This example involves calculating the stresses and displacements on a fault overlying a 5 m

More information

Soil Constitutive Models and Their Application in Geotechnical Engineering: A Review

Soil Constitutive Models and Their Application in Geotechnical Engineering: A Review Soil Constitutive Models and Their Application in Geotechnical Engineering: A Review Kh Mohd Najmu Saquib Wani 1 Rakshanda Showkat 2 Post Graduate Student, Post Graduate Student, Dept. of Civil Engineering

More information

Reciprocal of the initial shear stiffness of the interface K si under initial loading; reciprocal of the initial tangent modulus E i of the soil

Reciprocal of the initial shear stiffness of the interface K si under initial loading; reciprocal of the initial tangent modulus E i of the soil Appendix F Notation a b B C c C k C N C s C u C wt C θ D r D 1 D 2 D 10 D 30 Reciprocal of the initial shear stiffness of the interface K si under initial loading; reciprocal of the initial tangent modulus

More information

CONTENTS. Lecture 1 Introduction. Lecture 2 Physical Testing. Lecture 3 Constitutive Models

CONTENTS. Lecture 1 Introduction. Lecture 2 Physical Testing. Lecture 3 Constitutive Models CONTENTS Lecture 1 Introduction Introduction.......................................... L1.2 Classical and Modern Design Approaches................... L1.3 Some Cases for Numerical (Finite Element) Analysis..........

More information

Nonlinear Time-Dependent Soil Behavior due to Construction of Buried Structures

Nonlinear Time-Dependent Soil Behavior due to Construction of Buried Structures Journal of Earth Sciences and Geotechnical Engineering, vol. 4, no. 1, 214, 71-88 ISSN: 172-4 (print), 172- (online) Scienpress Ltd, 214 Nonlinear Time-Dependent Soil Behavior due to Construction of Buried

More information

Study of the behavior of Tunis soft clay

Study of the behavior of Tunis soft clay Innov. Infrastruct. Solut. (2016) 1:31 DOI 10.1007/s41062-016-0031-x ORIGINAL PAPER Study of the behavior of Tunis soft clay Mnaouar Klai 1 Mounir Bouassida 1 Received: 20 July 2016 / Accepted: 3 August

More information

Settlement and Bearing Capacity of a Strip Footing. Nonlinear Analyses

Settlement and Bearing Capacity of a Strip Footing. Nonlinear Analyses Settlement and Bearing Capacity of a Strip Footing Nonlinear Analyses Outline 1 Description 2 Nonlinear Drained Analysis 2.1 Overview 2.2 Properties 2.3 Loads 2.4 Analysis Commands 2.5 Results 3 Nonlinear

More information

NUMERICAL ANALYSIS OF A PILE SUBJECTED TO LATERAL LOADS

NUMERICAL ANALYSIS OF A PILE SUBJECTED TO LATERAL LOADS IGC 009, Guntur, INDIA NUMERICAL ANALYSIS OF A PILE SUBJECTED TO LATERAL LOADS Mohammed Younus Ahmed Graduate Student, Earthquake Engineering Research Center, IIIT Hyderabad, Gachibowli, Hyderabad 3, India.

More information

Stress and strain dependent stiffness in a numerical model of a tunnel

Stress and strain dependent stiffness in a numerical model of a tunnel Proc. 2 nd Int. Conference on Soil Structure Interaction in Urban Civil Engineering Zurich / March 2002 Stress and strain dependent stiffness in a numerical model of a tunnel J. Bohá Charles University,

More information

Verification of the Hyperbolic Soil Model by Triaxial Test Simulations

Verification of the Hyperbolic Soil Model by Triaxial Test Simulations 1 Introduction Verification of the Hyperbolic Soil Model by Triaxial Test Simulations This example simulates a series of triaxial tests that can be used to verify that the Hyperbolic constitutive model

More information

Influences of Shielding of Multi crossing Tunnels on Ground Displacement

Influences of Shielding of Multi crossing Tunnels on Ground Displacement Influences of Shielding of Multi crossing Tunnels on Ground Displacement Thayanan Boonyarak Chief of Engineering Division, Seafco Public Company Limited, 144 Prayasuren Road, Bangchan, Klongsamwah, Bangkok,

More information

Reliability of sheet pile walls and the influence of corrosion structural reliability analysis with finite elements

Reliability of sheet pile walls and the influence of corrosion structural reliability analysis with finite elements Risk, Reliability and Societal Safety Aven & Vinnem (eds) 2007 Taylor & Francis Group, London, ISBN 978-0-415-44786-7 Reliability of sheet pile walls and the influence of corrosion structural reliability

More information

Example-3. Title. Description. Cylindrical Hole in an Infinite Mohr-Coulomb Medium

Example-3. Title. Description. Cylindrical Hole in an Infinite Mohr-Coulomb Medium Example-3 Title Cylindrical Hole in an Infinite Mohr-Coulomb Medium Description The problem concerns the determination of stresses and displacements for the case of a cylindrical hole in an infinite elasto-plastic

More information

Cavity Expansion Methods in Geomechanics

Cavity Expansion Methods in Geomechanics Cavity Expansion Methods in Geomechanics by Hai-Sui Yu School of Civil Engineering, University of Nottingham, U. K. KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON TABLE OF CONTENTS Foreword Preface

More information

Constitutive Model Input Parameters for Numerical Analyses of Geotechnical Problems: An In-Situ Testing Case Study.

Constitutive Model Input Parameters for Numerical Analyses of Geotechnical Problems: An In-Situ Testing Case Study. Constitutive Model Input Parameters for Numerical Analyses of Geotechnical Problems: An In-Situ Testing Case Study. Crystal COX a, b and Paul MAYNE a GeoEnvironmental Resources, Inc. b Georgia Institute

More information

OPTIMAL SENSOR LOCATION FOR PARAMETER IDENTIFICATION IN SOFT CLAY

OPTIMAL SENSOR LOCATION FOR PARAMETER IDENTIFICATION IN SOFT CLAY 2 th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering K. Gürlebeck and T. Lahmer (eds.) Weimar, Germany, 2-22 July 215 OPTIMAL SENSOR

More information

Dynamics Manual. Version 7

Dynamics Manual. Version 7 Dynamics Manual Version 7 DYNAMICS MANUAL TABLE OF CONTENTS 1 Introduction...1-1 1.1 About this manual...1-1 2 Tutorial...2-1 2.1 Dynamic analysis of a generator on an elastic foundation...2-1 2.1.1 Input...2-1

More information

NUMERICAL VERIFICATION OF GEOTECHNICAL STRUCTURE IN UNFAVOURABLE GEOLOGICAL CONDITIONS CASE STUDY

NUMERICAL VERIFICATION OF GEOTECHNICAL STRUCTURE IN UNFAVOURABLE GEOLOGICAL CONDITIONS CASE STUDY NUMERICAL VERIFICATION OF GEOTECHNICAL STRUCTURE IN UNFAVOURABLE GEOLOGICAL CONDITIONS CASE STUDY Abstract Marián DRUSA Department of Geotechnics, Faculty of Civil Engineering, Univerzity of Žilina, Univerzitná

More information

ELASTIC CALCULATIONS OF LIMITING MUD PRESSURES TO CONTROL HYDRO- FRACTURING DURING HDD

ELASTIC CALCULATIONS OF LIMITING MUD PRESSURES TO CONTROL HYDRO- FRACTURING DURING HDD North American Society for Trenchless Technology (NASTT) NO-DIG 24 New Orleans, Louisiana March 22-24, 24 ELASTIC CALCULATIONS OF LIMITING MUD PRESSURES TO CONTROL HYDRO- FRACTURING DURING HDD Matthew

More information

CHD pile performance, part II Knappett, Jonathan; Caucis, Karlis; Brown, Michael; Jeffrey, John Ross; Ball, Jonathan David

CHD pile performance, part II Knappett, Jonathan; Caucis, Karlis; Brown, Michael; Jeffrey, John Ross; Ball, Jonathan David University of Dundee CHD pile performance, part II Knappett, Jonathan; Caucis, Karlis; Brown, Michael; Jeffrey, John Ross; Ball, Jonathan David Published in: Proceedings of the Institution of Civil Engineers:

More information

Numerical modelling of tension piles

Numerical modelling of tension piles Numerical modelling of tension piles S. van Baars Ministry of Public Works, Utrecht, Netherlands W.J. van Niekerk Ballast Nedam Engineering, Amstelveen, Netherlands Keywords: tension piles, shaft friction,

More information

Dynamics: Domain Reduction Method. Case study

Dynamics: Domain Reduction Method. Case study Dynamics: Domain Reduction Method. Case study Andrzej Truty c ZACE Services Ltd August 2016 1 / 87 Scope of the lecture Example of a building subject to the earthquake (using Domain Reduction Method (DRM))

More information

Session 3 Mohr-Coulomb Soil Model & Design (Part 2)

Session 3 Mohr-Coulomb Soil Model & Design (Part 2) Mohr Coulomb Model Session 3 Mohr-Coulomb Soil Model & Design (Part 2) Time Session Topic 09:00 10:30 1 Overview 10:30 11:00 Coffee Break 11:00 12:30 2 Design (Part 1) 12:30-01:30 Lunch 01:30 03:00 3 Mohr-Coulomb

More information

In depth study of lateral earth pressure

In depth study of lateral earth pressure In depth study of lateral earth pressure A comparison between hand calculations and PLAXIS Master of Science Thesis in the Master s Programme Geo and Water Engineering MATTIAS PETERSSON MATHIAS PETTERSSON

More information

Pile-tunnel interaction: A conceptual analysis

Pile-tunnel interaction: A conceptual analysis Geotechnical Aspects of Underground Construction in Soft Ground Yoo, Park, Kim & Ban (Eds) 2014 Korean Geotechnical Society, Seoul, Korea, ISBN 978-1-138-02700-8 Pile-tunnel interaction: A conceptual analysis

More information

Verification Manual GT

Verification Manual GT Verification Manual GT Written by: The SoilVision Systems Ltd. Team Last Updated: Tuesday, February 20, 2018 SoilVision Systems Ltd. Saskatoon, Saskatchewan, Canada Software License The software described

More information

Mechanical Properties of Materials

Mechanical Properties of Materials Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of

More information

Before designs are realised in practice, their

Before designs are realised in practice, their Nº 1 - OCTOBER 1996 Bulletin of the PLAXIS Users Association (NL) PLAXIS bulletin P.O. Box 5044, 2600 GA Delft, The Netherlands E-mail: bulletin@worldaccess.nl IN THIS ISSUE: Editorial Column Vermeer PLAXIS

More information

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials Dublin, October 2010 A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials FracMan Technology Group Dr Mark Cottrell Presentation Outline Some Physical

More information

Engineeringmanuals. Part2

Engineeringmanuals. Part2 Engineeringmanuals Part2 Engineering manuals for GEO5 programs Part 2 Chapter 1-12, refer to Engineering Manual Part 1 Chapter 13. Pile Foundations Introduction... 2 Chapter 14. Analysis of vertical load-bearing

More information

Modified Cam-clay triaxial test simulations

Modified Cam-clay triaxial test simulations 1 Introduction Modified Cam-clay triaxial test simulations This example simulates a series of triaxial tests which can be used to verify that Modified Cam-Clay constitutive model is functioning properly.

More information

Finite Element Method in Geotechnical Engineering

Finite Element Method in Geotechnical Engineering Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 5-8, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps

More information

PLAXIS LIQUEFACTION MODEL UBC3D-PLM

PLAXIS LIQUEFACTION MODEL UBC3D-PLM PLAXIS LIQUEFACTION MODEL UBC3D-PLM Alexandros Petalas Assistant Researcher, PLAXIS B.V Vahid Galavi Researcher, PLAXIS B.V May 30, 2012 Contents 1 Key Features of UBC3D 2 1.1 Yield Surfaces...........................

More information

Hypoplastic and elastoplastic modelling a comparison with

Hypoplastic and elastoplastic modelling a comparison with Contents Hypoplastic and elastoplastic modelling a comparison with test Data..................................................... 1 Th. MARCHER, P.A VERMEER, P.-A. von WOLFFERSDORFF 1 Introduction.................................................

More information

Recent Research on EPS Geofoam Seismic Buffers. Richard J. Bathurst and Saman Zarnani GeoEngineering Centre at Queen s-rmc Canada

Recent Research on EPS Geofoam Seismic Buffers. Richard J. Bathurst and Saman Zarnani GeoEngineering Centre at Queen s-rmc Canada Recent Research on EPS Geofoam Seismic Buffers Richard J. Bathurst and Saman Zarnani GeoEngineering Centre at Queen s-rmc Canada What is a wall (SEISMIC) buffer? A compressible inclusion placed between

More information

Prediction of torsion shear tests based on results from triaxial compression tests

Prediction of torsion shear tests based on results from triaxial compression tests Prediction of torsion shear tests based on results from triaxial compression tests P.L. Smith 1 and N. Jones *2 1 Catholic University of America, Washington, USA 2 Geo, Lyngby, Denmark * Corresponding

More information

2D Liquefaction Analysis for Bridge Abutment

2D Liquefaction Analysis for Bridge Abutment D Liquefaction Analysis for Bridge Abutment Tutorial by Angel Francisco Martinez Integrated Solver Optimized for the next generation 64-bit platform Finite Element Solutions for Geotechnical Engineering

More information

Minimization Solutions for Vibrations Induced by Underground Train Circulation

Minimization Solutions for Vibrations Induced by Underground Train Circulation Minimization Solutions for Vibrations Induced by Underground Train Circulation Carlos Dinis da Gama 1, Gustavo Paneiro 2 1 Professor and Head, Geotechnical Center of IST, Technical University of Lisbon,

More information

Deformation And Stability Analysis Of A Cut Slope

Deformation And Stability Analysis Of A Cut Slope Deformation And Stability Analysis Of A Cut Slope Masyitah Binti Md Nujid 1 1 Faculty of Civil Engineering, University of Technology MARA (Perlis), 02600 Arau PERLIS e-mail:masyitahmn@perlis.uitm.edu.my

More information

Analysis of tunnel and super structures for excavation

Analysis of tunnel and super structures for excavation Scientia Iranica A (2011) 18 (1), 1 8 Sharif University of Technology Scientia Iranica Transactions A: Civil Engineering www.sciencedirect.com Analysis of tunnel and super structures for excavation A.H.

More information

TABLE OF CONTENTS CHAPTER TITLE PAGE TITLE PAGE DECLARATION DEDIDATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK

TABLE OF CONTENTS CHAPTER TITLE PAGE TITLE PAGE DECLARATION DEDIDATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK TABLE OF CONTENTS CHAPTER TITLE PAGE TITLE PAGE DECLARATION DEDIDATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK TABLE OF CONTENTS LIST OF TABLE LIST OF FIGURES LIST OF SYMBOLS LIST OF APENDICES i ii iii iv v

More information

Effect of buttress on reduction of rock slope sliding along geological boundary

Effect of buttress on reduction of rock slope sliding along geological boundary Paper No. 20 ISMS 2016 Effect of buttress on reduction of rock slope sliding along geological boundary Ryota MORIYA *, Daisuke FUKUDA, Jun-ichi KODAMA, Yoshiaki FUJII Faculty of Engineering, Hokkaido University,

More information

Clayey sand (SC)

Clayey sand (SC) Pile Bearing Capacity Analysis / Verification Input data Project Task : PROJECT: "NEW STEAM BOILER U-5190 Part : A-1 Descript. : The objective of this Analysis is the Pile allowable bearing Capacity Analysis

More information

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses.

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.2. Some soils show a peak shear strength. Why and what type(s)

More information

GEO E1050 Finite Element Method Mohr-Coulomb and other constitutive models. Wojciech Sołowski

GEO E1050 Finite Element Method Mohr-Coulomb and other constitutive models. Wojciech Sołowski GEO E050 Finite Element Method Mohr-Coulomb and other constitutive models Wojciech Sołowski To learn today. Reminder elasticity 2. Elastic perfectly plastic theory: concept 3. Specific elastic-perfectly

More information

AN IMPORTANT PITFALL OF PSEUDO-STATIC FINITE ELEMENT ANALYSIS

AN IMPORTANT PITFALL OF PSEUDO-STATIC FINITE ELEMENT ANALYSIS AN IMPORTANT PITFALL OF PSEUDO-STATIC FINITE ELEMENT ANALYSIS S. Kontoe, L. Pelecanos & D.M. Potts ABSTRACT: Finite Element (FE) pseudo-static analysis can provide a good compromise between simplified

More information

Numerical Modeling of Skin Resistance Distribution With Depth in Piles

Numerical Modeling of Skin Resistance Distribution With Depth in Piles Numerical Modeling of Skin Resistance Distribution With Depth in Piles Ramli Nazir Associate Professor (Ir.Dr), Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi

More information

Finite Element Analysis of TDR Cable-Grout-Soil Mass Interaction During Localized Shearing

Finite Element Analysis of TDR Cable-Grout-Soil Mass Interaction During Localized Shearing NORTHWESTERN UNIVERSITY Finite Element Analysis of TDR Cable-Grout-Soil Mass Interaction During Localized Shearing A Thesis Submitted to the Graduate School In Partial Fulfillment of the Requirements For

More information

Author(s) Okajima, Kenji; Tanaka, Tadatsugu; Symposium on Backwards Problem in G.

Author(s) Okajima, Kenji; Tanaka, Tadatsugu; Symposium on Backwards Problem in G. Title Backwards Analysis for Retaining Wa based upon ateral Wall Displacemen Author(s) Okajima, Kenji; Tanaka, Tadatsugu; Proceeding of TC302 Symposium Osaka Citation Symposium on Backwards Problem in

More information

Evaluation of dynamic behavior of culverts and embankments through centrifuge model tests and a numerical analysis

Evaluation of dynamic behavior of culverts and embankments through centrifuge model tests and a numerical analysis Computer Methods and Recent Advances in Geomechanics Oka, Murakami, Uzuoka & Kimoto (Eds.) 2015 Taylor & Francis Group, London, ISBN 978-1-138-00148-0 Evaluation of dynamic behavior of culverts and embankments

More information

Drawing up of a geotechnical dossier for the stabilization of historical quay walls along the river Scheldt in Antwerp

Drawing up of a geotechnical dossier for the stabilization of historical quay walls along the river Scheldt in Antwerp Drawing up of a geotechnical dossier for the stabilization of historical quay walls along the river Scheldt in Antwerp Leen Vincke, Koen Haelterman Geotechnics Division Flemish Government, Belgium Leen.vincke@mow.vlaanderen.be

More information

Jestr. Effect of Soil - Structure Interaction Constitutive Models on Dynamic Response of Multi-Story Buildings. Research Article

Jestr. Effect of Soil - Structure Interaction Constitutive Models on Dynamic Response of Multi-Story Buildings. Research Article Jestr Journal of Engineering Science and Technology Review 11 (3) (21) 56-6 Research Article JOURNAL OF Engineering Science and Technology Review www.jestr.org Effect of Soil - Structure Interaction Constitutive

More information

Observational Methods and

Observational Methods and Observational Methods and NATM System for Observational approach to tunnel design Eurocode 7 (EC7) includes the following remarks concerning an observational method. Four requirements shall all be made

More information

Numerical analysis of swelling deformations in tunnelling a case study

Numerical analysis of swelling deformations in tunnelling a case study EURO:TUN 2013 3 rd International Conference on Computational Methods in Tunnelling and Subsurface Engineering Ruhr University Bochum, 17-19 April 2013 Numerical analysis of swelling deformations in tunnelling

More information

SETTLEMENT TROUGH DUE TO TUNNELING IN COHESIVE GROUND

SETTLEMENT TROUGH DUE TO TUNNELING IN COHESIVE GROUND Indian Geotechnical Journal, 41(), 11, 64-75 SETTLEMENT TROUGH DUE TO TUNNELING IN COHESIVE GROUND Mohammed Y. Fattah 1, Kais T. Shlash and Nahla M. Salim 3 Key words Tunnel, clay, finite elements, settlement,

More information

Seismic Response Analysis of Structure Supported by Piles Subjected to Very Large Earthquake Based on 3D-FEM

Seismic Response Analysis of Structure Supported by Piles Subjected to Very Large Earthquake Based on 3D-FEM Seismic Response Analysis of Structure Supported by Piles Subjected to Very Large Earthquake Based on 3D-FEM *Hisatoshi Kashiwa 1) and Yuji Miyamoto 2) 1), 2) Dept. of Architectural Engineering Division

More information

Structural reliability analysis of deep excavations

Structural reliability analysis of deep excavations Timo Schweckendiek, TU Delft, Wim Courage, TNO Built Environment and Geosciences Introduction The Finite Element Method is nowadays widely used in structural design, both for the Servicebility Limit State

More information