Transactions on Modelling and Simulation vol 9, 1995 WIT Press, ISSN X

Size: px
Start display at page:

Download "Transactions on Modelling and Simulation vol 9, 1995 WIT Press, ISSN X"

Transcription

1 Elastic-plastic model of crack growth under fatigue using the boundary element method M. Scibetta, O. Pensis LTAS Fracture Mechanics, University ofliege, B-4000 Liege, Belgium Abstract Life of mechanic components is generally linked to crack initiation and propagation under fatigue. Linear models are used to determine stress intensity factors used in Paris laws or similar ones. But it is well known that a plastic zone due to the singularity of the elastic solution exist at the crack tip. Residual stresses generated around the crack tip are important parameters to explain the modification of crack growth rate. This phenomena can be directly observed in case of overloading or crack closure. The Boundary Element Method extended to non-linear 2-dimension problems is used according to the fact that plasticity is localised in a very restricted zone. A first approach tends to link residual stresses in the plastic zone to stress intensity factor. A second approach is based on the plastic energy dissipated at the crack tip. Symbols stress a plastic strain epl stress intensity factor K material constant C, m, n, y cylindrical coordinate (r, 0) boundary Y crack length a domain Q number of cycle N kernels U^T^ size of a plastic zone d Hooke matrix H^ plastic yield op* displacement, traction u, t energy W body force f

2 22 Boundary Element Technology 1 Introduction Since 1852, industries and laboratories have studied the fatigue of metals. Indeed, even today most failures in mechanical structure are due to this phenomena. When a structure is loaded by cyclic external forces, a complete fracture may occur, although a single cycle does not result in any damage at all. The fatigue phenomena can be split in two parts : the initiation of a macrocrack and its propagation until complete rupture. From a micro structural point of view, the two phenomenon are due to the propagation of dislocations existing in any imperfect crystal or polycrystal. The accumulation of dislocations creates a macro-crack. This crack propagates creating an accumulation of dislocation at the crack tip. This paper tries to obtain a good way to predict crack growth rate for medium crack propagation rate. But, it is not realistic to model dislocation at a microscopic point of view. So an elastic-plastic theory is used to model irreversibilities at a macroscopic point of view. 2 Non-linearities 2.1 Linear model PI Until now, the most widely used model to predict crack growth rate is based on an elastic analysis. Near the crack tip, stress expressed in local cylindrical coordinate has always the following singular form : Where K is called stress intensity factor and is calculated and tabulated in a lot of different geometries and loading conditions. Then an empirical law gives crack growth rate according to the variation of stress intensity factor. Paris gives a simple but good law for medium crack propagation rate for symmetrical loading (K^^= -K^x)- It is described in the form of a power law : C and m are material constants. ( J =CAK" AK = K_-K_ (2) It is quite amazing to notice that a linear analysis can provide a good approximation of crack growth rate, because crack propagation is physically linked to non-linear irreversible phenomenon. It has been shown using simple analytical models that there is a link between stress intensity factor and the size of the plastic zone.

3 Boundary Element Technology 23 An other interesting parameter is the total energy dissipated in the plastic zone during a complete cycle. This parameter expresses more clearly the link between crack propagation and irreversibilities. re^dtdq (4) 2.2 Drawbacks of a linear theory PI a) During the loading phase, the maximum stress intensity factor is reach and the crack lips are wide open. During the unloading phase, compressive residual stress are created leading to the contact between crack surface. A new parameter has to be introduced to take into account the effect of asymmetrical cycle. A empirical correction is proposed by Erdogan : K = 5 (5) max n is a new material constants that is not always available. This equation is reduced to Paris law for symmetrical loading. It seems clear that the total plastic energy dissipated increases when R ratio tends to 1. This new material constant n seems to be introduced to take into account non-linear behaviour and could probably be determined using a non-linear analyse. b) All equations and conclusions are only valid for steady state cycling. The stress amplitude is constant and the stress intensity factor amplitude increases slowly. Several papers W have shown that a sudden change in stress amplitude can lead to an acceleration or retardation of the propagation rate. For example, an overloading leads to a large compressive residual zone. Until the crack has propagate through this zone, crack growth rate is lower than predicted with a linear model. A new empirical law taking into account the history is introduced to correct the crack growth rate. Where y is a new material constant, d is the actual plastic zone size due to the last cycle, dj is the plastic zone size created during a previous cycle i and Aa; is the crack length from the cycle i to the last cycle.

4 24 Boundary Element Technology 2.3 Non-linear model The goal of this new orientation is to avoid correction to elastic models and new constants to take non-linear effect into account. A kind of Paris law will be used to predict crack growth rate. -C,m (7) In order to calculate C* and mj, numerical tests will be done for a symmetrical loading in steady state condition. A link between stress intensity factor and plastic energy dissipated will be found: K = C, W"' (8) And a simple identification will give the unknown constant as a function of Paris constant : Ci - C C and m, = m m, (9) 3 Extension of the boundary element method to non-linear mechanics PI In order to model correctly non steady state problems, an elastic-plastic model must be used. Moreover, to express correctly asymmetrical loading nonlinearities coming from contact problems must be implemented (a model without friction will be used). A sub domain technique has been chosen to treat different materials and to avoid an ill conditioned system due to cracks^]. For each sub domain : Somigliana equation is used for each unknown of his boundary : Ui(x') + f^(x',x)uj(x) dlxx) = j"u^(x',x) t/x) df(x) + r r (10) fu,j(x',x) fj(x) d#x)-fs^(x',x)e%(x) do(x) With sj = c%.h^ And the derivation of Somigliany is used for each internal unknown : t,(x) df(x) + f,(x o^ o^ (11) The discretisation of this two linear equations gives : 0 (12) "+f':=0 (13) Boundary conditions can be written as a linear or non-linear equation for contact conditions (friction is not taken into account, so non-linear contact equations are independent of time) : Au + Bt + c = Oand f(u,t) = 0 (14) Plastic behaviour is also described by a non-linear equation :

5 Boundary Element Technology 25 e*=g(e,e) (15) Linear equations (12), (13) and (14) are used to express all unknown as a function of ep* and u^ (u^ is the normal displacement of the surfaces which could be in contact), non-linear equations can be written as follow : f(uv) (16) GP'=g(G^U\GV) (17) It is interesting to notice that the system is relatively small. The number of unknown is limited to the number of non-linear equations. These equations can be solved by any good non-linear solver. 4 Applications 4.1 Bimetallic pipe A pipe composed by an inner aluminium and an outer steel pipe is heated at 50 [ C]. The difference of thermal expansion coefficient creates stresses in both pipe. This interesting example has been chosen to test the sub domain method and to verify equations (12) and (13) where plastic strain (ep*) have been substituted by thermal strain (e^). Material constant : Young's modulus, Poisson ration, coefficient of thermal expansion are respectively: Aluminium : E= [MPa] v=0.33 o=23 10-G[ C"1] Steel : E= [MPa] v=0.3 ct=12 86 _^,.., T [mm] 50 [mm] 50 [mm] Figure 1 : Geometry and Von Mises stress Exact solution is compared with boundary element analysis. Different meshes with degree 2 discontinuous elements have been used. - Ml 1 element on the linear boundary of each sub domain -M2 -M3 2 elements on the linear boundary of each sub domain 4 elements on the linear boundary of each sub domain

6 26 Boundary Element Technology ) Figure 2 : Radial and tangential stress along r axis Mean radial and tangential stress are : <(?n>=14,085[mpa] <G00>=52,7789 [MPa]. It allows to calculate mean errors for each mesh. Grr GAA Ml [%] M2 [%] Table 1 : Radial and tangential stress error in percent M3 [%] Crack under tension A cracked aluminium plate is submitted to uniform pressure. This example is still an elastic solution, but it will be soon treated with the nonlinear model [MPa] A A A A A A A A [mm] Y V V V Y v Y 50 [mm] 50 [mm] _ Figure 3 : Geometry and Von Mises stress

7 Boundary Element Technology 27 Stress intensity factors have been computed using the J-integral method PI. This integration has been made around a circle of radius R and for different meshes (Ml 16 elements, M2 32 elements, M3 64 elements). The exact solution has the following expression W ; V = <x = (18) R = 6.25 R=12.5 Ml% M2% Table 2 : Stress intensity factor error in percent M3% Conclusions The tool presented here can already provide good solutions for linear analyses. In a couple of time, it will provide non-linear solutions and a more detailed analysis will be made to identify the parameters used in the new crack growth rate law. This new model for crack propagation will be used to analyse asymmetrical load and non steady state problems. Results obtained by this analyses will probably reduce experimental testing in order to identify parameters used in empirical laws. References 1. Aliabadi M.H. & Brebbia, Advances in boundary element methods for fracture mechanics, Elsevier, London, Becker A. A., The Boundary element method in engineering, McGraw- Hill, London, Klesnil M, Lukas P., Fatigue of metallic materials, Elsevier, Amsterdam, Murakami Y, Stress intensity factors handbook, Pergamon Press, Exeter, Yan AM & Nguyen D.H., Stress intensity factors and crack extension in a cracked pressurised cylinder, Engineering Failure Analysis, Vol 1 No. 4,pp , 1994.

Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure

Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure ISSN : 48-96, Vol. 6, Issue 8, ( Part -4 August 06, pp.3-38 RESEARCH ARTICLE Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure Dr.Ragbe.M.Abdusslam Eng. Khaled.S.Bagar ABSTRACT

More information

Example-3. Title. Description. Cylindrical Hole in an Infinite Mohr-Coulomb Medium

Example-3. Title. Description. Cylindrical Hole in an Infinite Mohr-Coulomb Medium Example-3 Title Cylindrical Hole in an Infinite Mohr-Coulomb Medium Description The problem concerns the determination of stresses and displacements for the case of a cylindrical hole in an infinite elasto-plastic

More information

A novel approach to predict the growth rate of short cracks under multiaxial loadings

A novel approach to predict the growth rate of short cracks under multiaxial loadings A novel approach to predict the growth rate of short cracks under multiaxial loadings F. Brugier 1&2, S. Pommier 1, R. de Moura Pinho 2, C. Mary 2 and D. Soria 2 1 LMT-Cachan, ENS Cachan / CNRS / UPMC

More information

Practice Final Examination. Please initial the statement below to show that you have read it

Practice Final Examination. Please initial the statement below to show that you have read it EN175: Advanced Mechanics of Solids Practice Final Examination School of Engineering Brown University NAME: General Instructions No collaboration of any kind is permitted on this examination. You may use

More information

Alternative numerical method in continuum mechanics COMPUTATIONAL MULTISCALE. University of Liège Aerospace & Mechanical Engineering

Alternative numerical method in continuum mechanics COMPUTATIONAL MULTISCALE. University of Liège Aerospace & Mechanical Engineering University of Liège Aerospace & Mechanical Engineering Alternative numerical method in continuum mechanics COMPUTATIONAL MULTISCALE Van Dung NGUYEN Innocent NIYONZIMA Aerospace & Mechanical engineering

More information

For ASME Committee use only.

For ASME Committee use only. ð15þ KD-232 PROTECTION AGAINST LOCAL FAILURE In addition to demonstrating protection against plastic collapse as defined in KD-231, the local failure criteria below shall be satisfied. KD-232.1 Elastic

More information

Chapter 3. Load and Stress Analysis

Chapter 3. Load and Stress Analysis Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

More information

Thermal load-induced notch stress intensity factors derived from averaged strain energy density

Thermal load-induced notch stress intensity factors derived from averaged strain energy density Available online at www.sciencedirect.com Draft ScienceDirect Draft Draft Structural Integrity Procedia 00 (2016) 000 000 www.elsevier.com/locate/procedia 21st European Conference on Fracture, ECF21, 20-24

More information

Cracked concrete structures under cyclic load

Cracked concrete structures under cyclic load Cracked concrete structures under cyclic load Fabrizio Barpi & Silvio Valente Department of Structural and Geotechnical Engineering, Politecnico di Torino, Torino, Italy ABSTRACT: The safety of cracked

More information

Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture

Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture by Dirk Mohr ETH Zurich, Department of Mechanical and Process Engineering, Chair of Computational Modeling of Materials in Manufacturing

More information

elastoplastic contact problems D. Martin and M.H. Aliabadi Wessex Institute of Technology, Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK

elastoplastic contact problems D. Martin and M.H. Aliabadi Wessex Institute of Technology, Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK Non-conforming BEM elastoplastic contact problems D. Martin and M.H. Aliabadi discretisation in Wessex Institute of Technology, Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK Abstract In this paper,

More information

Discrete Element Modelling of a Reinforced Concrete Structure

Discrete Element Modelling of a Reinforced Concrete Structure Discrete Element Modelling of a Reinforced Concrete Structure S. Hentz, L. Daudeville, F.-V. Donzé Laboratoire Sols, Solides, Structures, Domaine Universitaire, BP 38041 Grenoble Cedex 9 France sebastian.hentz@inpg.fr

More information

Analysis of asymmetric radial deformation in pipe with local wall thinning under internal pressure using strain energy method

Analysis of asymmetric radial deformation in pipe with local wall thinning under internal pressure using strain energy method Analysis of asymmetric radial deformation in pipe with local wall thinning under internal pressure using strain energy method V.M.F. Nascimento Departameto de ngenharia Mecânica TM, UFF, Rio de Janeiro

More information

Fluid driven cohesive crack propagation in quasi-brittle materials

Fluid driven cohesive crack propagation in quasi-brittle materials Fluid driven cohesive crack propagation in quasi-brittle materials F. Barpi 1, S. Valente 2 Department of Structural and Geotechnical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129

More information

G1RT-CT D. EXAMPLES F. GUTIÉRREZ-SOLANA S. CICERO J.A. ALVAREZ R. LACALLE W P 6: TRAINING & EDUCATION

G1RT-CT D. EXAMPLES F. GUTIÉRREZ-SOLANA S. CICERO J.A. ALVAREZ R. LACALLE W P 6: TRAINING & EDUCATION D. EXAMPLES 426 WORKED EXAMPLE I Flat Plate Under Constant Load Introduction and objectives Data Analysis Bibliography/References 427 INTRODUCTION AND OBJECTIVES During a visual inspection of a C-Mn flat

More information

Critical applied stresses for a crack initiation from a sharp V-notch

Critical applied stresses for a crack initiation from a sharp V-notch Focussed on: Fracture and Structural Integrity related Issues Critical applied stresses for a crack initiation from a sharp V-notch L. Náhlík, P. Hutař Institute of Physics of Materials, Academy of Sciences

More information

Numerical modelling of induced tensile stresses in rock in response to impact loading

Numerical modelling of induced tensile stresses in rock in response to impact loading Numerical modelling of induced tensile stresses in rock in response to impact loading M.T. Mnisi, D.P. Roberts and J.S. Kuijpers Council for Scientific and Industrial Research (CSIR): Natural Resources

More information

Onedimensional ratchetting Twodimensional ratchetting Response of unified models Response of 2M1C model Response of polycrystalline models

Onedimensional ratchetting Twodimensional ratchetting Response of unified models Response of 2M1C model Response of polycrystalline models Ratchetting Onedimensional ratchetting Twodimensional ratchetting Response of unified models Response of 2M1C model Response of polycrystalline models Still an open problem Ratchetting effects Primary

More information

Engineering Solid Mechanics

Engineering Solid Mechanics }} Engineering Solid Mechanics 1 (2013) 1-8 Contents lists available at GrowingScience Engineering Solid Mechanics homepage: www.growingscience.com/esm Impact damage simulation in elastic and viscoelastic

More information

MATERIAL MECHANICS, SE2126 COMPUTER LAB 2 PLASTICITY

MATERIAL MECHANICS, SE2126 COMPUTER LAB 2 PLASTICITY MATERIAL MECHANICS, SE2126 COMPUTER LAB 2 PLASTICITY PART A INTEGRATED CIRCUIT An integrated circuit can be thought of as a very complex maze of electronic components and metallic connectors. These connectors

More information

The University of Melbourne Engineering Mechanics

The University of Melbourne Engineering Mechanics The University of Melbourne 436-291 Engineering Mechanics Tutorial Four Poisson s Ratio and Axial Loading Part A (Introductory) 1. (Problem 9-22 from Hibbeler - Statics and Mechanics of Materials) A short

More information

Cohesive band model: a triaxiality-dependent cohesive model for damage to crack transition in a non-local implicit discontinuous Galerkin framework

Cohesive band model: a triaxiality-dependent cohesive model for damage to crack transition in a non-local implicit discontinuous Galerkin framework University of Liège Aerospace & Mechanical Engineering Cohesive band model: a triaxiality-dependent cohesive model for damage to crack transition in a non-local implicit discontinuous Galerkin framework

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting Lectures & 3, 9/31 Aug 017 www.geosc.psu.edu/courses/geosc508 Discussion of Handin, JGR, 1969 and Chapter 1 Scholz, 00. Stress analysis and Mohr Circles Coulomb Failure

More information

MMJ1133 FATIGUE AND FRACTURE MECHANICS E ENGINEERING FRACTURE MECHANICS

MMJ1133 FATIGUE AND FRACTURE MECHANICS E ENGINEERING FRACTURE MECHANICS E ENGINEERING WWII: Liberty ships Reprinted w/ permission from R.W. Hertzberg, "Deformation and Fracture Mechanics of Engineering Materials", (4th ed.) Fig. 7.1(b), p. 6, John Wiley and Sons, Inc., 1996.

More information

SSNS106 Damage of a reinforced concrete plate under requests varied with model GLRC_DM

SSNS106 Damage of a reinforced concrete plate under requests varied with model GLRC_DM Titre : SSNS106 - Endommagement d une plaque plane sous so[...] Date : 01/03/2013 Page : 1/67 SSNS106 Damage of a reinforced concrete plate under requests varied with model GLRC_DM Summarized: This test

More information

Stress Concentration. Professor Darrell F. Socie Darrell Socie, All Rights Reserved

Stress Concentration. Professor Darrell F. Socie Darrell Socie, All Rights Reserved Stress Concentration Professor Darrell F. Socie 004-014 Darrell Socie, All Rights Reserved Outline 1. Stress Concentration. Notch Rules 3. Fatigue Notch Factor 4. Stress Intensity Factors for Notches 5.

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

Card Variable MID RO E PR ECC QH0 FT FC. Type A8 F F F F F F F. Default none none none 0.2 AUTO 0.3 none none

Card Variable MID RO E PR ECC QH0 FT FC. Type A8 F F F F F F F. Default none none none 0.2 AUTO 0.3 none none Note: This is an extended description of MAT_273 input provided by Peter Grassl It contains additional guidance on the choice of input parameters beyond the description in the official LS-DYNA manual Last

More information

GENERALISED COMPUTATIONAL ANALYSIS OF CONTACT FATIGUE INITIATION

GENERALISED COMPUTATIONAL ANALYSIS OF CONTACT FATIGUE INITIATION UNIVERSITY OF MARIBOR FACULTY OF MECHANICAL ENGINEERING NAFEMS/FENET GENERALISED COMPUTATIONAL ANALYSIS OF CONTACT FATIGUE INITIATION M. Šraml, Z. Ren,, J. Flašker ker,, I. Potrč, M.Ulbin Zurich, June

More information

5 ADVANCED FRACTURE MODELS

5 ADVANCED FRACTURE MODELS Essentially, all models are wrong, but some are useful George E.P. Box, (Box and Draper, 1987) 5 ADVANCED FRACTURE MODELS In the previous chapter it was shown that the MOR parameter cannot be relied upon

More information

Dynamic Analysis of a Reinforced Concrete Structure Using Plasticity and Interface Damage Models

Dynamic Analysis of a Reinforced Concrete Structure Using Plasticity and Interface Damage Models Dynamic Analysis of a Reinforced Concrete Structure Using Plasticity and Interface Damage Models I. Rhee, K.J. Willam, B.P. Shing, University of Colorado at Boulder ABSTRACT: This paper examines the global

More information

ROTATING RING. Volume of small element = Rdθbt if weight density of ring = ρ weight of small element = ρrbtdθ. Figure 1 Rotating ring

ROTATING RING. Volume of small element = Rdθbt if weight density of ring = ρ weight of small element = ρrbtdθ. Figure 1 Rotating ring ROTATIONAL STRESSES INTRODUCTION High centrifugal forces are developed in machine components rotating at a high angular speed of the order of 100 to 500 revolutions per second (rps). High centrifugal force

More information

Coupling of plasticity and damage in glass fibre reinforced polymer composites

Coupling of plasticity and damage in glass fibre reinforced polymer composites EPJ Web of Conferences 6, 48 1) DOI: 1.151/epjconf/1648 c Owned by the authors, published by EDP Sciences, 1 Coupling of plasticity and damage in glass fibre reinforced polymer composites R. Kvale Joki

More information

20. Rheology & Linear Elasticity

20. Rheology & Linear Elasticity I Main Topics A Rheology: Macroscopic deformation behavior B Linear elasticity for homogeneous isotropic materials 10/29/18 GG303 1 Viscous (fluid) Behavior http://manoa.hawaii.edu/graduate/content/slide-lava

More information

STANDARD SAMPLE. Reduced section " Diameter. Diameter. 2" Gauge length. Radius

STANDARD SAMPLE. Reduced section  Diameter. Diameter. 2 Gauge length. Radius MATERIAL PROPERTIES TENSILE MEASUREMENT F l l 0 A 0 F STANDARD SAMPLE Reduced section 2 " 1 4 0.505" Diameter 3 4 " Diameter 2" Gauge length 3 8 " Radius TYPICAL APPARATUS Load cell Extensometer Specimen

More information

Modelling of ductile failure in metal forming

Modelling of ductile failure in metal forming Modelling of ductile failure in metal forming H.H. Wisselink, J. Huetink Materials Innovation Institute (M2i) / University of Twente, Enschede, The Netherlands Summary: Damage and fracture are important

More information

Chapter 7. Highlights:

Chapter 7. Highlights: Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true

More information

A Cavitation Erosion Model for Ductile Materials

A Cavitation Erosion Model for Ductile Materials CAV1:sessionA3.1 A Cavitation Erosion Model for Ductile Materials N. Berchiche, J.P. Franc, J.M. Michel Laboratoire des Ecoulements Géophysiques et Industriels, BP 53, 3841 GRENOBLE Cedex 9, France Abstract

More information

Virtual tests based on model reduction strategies for fatigue analysis

Virtual tests based on model reduction strategies for fatigue analysis Proceedings of the 7th GACM Colloquium on Computational Mechanics for Young Scientists from Academia and Industry October 11-13, 217 in Stuttgart, Germany Virtual tests based on model reduction strategies

More information

Finite element simulations of fretting contact systems

Finite element simulations of fretting contact systems Computer Methods and Experimental Measurements for Surface Effects and Contact Mechanics VII 45 Finite element simulations of fretting contact systems G. Shi, D. Backman & N. Bellinger Structures and Materials

More information

Cohesive Band Model: a triaxiality-dependent cohesive model inside an implicit non-local damage to crack transition framework

Cohesive Band Model: a triaxiality-dependent cohesive model inside an implicit non-local damage to crack transition framework University of Liège Aerospace & Mechanical Engineering MS3: Abstract 131573 - CFRAC2017 Cohesive Band Model: a triaxiality-dependent cohesive model inside an implicit non-local damage to crack transition

More information

Elastic Properties of Solid Materials. Notes based on those by James Irvine at

Elastic Properties of Solid Materials. Notes based on those by James Irvine at Elastic Properties of Solid Materials Notes based on those by James Irvine at www.antonine-education.co.uk Key Words Density, Elastic, Plastic, Stress, Strain, Young modulus We study how materials behave

More information

Experimental and theoretical characterization of Li 2 TiO 3 and Li 4 SiO 4 pebbles

Experimental and theoretical characterization of Li 2 TiO 3 and Li 4 SiO 4 pebbles Experimental and theoretical characterization of Li 2 TiO 3 and Li 4 SiO 4 s D. Aquaro 1 N. Zaccari ABSTRACT Dipartimento di Ingegneria Meccanica Nucleare e della Produzione University of Pisa (Italy)

More information

Analysis of a Lap Joint Including Fastener Hole Residual Stress Effects

Analysis of a Lap Joint Including Fastener Hole Residual Stress Effects Analysis of a Lap Joint Including Fastener Hole Residual Stress Effects Guillaume Renaud, Gang Li, Guoqin Shi, Yan Bombardier, Min Liao Aerospace Portfolio AFGROW User Workshop 214, Layton, UT, September

More information

A Notes Formulas. This chapter is composed of 15 double pages which list, with commentaries, the results for:

A Notes Formulas. This chapter is composed of 15 double pages which list, with commentaries, the results for: The modeling process is a key step of conception. First, a crude modeling allows to validate (or not) the concept and identify the best combination of properties that maximize the performances. Then, a

More information

ME 2570 MECHANICS OF MATERIALS

ME 2570 MECHANICS OF MATERIALS ME 2570 MECHANICS OF MATERIALS Chapter III. Mechanical Properties of Materials 1 Tension and Compression Test The strength of a material depends on its ability to sustain a load without undue deformation

More information

Nonlinear Finite Element Modeling of Nano- Indentation Group Members: Shuaifang Zhang, Kangning Su. ME 563: Nonlinear Finite Element Analysis.

Nonlinear Finite Element Modeling of Nano- Indentation Group Members: Shuaifang Zhang, Kangning Su. ME 563: Nonlinear Finite Element Analysis. ME 563: Nonlinear Finite Element Analysis Spring 2016 Nonlinear Finite Element Modeling of Nano- Indentation Group Members: Shuaifang Zhang, Kangning Su Department of Mechanical and Nuclear Engineering,

More information

Testing Elastomers and Plastics for Marc Material Models

Testing Elastomers and Plastics for Marc Material Models Testing Elastomers and Plastics for Marc Material Models Presented by: Kurt Miller Axel Products, Inc. axelproducts.com We Measure Structural Properties Stress Strain Time-Temperature Test Combinations

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain - Axial Loading Statics

More information

5. STRESS CONCENTRATIONS. and strains in shafts apply only to solid and hollow circular shafts while they are in the

5. STRESS CONCENTRATIONS. and strains in shafts apply only to solid and hollow circular shafts while they are in the 5. STRESS CONCENTRATIONS So far in this thesis, most of the formulas we have seen to calculate the stresses and strains in shafts apply only to solid and hollow circular shafts while they are in the elastic

More information

VERIFICATION OF BRITTLE FRACTURE CRITERIA FOR BIMATERIAL STRUCTURES

VERIFICATION OF BRITTLE FRACTURE CRITERIA FOR BIMATERIAL STRUCTURES VERIFICATION OF BRITTLE FRACTURE CRITERIA FOR BIMATERIAL STRUCTURES Grzegorz MIECZKOWSKI *, Krzysztof MOLSKI * * Faculty of Mechanical Engineering, Białystok University of Technology, ul. Wiejska 45C,

More information

INCREASING RUPTURE PREDICTABILITY FOR ALUMINUM

INCREASING RUPTURE PREDICTABILITY FOR ALUMINUM 1 INCREASING RUPTURE PREDICTABILITY FOR ALUMINUM Influence of anisotropy Daniel Riemensperger, Adam Opel AG Paul Du Bois, PDB 2 www.opel.com CONTENT Introduction/motivation Isotropic & anisotropic material

More information

Advanced Strength of Materials Prof S. K. Maiti Mechanical Engineering Indian Institute of Technology, Bombay. Lecture 27

Advanced Strength of Materials Prof S. K. Maiti Mechanical Engineering Indian Institute of Technology, Bombay. Lecture 27 Advanced Strength of Materials Prof S. K. Maiti Mechanical Engineering Indian Institute of Technology, Bombay Lecture 27 Last time we considered Griffith theory of brittle fracture, where in it was considered

More information

A Finite Element Study of Elastic-Plastic Hemispherical Contact Behavior against a Rigid Flat under Varying Modulus of Elasticity and Sphere Radius

A Finite Element Study of Elastic-Plastic Hemispherical Contact Behavior against a Rigid Flat under Varying Modulus of Elasticity and Sphere Radius Engineering, 2010, 2, 205-211 doi:10.4236/eng.2010.24030 Published Online April 2010 (http://www. SciRP.org/journal/eng) 205 A Finite Element Study of Elastic-Plastic Hemispherical Contact Behavior against

More information

APPLICATION OF DAMAGE MODEL FOR NUMERICAL DETERMINATION OF CARRYING CAPACITY OF LARGE ROLLING BEARINGS

APPLICATION OF DAMAGE MODEL FOR NUMERICAL DETERMINATION OF CARRYING CAPACITY OF LARGE ROLLING BEARINGS INTERNATIONAL ESIGN CONFERENCE - ESIGN ubrovnik, May 14-17,. APPLICATION OF AMAGE MOEL FOR NUMERICAL ETERMINATION OF CARRYING CAPACITY OF LARGE ROLLING BEARINGS Robert Kunc, Ivan Prebil, Tomaž Rodic and

More information

Advanced Mechanical Principles

Advanced Mechanical Principles Unit 36: Unit code Advanced Mechanical Principles R/615/1504 Unit level 5 Credit value 15 Introduction A mechanical engineer is required to have an advanced knowledge of most of the machinery used within

More information

FRACTURE MECHANICS FOR MEMBRANES

FRACTURE MECHANICS FOR MEMBRANES FRACTURE MECHANICS FOR MEMBRANES Chong Li, Rogelio Espinosa and Per Ståhle Solid Mechanics, Malmö University SE 205 06 Malmö, Sweden chong.li@ts.mah.se Abstract During fracture of membranes loading often

More information

Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double cantilever beam (DCB) specimens.

Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double cantilever beam (DCB) specimens. a). Cohesive Failure b). Interfacial Failure c). Oscillatory Failure d). Alternating Failure Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double

More information

N = Shear stress / Shear strain

N = Shear stress / Shear strain UNIT - I 1. What is meant by factor of safety? [A/M-15] It is the ratio between ultimate stress to the working stress. Factor of safety = Ultimate stress Permissible stress 2. Define Resilience. [A/M-15]

More information

CRACK BIFURCATION AS A RETARDATION MECHANISM

CRACK BIFURCATION AS A RETARDATION MECHANISM ORAL/POSTER REFERENCE: FT288 CRACK BIFURCATION AS A RETARDATION MECHANISM A.C.O. Miranda 1, M.A. Meggiolaro 2, J.T.P. Castro 2, L.F. Martha 3 1 Tecgraf - Computer Graphics Technology Group, 2 Department

More information

Ch. 10: Fundamental of contact between solids

Ch. 10: Fundamental of contact between solids Ch. 10: Fundamental of contact between solids Actual surface is not smooth. At atomic scale, there are always defects at surface, such as vacancies, ledges, kinks, terraces. In micro or macro scale, roughness

More information

Elastic-plastic deformation near the contact surface of the circular disk under high loading

Elastic-plastic deformation near the contact surface of the circular disk under high loading Elastic-plastic deformation near the contact surface of the circular disk under high loading T. Sawada & M. Horiike Department of Mechanical Systems Engineering Tokyo University of Agriculture and Technology,

More information

Crack Tip Plastic Zone under Mode I Loading and the Non-singular T zz -stress

Crack Tip Plastic Zone under Mode I Loading and the Non-singular T zz -stress Crack Tip Plastic Zone under Mode Loading and the Non-singular T -stress Yu.G. Matvienko Mechanical Engineering Research nstitute of the Russian Academy of Sciences Email: ygmatvienko@gmail.com Abstract:

More information

A FINITE ELEMENT STUDY OF ELASTIC-PLASTIC HEMISPHERICAL CONTACT BEHAVIOR AGAINST A RIGID FLAT UNDER VARYING MODULUS OF ELASTICITY AND SPHERE RADIUS

A FINITE ELEMENT STUDY OF ELASTIC-PLASTIC HEMISPHERICAL CONTACT BEHAVIOR AGAINST A RIGID FLAT UNDER VARYING MODULUS OF ELASTICITY AND SPHERE RADIUS Proceedings of the International Conference on Mechanical Engineering 2009 (ICME2009) 26-28 December 2009, Dhaka, Bangladesh ICME09- A FINITE ELEMENT STUDY OF ELASTIC-PLASTIC HEMISPHERICAL CONTACT BEHAVIOR

More information

Determination of Stress Intensity Factor for a Crack Emanating From a Rivet Hole and Approaching Another in Curved Sheet

Determination of Stress Intensity Factor for a Crack Emanating From a Rivet Hole and Approaching Another in Curved Sheet International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Determination of Stress Intensity Factor for a Crack Emanating From a Rivet Hole and Approaching Another in Curved Sheet Raghavendra.

More information

Mechanics of Materials Primer

Mechanics of Materials Primer Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus

More information

Finite element analysis of indentation experiments J.M. Olaf Fraunhofer-Insitut fur Werkstoffmechanik, Wohlerstr. 11, D-W Freiburg, Germany

Finite element analysis of indentation experiments J.M. Olaf Fraunhofer-Insitut fur Werkstoffmechanik, Wohlerstr. 11, D-W Freiburg, Germany Finite element analysis of indentation experiments J.M. Olaf Fraunhofer-Insitut fur Werkstoffmechanik, Wohlerstr. 11, D-W- 7800 Freiburg, Germany ABSTRACT There are only a few methods suitable for a quantitative

More information

MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION

MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION A - INTRODUCTION INTRODUCTION M.N.Tamin, CSMLab, UTM Course Content: A - INTRODUCTION Mechanical failure modes; Review of load and stress analysis equilibrium equations, complex stresses, stress transformation,

More information

Transactions on Engineering Sciences vol 6, 1994 WIT Press, ISSN

Transactions on Engineering Sciences vol 6, 1994 WIT Press,  ISSN The treatment of crack propagation in inhomogeneous materials using the boundary element method A. Boussekine," L. Ulmet," S. Caperaa* " Laboratoire de Genie Civil, Universite de Limoges, 19300 Egletons,

More information

Stress Concentrations, Fatigue, Fracture

Stress Concentrations, Fatigue, Fracture Stress Concentrations, Fatigue, Fracture The fundamental topic in this document is the development of cracks in steel. For structures subjected to cyclic loads, such cracks can develop over time and ultimately

More information

Load Sequence Interaction Effects in Structural Durability

Load Sequence Interaction Effects in Structural Durability Load Sequence Interaction Effects in Structural Durability M. Vormwald 25. Oktober 200 Technische Universität Darmstadt Fachgebiet Werkstoffmechanik Introduction S, S [ log] S constant amplitude S variable

More information

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE 1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & Free-Body Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for

More information

INFLUENCE OF THE LOCATION AND CRACK ANGLE ON THE MAGNITUDE OF STRESS INTENSITY FACTORS MODE I AND II UNDER UNIAXIAL TENSION STRESSES

INFLUENCE OF THE LOCATION AND CRACK ANGLE ON THE MAGNITUDE OF STRESS INTENSITY FACTORS MODE I AND II UNDER UNIAXIAL TENSION STRESSES INFLUENCE OF THE LOCATION AND CRACK ANGLE ON THE MAGNITUDE OF STRESS INTENSITY FACTORS MODE I AND II UNDER UNIAXIAL TENSION STRESSES Najah Rustum Mohsin Southern Technical University, Technical Institute-Nasiriya,

More information

An accelerated predictor-corrector scheme for 3D crack growth simulations

An accelerated predictor-corrector scheme for 3D crack growth simulations An accelerated predictor-corrector scheme for 3D crack growth simulations W. Weber 1 and G. Kuhn 2 1,2 1 Institute of Applied Mechanics, University of Erlangen-Nuremberg Egerlandstraße 5, 91058 Erlangen,

More information

Experimental study of mechanical and thermal damage in crystalline hard rock

Experimental study of mechanical and thermal damage in crystalline hard rock Experimental study of mechanical and thermal damage in crystalline hard rock Mohammad Keshavarz Réunion Technique du CFMR - Thèses en Mécanique des Roches December, 3 nd 2009 1 Overview Introduction Characterization

More information

Multi-scale digital image correlation of strain localization

Multi-scale digital image correlation of strain localization Multi-scale digital image correlation of strain localization J. Marty a, J. Réthoré a, A. Combescure a a. Laboratoire de Mécanique des Contacts et des Strcutures, INSA Lyon / UMR CNRS 5259 2 Avenue des

More information

Strength Study of Spiral Flexure Spring of Stirling Cryocooler

Strength Study of Spiral Flexure Spring of Stirling Cryocooler Sensors & Transducers 2013 by IFSA http://www.sensorsportal.com Strength Study of Spiral of Stirling Cryocooler WANG Wen-Rui, NIE Shuai, ZHANG Jia-Ming School of Mechanical Engineering, University of Science

More information

The Subsurface Crack Under Conditions of Slip and Stick Caused by a Surface Normal Force

The Subsurface Crack Under Conditions of Slip and Stick Caused by a Surface Normal Force F.-K.Chang Maria Comninou Mem. ASME Sheri Sheppard Student Mem. ASME J. R. Barber Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, Mich. 48109 The Subsurface

More information

Failure process of carbon fiber composites. *Alexander Tesar 1)

Failure process of carbon fiber composites. *Alexander Tesar 1) Failure process of carbon fiber composites *Alexander Tesar 1) 1) Institute of Construction and Architecture, Slovak Academy of Sciences, Dubravska cesta, 845 03 Bratislava, Slovak Republic 1) alexander.tesar@gmail.com

More information

Module-4. Mechanical Properties of Metals

Module-4. Mechanical Properties of Metals Module-4 Mechanical Properties of Metals Contents ) Elastic deformation and Plastic deformation ) Interpretation of tensile stress-strain curves 3) Yielding under multi-axial stress, Yield criteria, Macroscopic

More information

Code_Aster. SSNP161 Biaxial tests of Kupfer

Code_Aster. SSNP161 Biaxial tests of Kupfer Titre : SSNP161 Essais biaxiaux de Kupfer Date : 10/10/2012 Page : 1/8 SSNP161 Biaxial tests of Kupfer Summary: Kupfer [1] is interested to characterize the performances of the concrete under biaxial loadings.

More information

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS CHAPTER THE EFFECTS OF FORCES ON MATERIALS EXERCISE 1, Page 50 1. A rectangular bar having a cross-sectional area of 80 mm has a tensile force of 0 kn applied to it. Determine the stress in the bar. Stress

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Surface and body forces Tensors, Mohr circles. Theoretical strength of materials Defects Stress concentrations Griffith failure

More information

A PAPER ON DESIGN AND ANALYSIS OF PRESSURE VESSEL

A PAPER ON DESIGN AND ANALYSIS OF PRESSURE VESSEL A PAPER ON DESIGN AND ANALYSIS OF PRESSURE VESSEL P.Palanivelu 1, R.Siva Prasad 2, 1 PG Scholar, Department of Mechanical Engineering, Gojan School of Business and Technology, Redhills, Chennai, India.

More information

Discontinuous Distributions in Mechanics of Materials

Discontinuous Distributions in Mechanics of Materials Discontinuous Distributions in Mechanics of Materials J.E. Akin, Rice University 1. Introduction The study of the mechanics of materials continues to change slowly. The student needs to learn about software

More information

SKIN-STRINGER DEBONDING AND DELAMINATION ANALYSIS IN COMPOSITE STIFFENED SHELLS

SKIN-STRINGER DEBONDING AND DELAMINATION ANALYSIS IN COMPOSITE STIFFENED SHELLS SKIN-STRINER DEBONDIN AND DELAMINATION ANALYSIS IN COMPOSITE STIFFENED SHELLS R. Rikards, K. Kalnins & O. Ozolinsh Institute of Materials and Structures, Riga Technical University, Riga 1658, Latvia ABSTRACT

More information

INFLUENCE OF A WELDED PIPE WHIP RESTRAINT ON THE CRITICAL CRACK SIZE IN A 90 BEND

INFLUENCE OF A WELDED PIPE WHIP RESTRAINT ON THE CRITICAL CRACK SIZE IN A 90 BEND 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18) Beijing, China, August 7-12, 25 SMiRT18-G8-5 INFLUENCE OF A WELDED PIPE WHIP RESTRAINT ON THE CRITICAL CRACK SIZE

More information

Transactions on Modelling and Simulation vol 10, 1995 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 10, 1995 WIT Press,  ISSN X Parameters controlling the numerical simulation validity of damageable composite toughness testing S. Yotte, C. Currit, E. Lacoste, J.M. Quenisset Laboratoire de Genie Meanique - IUT 'A\ Domaine Universitaire,

More information

FRACTURE IN HIGH PERFORMANCE FIBRE REINFORCED CONCRETE PAVEMENT MATERIALS

FRACTURE IN HIGH PERFORMANCE FIBRE REINFORCED CONCRETE PAVEMENT MATERIALS FRACTURE IN HIGH PERFORMANCE FIBRE REINFORCED CONCRETE PAVEMENT MATERIALS ERIK DENNEMAN A thesis submitted in partial fulfilment of the requirements for the degree of PHILOSOPHIAE DOCTOR (ENGINEERING)

More information

Instabilities and Dynamic Rupture in a Frictional Interface

Instabilities and Dynamic Rupture in a Frictional Interface Instabilities and Dynamic Rupture in a Frictional Interface Laurent BAILLET LGIT (Laboratoire de Géophysique Interne et Tectonophysique) Grenoble France laurent.baillet@ujf-grenoble.fr http://www-lgit.obs.ujf-grenoble.fr/users/lbaillet/

More information

Fatigue Damage Development in a Steel Based MMC

Fatigue Damage Development in a Steel Based MMC Fatigue Damage Development in a Steel Based MMC V. Tvergaard 1,T.O/ rts Pedersen 1 Abstract: The development of fatigue damage in a toolsteel metal matrix discontinuously reinforced with TiC particulates

More information

Engineering Fracture Mechanics Prof. K. Ramesh Department of Applied Mechanics Indian Institute of Technology, Madras

Engineering Fracture Mechanics Prof. K. Ramesh Department of Applied Mechanics Indian Institute of Technology, Madras Engineering Fracture Mechanics Prof. K. Ramesh Department of Applied Mechanics Indian Institute of Technology, Madras Module No. # 07 Lecture No. # 34 Paris Law and Sigmoidal Curve (Refer Slide Time: 00:14)

More information

Stress concentrations, fracture and fatigue

Stress concentrations, fracture and fatigue Stress concentrations, fracture and fatigue Piet Schreurs Department of Mechanical Engineering Eindhoven University of Technology http://www.mate.tue.nl/ piet December 1, 2016 Overview Stress concentrations

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Overview Milestones in continuum mechanics Concepts of modulus and stiffness. Stress-strain relations Elasticity Surface and body

More information

Lecture #2: Split Hopkinson Bar Systems

Lecture #2: Split Hopkinson Bar Systems Lecture #2: Split Hopkinson Bar Systems by Dirk Mohr ETH Zurich, Department of Mechanical and Process Engineering, Chair of Computational Modeling of Materials in Manufacturing 2015 1 1 1 Uniaxial Compression

More information

Introduction to Fracture

Introduction to Fracture Introduction to Fracture Introduction Design of a component Yielding Strength Deflection Stiffness Buckling critical load Fatigue Stress and Strain based Vibration Resonance Impact High strain rates Fracture

More information

Theory at a Glance (for IES, GATE, PSU)

Theory at a Glance (for IES, GATE, PSU) 1. Stress and Strain Theory at a Glance (for IES, GATE, PSU) 1.1 Stress () When a material is subjected to an external force, a resisting force is set up within the component. The internal resistance force

More information

ANSYS Mechanical Basic Structural Nonlinearities

ANSYS Mechanical Basic Structural Nonlinearities Lecture 4 Rate Independent Plasticity ANSYS Mechanical Basic Structural Nonlinearities 1 Chapter Overview The following will be covered in this Chapter: A. Background Elasticity/Plasticity B. Yield Criteria

More information

CHAPTER 7 FINITE ELEMENT ANALYSIS OF DEEP GROOVE BALL BEARING

CHAPTER 7 FINITE ELEMENT ANALYSIS OF DEEP GROOVE BALL BEARING 113 CHAPTER 7 FINITE ELEMENT ANALYSIS OF DEEP GROOVE BALL BEARING 7. 1 INTRODUCTION Finite element computational methodology for rolling contact analysis of the bearing was proposed and it has several

More information

DAMAGE MODEL FOR CONCRETE INCLUDING RESIDUAL HYSTERETIC LOOPS: APPLICATION TO SEISMIC AND DYNAMIC LOADING

DAMAGE MODEL FOR CONCRETE INCLUDING RESIDUAL HYSTERETIC LOOPS: APPLICATION TO SEISMIC AND DYNAMIC LOADING Fracture Mechanics of Concrete Structures Proceedings FRAMCOS-3 AEDIFICA TIO Publishers, D-79104 Frei burg, Germany DAMAGE MODEL FOR CONCRETE INCLUDING RESIDUAL HYSTERETIC LOOPS: APPLICATION TO SEISMIC

More information