ELASTICITY (MDM 10203)


 Chester Garrison
 8 months ago
 Views:
Transcription
1 ELASTICITY () Lecture Module 3: Fundamental Stress and Strain University Tun Hussein Onn Malaysia
2 Normal Stress inconstant stress distribution σ= dp da P = da A dimensional Area of σ and A σ A 3 dimensional Volume of σ and A
3 Normal Stress Tensile and Compressive Compression Compressive stress P c Tension Tensile stress P t 3
4 Normal Strain Concept Normal strain ε is the elongation or contraction of a line segment per unit of length L = L Strain is a nondimensional Quantity i.e. it has no units. It is simply a ratio of two quantities with the same unit. 4
5 Normal Strain Calculation F o = Ao Normal stress (engineering stress) Elongation = L L o Normal strain (engineering strain) L L o o= Lo Lo A Ao F L o= δ F L 1 Lo Volume of the bar must be the same before and after elongation Ao Lo =A L 5
6 True Stress and True Strain True stress is the stress at cross section A Since Ao Lo =A L A= Lo Ao L True stress F F L = = A Ao L o True strain dl d = L from o= L 1 Lo ln = F 1 o Ao = o 1 o L dl = L L =ln L Lo o L =ln o 1 Lo =ln 1 o 6
7 Stress Strain Test 7
8 Stress Strain Diagram 8
9 Elastic Behavior In this region the curve is a straight line, so that stress is proportional to the strain. It is linearly elastic The upper stress limit to this linear relationships is called the proportional limit, σpl If the load is released before the stress is below σpl then the material will return to its original shape. 9
10 Yielding A slight increase in stress above the elastic limit will cause the material to deform permanently, which is called yielding. The stress that causes yielding is called yield stress, σy When the material will continue to strain without any increase in load, it is often referred to as being perfectly plastic. 10
11 Strain Hardening When yielding has ended, a further load can be applied to the specimen, resulting in a curve that rises continuously until it reaches a maximum stress referred to as the ultimate stress, σu The rise in the curve is called strain hardening 11
12 Necking, Fracture At the ultimate stress, the cross sectional area begins to decrease in a localized region. A constriction or neck gradually tends to form in this region as the specimen elongates further. Necking phenomenon will be ended in a fracture of the specimen. The specimen breaks at the fracture stress, σu. 1
13 Typical StressStrain Diagram 13
14 Shear Strain Concept The tangent of the angle through which two adjacent sides rotate relative to their initial position is termed shear strain. x L tan = = x L 14
15 Poisson's Ratio The ratio of lateral strain to axial strain is a constant known as the Poisson's ratio. ratio Original shape Final shape ' L ' lat = r r L long = lat = long 15
16 General 3D Structure σy σxy σyz y σx σxz σz x z 16
17 ThreeDimensional Stress Strain Relationships Loading on x direction x x =, y = x, z = x E x x x x =, y =, z = E E E 17
18 ThreeDimensional Stress Strain Relationships Loading on y direction y y=, x = y, z = y E y y y y=, x =, z = E E E 18
19 ThreeDimensional Stress Strain Relationships Loading on z direction z z =, y = z, x = z E z z z z =, y =, x = E E E 19
20 ThreeDimensional Stress Strain Relationships Loading on x,y, and z directions x x = y z E E y y = x z E E z z = x y E E {} [ ]{ } x 1 x 1 = y 1 y E 1 z z 0
21 ThreeDimensional Stress Strain Relationships Volumetric strain (dilatation): e= x y z e= when 1 x y z E x x = y z E E y y = x z E E z z = x y E E x = y = z = Bulk modulus: E = e 3 1 K= E 3 1 1
22 ThreeDimensional Shear stress Shear Strain Relationships xy xy = G yz yz = G Shear modulus (G): G= E 1 xz xz = G
23 ThreeDimensional Shear stress Shear Strain Relationships Bulk modulus (K): K= E 3 1 E= Shear modulus (G): G= E 1 9GK 3K G 3
24 ThreeDimensional Stress and Lame's constant Stressstrain relationships can be expressed: x =G x e y =G y e z =G z e Lame's constant: E = 1 1 4
25 ThreeDimensional (collection) relationships K, G, E and ν G 1 E K = G = = G= 1 3K 1 3KE E = = = 1 9K E 1 E= G 3 G 9GK = G 1 = 3K 1 = G 3K G = E 3K G 3K E = 1 = = G G 3K G 6K 5
26 TwoDimensional Plane Stress vs Plane Strain Under certain conditions, the state of stresses and strains can be simplified. A general 3D structure can therefore be reduced to a D analysis. PLANE STRESS PLANE STRAIN z= yz= zx =0 z = yz = zx =0 z 0 z 0 6
27 TwoDimensional Plane Stress vs Plane Strain PLANE STRESS PLANE STRAIN 7
28 Stress Transformation y' y y y' xy x ' y ' x' x ' x x 8
29 Stress Transformation y' y y' x' y' A x' x ' A x Acos x A xy Acos xy Asin y Asin 9
30 Stress Transformation Applying F x ' =0 F y ' =0 x ' = x cos y sin xy sin cos y ' = x cos y sin xy sin cos x ' y ' = x y sin cos xy cos sin 30
31 Stress Transformation Further working by substituting sin =sin cos 1 cos sin = 1 cos cos = x y x y x ' = cos xy sin x y x y y'= cos xy sin x y x ' y ' = sin xy cos 31
32 Mohr's circle construction 1. Create coordinate system, see the positive directions below 3
33 Mohr's circle construction. Locate the center of the circle x y avg = 33
34 Mohr's circle construction 3. Locate a point for which the x' axis coincides with the x axis x y x y x 34
35 Mohr's circle construction 4. Now you can draw the circle, the radius is CA x y x y C p x A 35
36 Mohr's circle construction Identifying Principal Stress 1= OC CA 1 = OC CA x y x y P O P1 C x A x y OC = CA= x y xy 36
37 Mohr's circle construction Stresses on Arbitrary Plane If you want to know the stresses at orientation θ x ' y' O x' y' C x' A x xy 37
38 Strain Transformation y' x x = dx y y y= dy x = x dx dy y = y dy xy x' xy dx x x positive shear dx=dx ' cos dx=dx ' sin dy dx ' dx 38
39 Strain Transformation from x ' = x dx cos y '= x dx sin x ' dx ' dx x dx x x dx 39 x
40 Strain Transformation from x ' = y dy sin y '= y dy cos y dy dy dx ' x ' x 40 y
41 Strain Transformation xy from y '= xy dy sin xy dy x ' = xy dy cos xy dy dy dx ' x ' x 41
42 Strain Transformation combining x y xy x ' = x dx cos y dy sin xy dy cos y '= x dx sin y dy cos xy dy sin finally x y x y xy x ' = cos cos x y x y xy y ' = cos cos x ' y ' x y xy = sin cos 4
43 Principal Strains An element can be oriented, so that the element's deformation is caused ONLY by NORMAL STRAINS with NO SHEAR STRAIN. The NORMAL STRAINS are referred to as PRINCIPAL STRAINS. STRAINS xy tan P = x y x y 1 = x y = x y xy x y xy 43
44 Mohr's circle construction 1. Create coordinate system, see the positive directions below 44
45 Mohr's circle construction. Locate the center of the circle x y avg = 45
46 Mohr's circle construction 3. Locate a point for which the x' axis coincides with the x axis x y x y xy x 46
47 Mohr's circle construction 4. Now you can draw the circle, the radius is CA x y x y C xy x A 47
48 Mohr's circle construction Identifying Principal Strains 1= OC CA 1 = OC CA x y x y C O xy x A x y OC = CA= x y xy 48
49 Mohr's circle construction Orientation Principal Strains xy tan p = x y xy 1 p = atan x y x y O C p xy A 49
50 Mohr's circle construction Physical Orientation Principal Strains O C p A x and x' coincide (θ=0) 50
51 Mohr's circle construction Physical Orientation Principal Strains y' y O C p A x' x and x' coincide (θ=0) 51
52 Mohr's circle construction Physical Orientation Principal Strains Conveniently drawn in x and y as horizontal and vertical lines y' y dy ' 1 dx ' x' p x 5
53 Mohr's circle construction InPlane Shear Strain s =90o p O C s A x and x' coincide (θ=0) 53
54 Mohr's circle construction InPlane Shear Strain s =90o p O C s A x and x' coincide (θ=0) 54
55 Mohr's circle construction InPlane Shear Strain Conveniently drawn in x and y as horizontal and vertical lines y y' avg dy ' x y avg = avg dx ' x p x' 55
56 Mohr's circle construction Strains on Arbitrary Plane If you want to know the strains at orientation θ x ' y ' O C xy x' A x 56
57 Mohr's circle construction Strains on Arbitrary Plane Conveniently drawn in x and y as horizontal and vertical lines y' y y ' dy ' x' x x ' dx ' 57
58 Measuring strain A strain gauge is a device used to measure the strain of an object. Invented by Edward E. Simmons and Arthur C. Ruge in 1938, the most common type of strain gauge consists of an insulating flexible backing which supports a metallic foil pattern. The gauge is attached to the object by a suitable adhesive, such as cyanoacrylate. As the object is deformed, the foil is deformed, causing its electrical resistance to change 58
59 Measuring strain 59
60 Strain Rossetes Since the strain gauge measures only in one direction, several strain gauges can be Used to measure other direction of strains. Three gauges are required to measure the strains. b a a= x cos a y sin a xy sin a cos a a b c b= x cos b y sin b xy sin b cos b c = x cos c y sin c xy sin c cos c c From the three equations, x y xy can be found 60
61 Strain Rossetes b a {}[ ]{ } cos sin a sin a cos a a a x b = cos b sin b sin b cos b y c cos c sin c sin c cos c xy a b c c { }[ cos a sin a sin a cos a x y = cos b sin b sin b cos b xy cos c sin c sin c cos c ]{} 1 a b c 61
62 Strain Rossete 45 c b x = a y = c 45o 45 xy = b a c o a 6
63 Strain Rossete 60 b c x = a 1 y = b c a 3 60o 60o a xy = b c 3 63
64 64
ME 2570 MECHANICS OF MATERIALS
ME 2570 MECHANICS OF MATERIALS Chapter III. Mechanical Properties of Materials 1 Tension and Compression Test The strength of a material depends on its ability to sustain a load without undue deformation
More information4.MECHANICAL PROPERTIES OF MATERIALS
4.MECHANICAL PROPERTIES OF MATERIALS The diagram representing the relation between stress and strain in a given material is an important characteristic of the material. To obtain the stressstrain diagram
More informationCHAPTER 4 Stress Transformation
CHAPTER 4 Stress Transformation ANALYSIS OF STRESS For this topic, the stresses to be considered are not on the perpendicular and parallel planes only but also on other inclined planes. A P a a b b P z
More informationSamantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2
Samantha Ramirez, MSE Stress The intensity of the internal force acting on a specific plane (area) passing through a point. Δ ΔA Δ z Δ 1 2 ΔA Δ x Δ y ΔA is an infinitesimal size area with a uniform force
More informationStressStrain Behavior
StressStrain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.
More informationMECE 3321 MECHANICS OF SOLIDS CHAPTER 3
MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.
More informationME 243. Mechanics of Solids
ME 243 Mechanics of Solids Lecture 2: Stress and Strain Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET Email: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil
More informationMechanical Properties of Materials
Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of
More informationModule4. Mechanical Properties of Metals
Module4 Mechanical Properties of Metals Contents ) Elastic deformation and Plastic deformation ) Interpretation of tensile stressstrain curves 3) Yielding under multiaxial stress, Yield criteria, Macroscopic
More informationANALYSIS OF STRAINS CONCEPT OF STRAIN
ANALYSIS OF STRAINS CONCEPT OF STRAIN Concept of strain : if a bar is subjected to a direct load, and hence a stress the bar will change in length. If the bar has an original length L and changes by an
More informationME 243. Lecture 10: Combined stresses
ME 243 Mechanics of Solids Lecture 10: Combined stresses Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET Email: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil
More informationThe objective of this experiment is to investigate the behavior of steel specimen under a tensile test and to determine it's properties.
Objective: The objective of this experiment is to investigate the behavior of steel specimen under a tensile test and to determine it's properties. Introduction: Mechanical testing plays an important role
More informationTheory at a Glance (for IES, GATE, PSU)
1. Stress and Strain Theory at a Glance (for IES, GATE, PSU) 1.1 Stress () When a material is subjected to an external force, a resisting force is set up within the component. The internal resistance force
More information3D Elasticity Theory
3D lasticity Theory Many structural analysis problems are analysed using the theory of elasticity in which Hooke s law is used to enforce proportionality between stress and strain at any deformation level.
More informationMechanics of Earthquakes and Faulting
Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Surface and body forces Tensors, Mohr circles. Theoretical strength of materials Defects Stress concentrations Griffith failure
More informationSTRAIN. Normal Strain: The elongation or contractions of a line segment per unit length is referred to as normal strain denoted by Greek symbol.
STRAIN In engineering the deformation of a body is specified using the concept of normal strain and shear strain whenever a force is applied to a body, it will tend to change the body s shape and size.
More informationEMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain  Axial Loading
MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain  Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain  Axial Loading Statics
More information1.5 STRESSPATH METHOD OF SETTLEMENT CALCULATION 1.5 STRESSPATH METHOD OF SETTLEMENT CALCULATION
Module 6 Lecture 40 Evaluation of Soil Settlement  6 Topics 1.5 STRESSPATH METHOD OF SETTLEMENT CALCULATION 1.5.1 Definition of Stress Path 1.5. Stress and Strain Path for Consolidated Undrained Undrained
More informationMechanics of Earthquakes and Faulting
Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Standard Solids and Fracture Fluids: Mechanical, Chemical Effects Effective Stress Dilatancy Hardening and Stability Mead, 1925
More informationChapter 7. Highlights:
Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true
More informationNORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.
NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric
More informationChapter 12. Static Equilibrium and Elasticity
Chapter 12 Static Equilibrium and Elasticity Static Equilibrium Equilibrium implies that the object moves with both constant velocity and constant angular velocity relative to an observer in an inertial
More informationCHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS
CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS Concepts of Stress and Strain 6.1 Using mechanics of materials principles (i.e., equations of mechanical equilibrium applied to a freebody diagram),
More informationChapter 5 Elastic Strain, Deflection, and Stability 1. Elastic StressStrain Relationship
Chapter 5 Elastic Strain, Deflection, and Stability Elastic StressStrain Relationship A stress in the xdirection causes a strain in the xdirection by σ x also causes a strain in the ydirection & zdirection
More informationOutline. TensileTest Specimen and Machine. StressStrain Curve. Review of Mechanical Properties. Mechanical Behaviour
TensileTest Specimen and Machine Review of Mechanical Properties Outline Tensile test True stress  true strain (flow curve) mechanical properties:  Resilience  Ductility  Toughness  Hardness A standard
More information[5] Stress and Strain
[5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law
More informationCHAPER THREE ANALYSIS OF PLANE STRESS AND STRAIN
CHAPER THREE ANALYSIS OF PLANE STRESS AND STRAIN Introduction This chapter is concerned with finding normal and shear stresses acting on inclined sections cut through a member, because these stresses may
More information1 Stress and Strain. Introduction
1 Stress and Strain Introduction This book is concerned with the mechanical behavior of materials. The term mechanical behavior refers to the response of materials to forces. Under load, a material may
More informationStress, Strain, Mohr s Circle
Stress, Strain, Mohr s Circle The fundamental quantities in solid mechanics are stresses and strains. In accordance with the continuum mechanics assumption, the molecular structure of materials is neglected
More informationIntroduction to Engineering Materials ENGR2000. Dr. Coates
Introduction to Engineering Materials ENGR2 Chapter 6: Mechanical Properties of Metals Dr. Coates 6.2 Concepts of Stress and Strain tension compression shear torsion Tension Tests The specimen is deformed
More informationChapter 3. Load and Stress Analysis
Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3
More informationMechanical properties 1 Elastic behaviour of materials
MME131: Lecture 13 Mechanical properties 1 Elastic behaviour of materials A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Deformation of material under the action of a mechanical
More informationModule III  Macromechanics of Lamina. Lecture 23. MacroMechanics of Lamina
Module III  Macromechanics of Lamina Lecture 23 MacroMechanics of Lamina For better understanding of the macromechanics of lamina, the knowledge of the material properties in essential. Therefore, the
More informationSTANDARD SAMPLE. Reduced section " Diameter. Diameter. 2" Gauge length. Radius
MATERIAL PROPERTIES TENSILE MEASUREMENT F l l 0 A 0 F STANDARD SAMPLE Reduced section 2 " 1 4 0.505" Diameter 3 4 " Diameter 2" Gauge length 3 8 " Radius TYPICAL APPARATUS Load cell Extensometer Specimen
More information6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and
6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile
More informationMechanics of Earthquakes and Faulting
Mechanics of Earthquakes and Faulting Lectures & 3, 9/31 Aug 017 www.geosc.psu.edu/courses/geosc508 Discussion of Handin, JGR, 1969 and Chapter 1 Scholz, 00. Stress analysis and Mohr Circles Coulomb Failure
More informationMECHANICS OF MATERIALS
Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:
More informationProf. B V S Viswanadham, Department of Civil Engineering, IIT Bombay
50 Module 4: Lecture 1 on Stressstrain relationship and Shear strength of soils Contents Stress state, Mohr s circle analysis and Pole, Principal stressspace, Stress pathsin pq space; MohrCoulomb failure
More informationModule 5: Theories of Failure
Module 5: Theories of Failure Objectives: The objectives/outcomes of this lecture on Theories of Failure is to enable students for 1. Recognize loading on Structural Members/Machine elements and allowable
More information9. Stress Transformation
9.7 ABSOLUTE MAXIMUM SHEAR STRESS A pt in a body subjected to a general 3D state of stress will have a normal stress and shearstress components acting on each of its faces. We can develop stresstransformation
More informationSEMM Mechanics PhD Preliminary Exam Spring Consider a twodimensional rigid motion, whose displacement field is given by
SEMM Mechanics PhD Preliminary Exam Spring 2014 1. Consider a twodimensional rigid motion, whose displacement field is given by u(x) = [cos(β)x 1 + sin(β)x 2 X 1 ]e 1 + [ sin(β)x 1 + cos(β)x 2 X 2 ]e
More informationELASTICITY (MDM 10203)
LASTICITY (MDM 10203) Lecture Module 5: 3D Constitutive Relations Dr. Waluyo Adi Siswanto University Tun Hussein Onn Malaysia Generalised Hooke's Law In one dimensional system: = (basic Hooke's law) Considering
More informationPrincipal Stresses, Yielding Criteria, wall structures
Principal Stresses, Yielding Criteria, St i thi Stresses in thin wall structures Introduction The most general state of stress at a point may be represented by 6 components, x, y, z τ xy, τ yz, τ zx normal
More informationUse Hooke s Law (as it applies in the uniaxial direction),
0.6 STRSSSTRAIN RLATIONSHIP Use the principle of superposition Use Poisson s ratio, v lateral longitudinal Use Hooke s Law (as it applies in the uniaxial direction), x x v y z, y y vx z, z z vx y Copyright
More informationStrain Transformation equations
Strain Transformation equations R. Chandramouli Associate DeanResearch SASTRA University, Thanjavur613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 8 Table of Contents 1. Stress transformation
More informationName :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CENEW)/SEM3/CE301/ SOLID MECHANICS
Name :. Roll No. :..... Invigilator s Signature :.. 2011 SOLID MECHANICS Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are required to give their answers
More informationProblem " Â F y = 0. ) R A + 2R B + R C = 200 kn ) 2R A + 2R B = 200 kn [using symmetry R A = R C ] ) R A + R B = 100 kn
Problem 0. Three cables are attached as shown. Determine the reactions in the supports. Assume R B as redundant. Also, L AD L CD cos 60 m m. uation of uilibrium: + " Â F y 0 ) R A cos 60 + R B + R C cos
More informationConsider an elastic spring as shown in the Fig.2.4. When the spring is slowly
.3 Strain Energy Consider an elastic spring as shown in the Fig..4. When the spring is slowly pulled, it deflects by a small amount u 1. When the load is removed from the spring, it goes back to the original
More informationUNIT I SIMPLE STRESSES AND STRAINS
Subject with Code : SM1(15A01303) Year & Sem: IIB.Tech & ISem SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) UNIT I SIMPLE STRESSES
More informationAircraft Stress Analysis and Structural Design Summary
Aircraft Stress Analysis and Structural Design Summary 1. Trusses 1.1 Determinacy in Truss Structures 1.1.1 Introduction to determinacy A truss structure is a structure consisting of members, connected
More informationCONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS
Chapter 9 CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS Figure 9.1: Hooke memorial window, St. Helen s, Bishopsgate, City of London 211 212 CHAPTR 9. CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS 9.1 Mechanical
More informationboth an analytical approach and the pole method, determine: (a) the direction of the
Quantitative Problems Problem 43 Figure 445 shows the state of stress at a point within a soil deposit. Using both an analytical approach and the pole method, determine: (a) the direction of the principal
More informationCHAPTER 4: BENDING OF BEAMS
(74) CHAPTER 4: BENDING OF BEAMS This chapter will be devoted to the analysis of prismatic members subjected to equal and opposite couples M and M' acting in the same longitudinal plane. Such members are
More informationMAE 322 Machine Design. Dr. Hodge Jenkins Mercer University
MAE 322 Machine Design Dr. Hodge Jenkins Mercer University What is this Machine Design course really about? What you will learn: How to design machine elements 1) Design so they won t break under varying
More informationEquilibrium of Deformable Body
Equilibrium of Deformable Body Review Static Equilibrium If a body is in static equilibrium under the action applied external forces, the Newton s Second Law provides us six scalar equations of equilibrium
More information6. Bending CHAPTER OBJECTIVES
CHAPTER OBJECTIVES Determine stress in members caused by bending Discuss how to establish shear and moment diagrams for a beam or shaft Determine largest shear and moment in a member, and specify where
More informationLecture Triaxial Stress and Yield Criteria. When does yielding occurs in multiaxial stress states?
Lecture 5.11 Triaial Stress and Yield Criteria When does ielding occurs in multiaial stress states? Representing stress as a tensor operational stress sstem Compressive stress sstems Triaial stresses:
More informationChapter 6: Mechanical Properties of Metals. Dr. Feras Fraige
Chapter 6: Mechanical Properties of Metals Dr. Feras Fraige Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility Toughness
More informationTRESS  STRAIN RELATIONS
TRESS  STRAIN RELATIONS Stress Strain Relations: Hook's law, states that within the elastic limits the stress is proportional to t is impossible to describe the entire stress strain curve with simple
More informationStrength of Material. Shear Strain. Dr. Attaullah Shah
Strength of Material Shear Strain Dr. Attaullah Shah Shear Strain TRIAXIAL DEFORMATION Poisson's Ratio Relationship Between E, G, and ν BIAXIAL DEFORMATION Bulk Modulus of Elasticity or Modulus of Volume
More informationStrain Measurements. Isaac Choutapalli
Note that for axial elongation (Eaxiai > 0), Erransverse (from Equation C.6), and therefore Strain Measurements Isaac Choutapalli Department of Mechanical Engineering The University of Texas  Pan American
More informationStrength of Materials (15CV 32)
Strength of Materials (15CV 32) Module 1 : Simple Stresses and Strains Dr. H. Ananthan, Professor, VVIET,MYSURU 8/21/2017 Introduction, Definition and concept and of stress and strain. Hooke s law, StressStrain
More informationProf. B V S Viswanadham, Department of Civil Engineering, IIT Bombay
56 Module 4: Lecture 7 on Stressstrain relationship and Shear strength of soils Contents Stress state, Mohr s circle analysis and Pole, Principal stressspace, Stress pathsin pq space; MohrCoulomb failure
More informationSTRESS, STRAIN AND DEFORMATION OF SOLIDS
VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY, MADURAI 625009 DEPARTMENT OF CIVIL ENGINEERING CE8301 STRENGTH OF MATERIALS I 
More informationChapter 3. Load and Stress Analysis. Lecture Slides
Lecture Slides Chapter 3 Load and Stress Analysis 2015 by McGraw Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner.
More informationMECHANICS OF MATERIALS
CHATR Stress MCHANICS OF MATRIALS and Strain Axial Loading Stress & Strain: Axial Loading Suitability of a structure or machine may depend on the deformations in the structure as well as the stresses induced
More informationINTRODUCTION TO STRAIN
SIMPLE STRAIN INTRODUCTION TO STRAIN In general terms, Strain is a geometric quantity that measures the deformation of a body. There are two types of strain: normal strain: characterizes dimensional changes,
More informationTINIUS OLSEN Testing Machine Co., Inc.
Interpretation of StressStrain Curves and Mechanical Properties of Materials Tinius Olsen has prepared this general introduction to the interpretation of stressstrain curves for the benefit of those
More informationWORKBOOK MECHANICS OF MATERIALS AND ELEMENTS OF ENGINEERING STRUCTURES
WORKBOOK MECHANICS OF MATERIALS AND ELEMENTS OF ENGINEERING STRUCTURES LUBLIN 014 Authors: Sylwester Samborski, Andrzej Teter and Marcin Bocheński Desktop publishing: Sylwester Samborski, Andrzej Teter
More informationME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam crosssec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.
ME 323  Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM12:20PM Ghosh 2:303:20PM Gonzalez 12:301:20PM Zhao 4:305:20PM M (x) y 20 kip ft 0.2
More informationVYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ APPLIED MECHANICS Study Support Leo Václavek Ostrava 2015 Title:Applied Mechanics Code: Author: doc. Ing.
More informationHardened Concrete. Lecture No. 16
Hardened Concrete Lecture No. 16 Fatigue strength of concrete Modulus of elasticity, Creep Shrinkage of concrete StressStrain Plot of Concrete At stress below 30% of ultimate strength, the transition
More informationBTECH MECHANICAL PRINCIPLES AND APPLICATIONS. Level 3 Unit 5
BTECH MECHANICAL PRINCIPLES AND APPLICATIONS Level 3 Unit 5 FORCES AS VECTORS Vectors have a magnitude (amount) and a direction. Forces are vectors FORCES AS VECTORS (2 FORCES) Forces F1 and F2 are in
More informationName (Print) ME Mechanics of Materials Exam # 1 Date: October 5, 2016 Time: 8:00 10:00 PM
Name (Print) (Last) (First) Instructions: ME 323  Mechanics of Materials Exam # 1 Date: October 5, 2016 Time: 8:00 10:00 PM Circle your lecturer s name and your class meeting time. Gonzalez Krousgrill
More information20. Rheology & Linear Elasticity
I Main Topics A Rheology: Macroscopic deformation behavior B Linear elasticity for homogeneous isotropic materials 10/29/18 GG303 1 Viscous (fluid) Behavior http://manoa.hawaii.edu/graduate/content/slidelava
More informationEquilibrium. the linear momentum,, of the center of mass is constant
Equilibrium is the state of an object where: Equilibrium the linear momentum,, of the center of mass is constant Feb. 19, 2018 the angular momentum,, about the its center of mass, or any other point, is
More informationProf. B V S Viswanadham, Department of Civil Engineering, IIT Bombay
51 Module 4: Lecture 2 on Stressstrain relationship and Shear strength of soils Contents Stress state, Mohr s circle analysis and Pole, Principal stressspace, Stress pathsin pq space; Mohrcoulomb failure
More information3. BEAMS: STRAIN, STRESS, DEFLECTIONS
3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets
More informationANSYS Mechanical Basic Structural Nonlinearities
Lecture 4 Rate Independent Plasticity ANSYS Mechanical Basic Structural Nonlinearities 1 Chapter Overview The following will be covered in this Chapter: A. Background Elasticity/Plasticity B. Yield Criteria
More informationCIVIL DEPARTMENT MECHANICS OF STRUCTURES ASSIGNMENT NO 1. Brach: CE YEAR:
MECHANICS OF STRUCTURES ASSIGNMENT NO 1 SEMESTER: V 1) Find the least moment of Inertia about the centroidal axes XX and YY of an unequal angle section 125 mm 75 mm 10 mm as shown in figure 2) Determine
More informationStress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus. Case study
Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus Case study 2 In field of Physics, it explains how an object deforms under an applied force Real rigid bodies are elastic we can
More informationFinite Element Method in Geotechnical Engineering
Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 58, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps
More informationA concrete cylinder having a a diameter of of in. mm and elasticity. Stress and Strain: Stress and Strain: 0.
2011 earson Education, Inc., Upper Saddle River, NJ. ll rights reserved. This material is protected under all copyright laws as they currently 8 1. 3 1. concrete cylinder having a a diameter of of 6.00
More informationLecture 8. Stress Strain in Multidimension
Lecture 8. Stress Strain in Multidimension Module. General Field Equations General Field Equations [] Equilibrium Equations in Elastic bodies xx x y z yx zx f x 0, etc [2] Kinematics xx u x x,etc. [3]
More informationN = Shear stress / Shear strain
UNIT  I 1. What is meant by factor of safety? [A/M15] It is the ratio between ultimate stress to the working stress. Factor of safety = Ultimate stress Permissible stress 2. Define Resilience. [A/M15]
More informationPDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics
Page1 PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [2910601] Introduction, Fundamentals of Statics 1. Differentiate between Scalar and Vector quantity. Write S.I.
More informationChapter Two: Mechanical Properties of materials
Chapter Two: Mechanical Properties of materials Time : 16 Hours An important consideration in the choice of a material is the way it behave when subjected to force. The mechanical properties of a material
More informationHomework No. 1 MAE/CE 459/559 John A. Gilbert, Ph.D. Fall 2004
Homework No. 1 MAE/CE 459/559 John A. Gilbert, Ph.D. 1. A beam is loaded as shown. The dimensions of the cross section appear in the insert. the figure. Draw a complete free body diagram showing an equivalent
More informationObjectives: After completion of this module, you should be able to:
Chapter 12 Objectives: After completion of this module, you should be able to: Demonstrate your understanding of elasticity, elastic limit, stress, strain, and ultimate strength. Write and apply formulas
More information9 MECHANICAL PROPERTIES OF SOLIDS
9 MECHANICAL PROPERTIES OF SOLIDS Deforming force Deforming force is the force which changes the shape or size of a body. Restoring force Restoring force is the internal force developed inside the body
More informationMechanics of Earthquakes and Faulting
Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Overview Milestones in continuum mechanics Concepts of modulus and stiffness. Stressstrain relations Elasticity Surface and body
More informationModule 4 : Deflection of Structures Lecture 4 : Strain Energy Method
Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under
More information7.4 The Elementary Beam Theory
7.4 The Elementary Beam Theory In this section, problems involving long and slender beams are addressed. s with pressure vessels, the geometry of the beam, and the specific type of loading which will be
More informationElasticity and Plasticity. 1.Basic principles of Elasticity and plasticity. 2.Stress and Deformation of Bars in Axial load 1 / 59
Elasticity and Plasticity 1.Basic principles of Elasticity and plasticity 2.Stress and Deformation of Bars in Axial load 1 / 59 Basic principles of Elasticity and plasticity Elasticity and plasticity in
More information3.22 Mechanical Properties of Materials Spring 2008
MIT OpenCourseWare http://ocw.mit.edu 3.22 Mechanical Properties of Materials Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Quiz #1 Example
More informationChapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING )
Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) 5.1 DEFINITION A construction member is subjected to centric (axial) tension or compression if in any cross section the single distinct stress
More informationCourse: US01CPHY01 UNIT 1 ELASTICITY I Introduction:
Course: US0CPHY0 UNIT ELASTICITY I Introduction: If the distance between any two points in a body remains invariable, the body is said to be a rigid body. In practice it is not possible to have a perfectly
More information공업역학/ 일반물리1 수강대상기계공학과 2학년
교과목명 ( 국문) 고체역학 ( 영문) Solid Mechanics 담당교수( 소속) 박주혁( 기계공학과) 학수번호/ 구분/ 학점 004510/ 전필/3(3) 1반 전화( 연구실/HP) 34083771/01062143771 강의시간/ 강의실화목9:0010:15/ 충무관106 선수과목 공업역학/ 일반물리1 수강대상기계공학과 2학년 jhpark@sejong.ac.kr
More information[8] Bending and Shear Loading of Beams
[8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight
More informationMechanical Design in Optical Engineering
Torsion Torsion: Torsion refers to the twisting of a structural member that is loaded by couples (torque) that produce rotation about the member s longitudinal axis. In other words, the member is loaded
More information