ME 375 EXAM #1 Friday, March 13, 2015 SOLUTION


 Cameron Barnett
 1 years ago
 Views:
Transcription
1 ME 375 EXAM #1 Friday, March 13, 2015 SOLUTION
2 PROBLEM 1 A system is made up of a homogeneous disk (of mass m and outer radius R), particle A (of mass m) and particle B (of mass m). The disk is pinned to ground at O and is able to roll without slipping on particle A. A spring (of stiffness k) connects A to ground. A second spring (also of stiffness k) connects A and B. A force f(t) acts on particle B. The system has two degrees of freedom, and is to be described in terms of the absolute coordinates x(t) and y(t). Derive the two differential equations of motion for the system in terms of the x and y coordinates. Your equations of motion should be written in terms of x and y, and their time derivatives, in addition to the parameters of m, k and f(t). Appropriate free body diagrams must be included with your solution in order to receive full credit for your work. SOLUTION From FBDs: Block A: Disk: Block B: Kinematics: F x = kx + k( y x) F = m!!x (1) M = FR = I!! θ = 1 2 mr2!! θ (2) F x = k( y x) + f = m!!y (3)
3 !!x = R!! θ!! θ =!!x / R (4) Combining equations (1), (2) and (4): F x = kx + k( y x) 1 1!!x R 2 mr2 R = m!!x 3 m!!x + 2kx ky = 0 2 From equation (3): m!!y kx + ky = f
4 PROBLEM 2 The differential equations of motion for a twodegreeoffreedom system in terms of coordinates x 1 and x 2 and input u(t) are known to be: m!!x 1 + c!x 1 + 2kx 1 kx 2 = f 0 u(t) (1) m!!x 2 kx 1 + kx 2 = 2 f 0 u(t) (2) Derive the single input/output differential equation of motion for the system with x 1 as the output and u(t) as the input. SOLUTION Taking the LT of equations (1) and (2) with zero initial conditions: ( ms 2 + cs + 2k) X 1 kx 2 = f 0 U (s) (3) ( ) X 2 = 2 f 0 U (s) X 2 = 2 f 0 U (s) + kx 1 kx 1 + ms 2 + k ms 2 + k Combining (3) and (4): ms 2 ( + cs + 2k) X 1 k 2 f 0 U (s) + kx 1 ms 2 + k = f 0 U (s) ( ms 2 + cs + 2k) ( ms 2 + k) X 1 k ( 2 f 0 U (s) + kx 1 ) = f 0 ( ms 2 + k)u (s) ( m 2 s 4 + cms 3 + 3mks 2 + cks + k 2 ) X 1 = f 0 ( ms 2 + 3k )U (s) Taking the inverse LT of the above gives: m 2!!!! x 1 + cm!!! x 1 + 3mk!!x 1 + ck!x 1 + k 2 x 1 = mf 0 u(t)!! + 3kf 0 u(t) (4)
5 PROBLEM 3 The poles for the secondorder system shown below are shown in the above plot of the complex plane: m!!y + c!y + ky = f 0 u(t) where m = 10 and f 0 = 20. This system has a unit step input of u(t) = h(t) and is given zero initial conditions ( y(0) =!y(0) = 0 ). PART A i) Write down the response y(t) due to this input. ii) Determine the values for the percent overshoot (%OS) and 2% settling time ( t s ). iii) What are the values of c and k for this system? PART B i) Suppose that the original system is changed by reducing the %OS by 50% while keeping the settling time fixed. Write down the resulting response. ii) Suppose that the original system is changed by reducing the 2% settling time to a minimum while keeping the undamped natural frequency ω n unchanged. What are the numerical values for the two poles of the system as a result of this change?
6 SOLUTION Divide EOM by m :!!y + c m!y + k m y = f 0 m u(t)!!y + 2ζω n!y + ω 2 n y = Kω 2 n u(t) The transfer function is written down as: 2 Kω G(s) = n s ζω n s + ω = N(s) D(s) n From figure, we know that the characteristic equation for the system is: 0 = D(s) = ( s p 1 )( s p 1 ) = s 2 ( p 1 + p 1 )s + p 1 p 1 ( ) + ( 8 6 j) = s j ( )( 8 6 j) s j = s 2 +16s +100 where: p 1 = σ + ω d j = j. Comparing coefficients in the two expressions for D(s): ω n 2 = 100 ω n = 10 2ζω n = 16 ζω n = 8 Kω 2 n = f 0 m K = f 0 2 mω = 20 n 10 ( )( 100) = 0.02 PART A From lecture book (page V.10), the response of an underdamped secondorder system to a step input is given by: y(t) = K 1 e σt cosω d t + σ sinω ω d t = e 8t cos6t + 4 d 3 sin6t Also: and: PART B %OS = 100e πζ / 1 ζ 2 = 100e t s = 4 = 4 ζω n 8 = 0.5 k m = ω 2 n π( 0.8)/ k = mω 2 n = ( 10) ( 100) = ζω n = c m c = 2ζ mω n = 2 ( )2 = 1.51% ( )( 0.8) ( 10) ( 10) = 160 %OS = 100e πζ / 1 ζ 2 ln 2 %OS 100 = ζ 2 π 2 1 ζ 2 ζ = After the change in i), %OS = 1.51/ 2 = 0.76% ζ = ( ) ( ) = ln π 2 + ln ( ) ( ) ln %OS / 100 π 2 + ln 2 %OS / 100
7 If t s is held constant ζω n = constant = 8 = σ ω n = 8 / ζ = 8 / 0.841= 9.51 ω d = ω n 1 ζ 2 = = Therefore: y(t) = K 1 e σt cosω d t + σ sinω ω d t = e 8t ( cos5.14t +1.56sin5.14t) d For the change in ii): minimizing settling time while keeping ω n a constant moves the poles around a circle of radius ω n = 10 to where the circle intersects the real axis (which gives repeated roots corresponding to ζ = 1). Therefore, p 1 = p 2 = ζω n = 1 ( )( 10) = 10.
8 PROBLEM 4 Consider the following transfer function: G( s) = Y ( s) 0.6s = ( 200s ) U ( s) 1.2s s where u t ( ) is the input and y( t) is the output. This system is given an input of u(t) = sinωt. On the next page, construct a straightline approximation (asymptotes) for the db amplitude of the steadystate response y ss (t) as a function of ω. You are asked to provide details below (such as break frequencies, zerointercepts, slopes in db/decade) related to the construction of your db amplitude plot. Without these details, you cannot receive full credit for your plot. Also, please provide numerical LABELS for your axes. SOLUTION G( s) = 0.6( 2000)s( s /10 +1) ( 12000) s 2 / s / ( ) = 0.1 For constructing Bode plots: N 1 = 0.1 ( N 1 ) db = 20log( 0.1) = 20 = constant N 2 = s + 20dB / dec with intercept at ω = 1 ( )s( s /10 +1) D 1 s 2 / s / = N 1 N 2 N 3 N 3 = s / dB at low freqs, + 20dB / dec at high freqs and ω b = 10 ( ) 0dBat low freqs, 40dB / dec at high freqs 1/ D 1 = 1/ s 2 / s / 25+1 and ω b = 100
9
ME 375 Final Examination Thursday, May 7, 2015 SOLUTION
ME 375 Final Examination Thursday, May 7, 2015 SOLUTION POBLEM 1 (25%) negligible mass wheels negligible mass wheels v motor no slip ω r r F D O no slip e in Motor% Cart%with%motor%a,ached% The coupled
More informationHomework 7  Solutions
Homework 7  Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real
More informationFinal Exam April 30, 2013
Final Exam Instructions: You have 120 minutes to complete this exam. This is a closedbook, closednotes exam. You are allowed to use a calculator during the exam. Usage of mobile phones and other electronic
More informationFrequency Response of Linear Time Invariant Systems
ME 328, Spring 203, Prof. Rajamani, University of Minnesota Frequency Response of Linear Time Invariant Systems Complex Numbers: Recall that every complex number has a magnitude and a phase. Example: z
More informationEE C128 / ME C134 Fall 2014 HW 9 Solutions. HW 9 Solutions. 10(s + 3) s(s + 2)(s + 5) G(s) =
1. Pole Placement Given the following openloop plant, HW 9 Solutions G(s) = 1(s + 3) s(s + 2)(s + 5) design the statevariable feedback controller u = Kx + r, where K = [k 1 k 2 k 3 ] is the feedback
More informationRaktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries
. AERO 632: of Advance Flight Control System. Preliminaries Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. Preliminaries Signals & Systems Laplace
More informationChapter 2 SDOF Vibration Control 2.1 Transfer Function
Chapter SDOF Vibration Control.1 Transfer Function mx ɺɺ( t) + cxɺ ( t) + kx( t) = F( t) Defines the transfer function as output over input X ( s) 1 = G( s) = (1.39) F( s) ms + cs + k s is a complex number:
More informationTransient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n
Design via frequency response Transient response via gain adjustment Consider a unity feedback system, where G(s) = ωn 2. The closed loop transfer function is s(s+2ζω n ) T(s) = ω 2 n s 2 + 2ζωs + ω 2
More informationLecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types
Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types Venkata Sonti Department of Mechanical Engineering Indian Institute of Science Bangalore, India, 562 This
More informationIf you need more room, use the backs of the pages and indicate that you have done so.
EE 343 Exam II Ahmad F. Taha Spring 206 Your Name: Your Signature: Exam duration: hour and 30 minutes. This exam is closed book, closed notes, closed laptops, closed phones, closed tablets, closed pretty
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 24: Compensation in the Frequency Domain Overview In this Lecture, you will learn: Lead Compensators Performance Specs Altering
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall K(s +1)(s +2) G(s) =.
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Dynamics and Control II Fall 7 Problem Set #7 Solution Posted: Friday, Nov., 7. Nise problem 5 from chapter 8, page 76. Answer:
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real Poles
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering.4 Dynamics and Control II Fall 7 Problem Set #9 Solution Posted: Sunday, Dec., 7. The.4 Tower system. The system parameters are
More informationChapter 5 Design. D. J. Inman 1/51 Mechanical Engineering at Virginia Tech
Chapter 5 Design Acceptable vibration levels (ISO) Vibration isolation Vibration absorbers Effects of damping in absorbers Optimization Viscoelastic damping treatments Critical Speeds Design for vibration
More informationMath 215/255 Final Exam (Dec 2005)
Exam (Dec 2005) Last Student #: First name: Signature: Circle your section #: Burggraf=0, Peterson=02, Khadra=03, Burghelea=04, Li=05 I have read and understood the instructions below: Please sign: Instructions:.
More informationResponse to a pure sinusoid
Harvard University Division of Engineering and Applied Sciences ES 145/215  INTRODUCTION TO SYSTEMS ANALYSIS WITH PHYSIOLOGICAL APPLICATIONS Fall Lecture 14: The Bode Plot Response to a pure sinusoid
More informationEE C128 / ME C134 Fall 2014 HW 8  Solutions. HW 8  Solutions
EE C28 / ME C34 Fall 24 HW 8  Solutions HW 8  Solutions. Transient Response Design via Gain Adjustment For a transfer function G(s) = in negative feedback, find the gain to yield a 5% s(s+2)(s+85) overshoot
More informationControls Problems for Qualifying Exam  Spring 2014
Controls Problems for Qualifying Exam  Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function
More informationDiscrete Systems. Step response and pole locations. Mark Cannon. Hilary Term Lecture
Discrete Systems Mark Cannon Hilary Term 22  Lecture 4 Step response and pole locations 4  Review Definition of transform: U() = Z{u k } = u k k k= Discrete transfer function: Y () U() = G() = Z{g k},
More informationRaktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Frequency ResponseDesign Method
.. AERO 422: Active Controls for Aerospace Vehicles Frequency Response Method Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. ... Response to
More informationMath 216 Second Midterm 20 March, 2017
Math 216 Second Midterm 20 March, 2017 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect
More informationCHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION
CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION Objectives Students should be able to: Draw the bode plots for first order and second order system. Determine the stability through the bode plots.
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 2: Drawing Bode Plots, Part 2 Overview In this Lecture, you will learn: Simple Plots Real Zeros Real Poles Complex
More informationFrequency Response Techniques
4th Edition T E N Frequency Response Techniques SOLUTION TO CASE STUDY CHALLENGE Antenna Control: Stability Design and Transient Performance First find the forward transfer function, G(s). Pot: K 1 = 10
More informationEE C128 / ME C134 Fall 2014 HW 6.2 Solutions. HW 6.2 Solutions
EE C28 / ME C34 Fall 24 HW 6.2 Solutions. PI Controller For the system G = K (s+)(s+3)(s+8) HW 6.2 Solutions in negative feedback operating at a damping ratio of., we are going to design a PI controller
More informationNotes on the Periodically Forced Harmonic Oscillator
Notes on the Periodically orced Harmonic Oscillator Warren Weckesser Math 38  Differential Equations 1 The Periodically orced Harmonic Oscillator. By periodically forced harmonic oscillator, we mean the
More informationMAS107 Control Theory Exam Solutions 2008
MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the splane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
More informationOverview of Bode Plots Transfer function review Piecewise linear approximations Firstorder terms Secondorder terms (complex poles & zeros)
Overview of Bode Plots Transfer function review Piecewise linear approximations Firstorder terms Secondorder terms (complex poles & zeros) J. McNames Portland State University ECE 222 Bode Plots Ver.
More informationDynamics of Structures: Theory and Analysis
1. Free vibrations 2. Forced vibrations 3. Transient response 4. Damping mechanisms Dynamics of Structures: Theory and Analysis Steen Krenk Technical University of Denmark 5. Modal analysis I: Basic idea
More informationSchool of Mechanical Engineering Purdue University
Case Study ME375 Frequency Response  1 Case Study SUPPORT POWER WIRE DROPPERS Electric train derives power through a pantograph, which contacts the power wire, which is suspended from a catenary. During
More informationROOT LOCUS. Consider the system. Root locus presents the poles of the closedloop system when the gain K changes from 0 to. H(s) H ( s) = ( s)
C1 ROOT LOCUS Consider the system R(s) E(s) C(s) + K G(s)  H(s) C(s) R(s) = K G(s) 1 + K G(s) H(s) Root locus presents the poles of the closedloop system when the gain K changes from 0 to 1+ K G ( s)
More informationEE C128 / ME C134 Midterm Fall 2014
EE C128 / ME C134 Midterm Fall 2014 October 16, 2014 Your PRINTED FULL NAME Your STUDENT ID NUMBER Number of additional sheets 1. No computers, no tablets, no connected device (phone etc.) 2. Pocket calculator
More informationMath 216 Second Midterm 19 March, 2018
Math 26 Second Midterm 9 March, 28 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that
More informationDISCRIMINANT EXAM QUESTIONS
DISCRIMINANT EXAM QUESTIONS Question 1 (**) Show by using the discriminant that the graph of the curve with equation y = x 4x + 10, does not cross the x axis. proof Question (**) Show that the quadratic
More informationCourse roadmap. Step response for 2ndorder system. Step response for 2ndorder system
ME45: Control Systems Lecture Time response of ndorder systems Prof. Clar Radcliffe and Prof. Jongeun Choi Department of Mechanical Engineering Michigan State University Modeling Laplace transform Transfer
More informationVibrations Qualifying Exam Study Material
Vibrations Qualifying Exam Study Material The candidate is expected to have a thorough understanding of engineering vibrations topics. These topics are listed below for clarification. Not all instructors
More informationSoftware Engineering 3DX3. Slides 8: Root Locus Techniques
Software Engineering 3DX3 Slides 8: Root Locus Techniques Dr. Ryan Leduc Department of Computing and Software McMaster University Material based on Control Systems Engineering by N. Nise. c 2006, 2007
More informationProblem Value Score Total 100/105
RULES This is a closed book, closed notes test. You are, however, allowed one piece of paper (front side only) for notes and definitions, but no sample problems. The top half is the same as from the first
More informationExam 3 December 1, 2010
Exam 3 Instructions: You have 60 minutes to complete this exam. This is a closedbook, closednotes exam. You are allowed to use a calculator during the exam. All work must be shown to receive credit.
More informationIdentification Methods for Structural Systems. Prof. Dr. Eleni Chatzi Lecture March, 2016
Prof. Dr. Eleni Chatzi Lecture 409. March, 2016 Fundamentals Overview Multiple DOF Systems Statespace Formulation Eigenvalue Analysis The Mode Superposition Method The effect of Damping on Structural
More informationProblem Weight Score Total 100
EE 350 EXAM IV 15 December 2010 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO Problem Weight Score 1 25 2 25 3 25 4 25 Total
More informationEE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation
EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation Tim Davidson Ext. 27352 davidson@mcmaster.ca Objective To use the root locus technique to design a lead compensator for a marginallystable
More informationEE C128 / ME C134 Final Exam Fall 2014
EE C128 / ME C134 Final Exam Fall 2014 December 19, 2014 Your PRINTED FULL NAME Your STUDENT ID NUMBER Number of additional sheets 1. No computers, no tablets, no connected device (phone etc.) 2. Pocket
More informationIntroduction to Feedback Control
Introduction to Feedback Control Control System Design Why Control? OpenLoop vs ClosedLoop (Feedback) Why Use Feedback Control? ClosedLoop Control System Structure Elements of a Feedback Control System
More informationVibrations: Second Order Systems with One Degree of Freedom, Free Response
Single Degree of Freedom System 1.003J/1.053J Dynamics and Control I, Spring 007 Professor Thomas Peacock 5//007 Lecture 0 Vibrations: Second Order Systems with One Degree of Freedom, Free Response Single
More informationINTRODUCTION TO DIGITAL CONTROL
ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a lineartimeinvariant
More informationEECS C128/ ME C134 Final Thu. May 14, pm. Closed book. One page, 2 sides of formula sheets. No calculators.
Name: SID: EECS C28/ ME C34 Final Thu. May 4, 25 58 pm Closed book. One page, 2 sides of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 4 2 4 3 6 4 8 5 3
More informationLinear Control Systems Solution to Assignment #1
Linear Control Systems Solution to Assignment # Instructor: H. Karimi Issued: Mehr 0, 389 Due: Mehr 8, 389 Solution to Exercise. a) Using the superposition property of linear systems we can compute the
More informationModeling and Experimentation: MassSpringDamper System Dynamics
Modeling and Experimentation: MassSpringDamper System Dynamics Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin July 20, 2014 Overview 1 This lab is meant to
More informationDynamic System Response. Dynamic System Response K. Craig 1
Dynamic System Response Dynamic System Response K. Craig 1 Dynamic System Response LTI Behavior vs. NonLTI Behavior Solution of Linear, ConstantCoefficient, Ordinary Differential Equations Classical
More informationEE 380 EXAM II 3 November 2011 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO
EE 380 EXAM II 3 November 2011 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO Problem Weight Score 1 25 2 25 3 25 4 25 Total
More informationEECS C128/ ME C134 Final Wed. Dec. 14, am. Closed book. One page, 2 sides of formula sheets. No calculators.
Name: SID: EECS C128/ ME C134 Final Wed. Dec. 14, 211 8111 am Closed book. One page, 2 sides of formula sheets. No calculators. There are 8 problems worth 1 points total. Problem Points Score 1 16 2 12
More informationTransient Response of a SecondOrder System
Transient Response of a SecondOrder System ECEN 830 Spring 01 1. Introduction In connection with this experiment, you are selecting the gains in your feedback loop to obtain a wellbehaved closedloop
More informationÜbersetzungshilfe / Translation aid (English) To be returned at the end of the exam!
Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 5. 2. 2 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid 
More informationThe Phasor Analysis Method For Harmonically Forced Linear Systems
The Phasor Analysis Method For Harmonically Forced Linear Systems Daniel S. Stutts, Ph.D. April 4, 1999 Revised: 1015010, 91011 1 Introduction One of the most common tasks in vibration analysis is
More informationMath 0290 Midterm Exam
ath 0290 idterm Exam JAKE IRRA University of Pittsburgh July 11, 2016 Directions 1. The purpose of this exam is to test you on your ability to analyze and solve differential equations corresponding to
More informationClassify a transfer function to see which order or ramp it can follow and with which expected error.
Dr. J. Tani, Prof. Dr. E. Frazzoli 505900 Control Systems I (Autumn 208) Exercise Set 0 Topic: Specifications for Feedback Systems Discussion: 30.. 208 Learning objectives: The student can grizzi@ethz.ch,
More informationTopic # Feedback Control Systems
Topic #1 16.31 Feedback Control Systems Motivation Basic Linear System Response Fall 2007 16.31 1 1 16.31: Introduction r(t) e(t) d(t) y(t) G c (s) G(s) u(t) Goal: Design a controller G c (s) so that the
More informationChapter 7: Time Domain Analysis
Chapter 7: Time Domain Analysis Samantha Ramirez Preview Questions How do the system parameters affect the response? How are the parameters linked to the system poles or eigenvalues? How can Laplace transforms
More informationNotes for ECE320. Winter by R. Throne
Notes for ECE3 Winter 45 by R. Throne Contents Table of Laplace Transforms 5 Laplace Transform Review 6. Poles and Zeros.................................... 6. Proper and Strictly Proper Transfer Functions...................
More informationTopic 5 Notes Jeremy Orloff. 5 Homogeneous, linear, constant coefficient differential equations
Topic 5 Notes Jeremy Orloff 5 Homogeneous, linear, constant coefficient differential equations 5.1 Goals 1. Be able to solve homogeneous constant coefficient linear differential equations using the method
More informationECE320: Linear Control Systems Homework 8. 1) For one of the rectilinear systems in lab, I found the following state variable representations:
ECE30: Linear Control Systems Homework 8 Due: Thursday May 6, 00 at the beginning of class ) For one of the rectilinear systems in lab, I found the following state variable representations: 0 0 q q+ 74.805.6469
More informationFinal Exam December 15, 2014
Final Exam Instructions: You have 120 minutes to complete this exam. This is a closedbook, closednotes exam. You are allowed to use the ME approved calculator only during the exam. Usage of mobile phones
More informationF = ma, F R + F S = mx.
Mechanical Vibrations As we mentioned in Section 3.1, linear equations with constant coefficients come up in many applications; in this section, we will specifically study spring and shock absorber systems
More informationEECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.
Name: SID: EECS C28/ ME C34 Final Wed. Dec. 5, 2 8 am Closed book. Two pages of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 2 2 6 3 4 4 5 6 6 7 8 2 Total
More information(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
More informationMath Assignment 5
Math 2280  Assignment 5 Dylan Zwick Fall 2013 Section 3.41, 5, 18, 21 Section 3.51, 11, 23, 28, 35, 47, 56 Section 3.61, 2, 9, 17, 24 1 Section 3.4  Mechanical Vibrations 3.4.1  Determine the period
More informationFinal Exam December 20, 2011
Final Exam December 20, 2011 Math 420  Ordinary Differential Equations No credit will be given for answers without mathematical or logical justification. Simplify answers as much as possible. Leave solutions
More informationChapter 3. 1 st Order Sine Function Input. General Solution. Ce t. Measurement System Behavior Part 2
Chapter 3 Measurement System Behavior Part 2 1 st Order Sine Function Input Examples of Periodic: vibrating structure, vehicle suspension, reciprocating pumps, environmental conditions The frequency of
More informationDifferential Equations
Differential Equations A differential equation (DE) is an equation which involves an unknown function f (x) as well as some of its derivatives. To solve a differential equation means to find the unknown
More informationReview: transient and steadystate response; DC gain and the FVT Today s topic: systemmodeling diagrams; prototype 2ndorder system
Plan of the Lecture Review: transient and steadystate response; DC gain and the FVT Today s topic: systemmodeling diagrams; prototype 2ndorder system Plan of the Lecture Review: transient and steadystate
More information2. Determine whether the following pair of functions are linearly dependent, or linearly independent:
Topics to be covered on the exam include: Recognizing, and verifying solutions to homogeneous secondorder linear differential equations, and their corresponding Initial Value Problems Recognizing and
More informationOutline. Classical Control. Lecture 1
Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction
More informationMath 1302, Week 8: Oscillations
Math 302, Week 8: Oscillations T y eq Y y = y eq + Y mg Figure : Simple harmonic motion. At equilibrium the string is of total length y eq. During the motion we let Y be the extension beyond equilibrium,
More informationRadar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D.
Radar Dish ME 304 CONTROL SYSTEMS Mechanical Engineering Department, Middle East Technical University Armature controlled dc motor Outside θ D output Inside θ r input r θ m Gearbox Control Transmitter
More informationExercises for lectures 13 Design using frequency methods
Exercises for lectures 13 Design using frequency methods Michael Šebek Automatic control 2016 31317 Setting of the closed loop bandwidth At the transition frequency in the open loop is (from definition)
More informationSection 4.9; Section 5.6. June 30, Free Mechanical Vibrations/Couple MassSpring System
Section 4.9; Section 5.6 Free Mechanical Vibrations/Couple MassSpring System June 30, 2009 Today s Session Today s Session A Summary of This Session: Today s Session A Summary of This Session: (1) Free
More informationME 274 Spring 2017 Examination No. 2 PROBLEM No. 2 (20 pts.) Given:
PROBLEM No. 2 (20 pts.) Given: Blocks A and B (having masses of 2m and m, respectively) are connected by an inextensible cable, with the cable being pulled over a small pulley of negligible mass. Block
More informationSolutions to SkillAssessment Exercises
Solutions to SkillAssessment Exercises To Accompany Control Systems Engineering 4 th Edition By Norman S. Nise John Wiley & Sons Copyright 2004 by John Wiley & Sons, Inc. All rights reserved. No part
More informationControl Systems I Lecture 10: System Specifications
Control Systems I Lecture 10: System Specifications Readings: Guzzella, Chapter 10 Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich November 24, 2017 E. Frazzoli (ETH) Lecture
More informationEE 16B Final, December 13, Name: SID #:
EE 16B Final, December 13, 2016 Name: SID #: Important Instructions: Show your work. An answer without explanation is not acceptable and does not guarantee any credit. Only the front pages will be scanned
More informationSchool of Mechanical Engineering Purdue University. ME375 Dynamic Response  1
Dynamic Response of Linear Systems Linear System Response Superposition Principle Responses to Specific Inputs Dynamic Response of f1 1st to Order Systems Characteristic Equation  Free Response Stable
More informationSecond order linear equations
Second order linear equations Samy Tindel Purdue University Differential equations  MA 266 Taken from Elementary differential equations by Boyce and DiPrima Samy T. Second order equations Differential
More informationIntroduction to Modern Control MT 2016
CDT Autonomous and Intelligent Machines & Systems Introduction to Modern Control MT 2016 Alessandro Abate Lecture 2 Firstorder ordinary differential equations (ODE) Solution of a linear ODE Hints to nonlinear
More informationLinear Systems. Chapter Basic Definitions
Chapter 5 Linear Systems Few physical elements display truly linear characteristics. For example the relation between force on a spring and displacement of the spring is always nonlinear to some degree.
More informationEMA 545 Final Exam  Prof. M. S. Allen Spring 2011
EMA 545 Final Exam  Prof. M. S. Allen Spring 2011 Honor Pledge: On my honor, I pledge that this exam represents my own work, and that I have neither given nor received inappropriate aid in the preparation
More informationMath 221 Topics since the second exam
Laplace Transforms. Math 1 Topics since the second exam There is a whole different set of techniques for solving nth order linear equations, which are based on the Laplace transform of a function. For
More informationSolution: K m = R 1 = 10. From the original circuit, Z L1 = jωl 1 = j10 Ω. For the scaled circuit, L 1 = jk m ωl 1 = j10 10 = j100 Ω, Z L
Problem 9.9 Circuit (b) in Fig. P9.9 is a scaled version of circuit (a). The scaling process may have involved magnitude or frequency scaling, or both simultaneously. If R = kω gets scaled to R = kω, supply
More informationEN40: Dynamics and Vibrations. Final Examination Wed May : 2pm5pm
EN40: Dynamics and Vibrations Final Examination Wed May 10 017: pm5pm School of Engineering Brown University NAME: General Instructions No collaboration of any kind is permitted on this examination. You
More informationPhysics III: Final Solutions (Individual and Group)
Massachusetts Institute of Technology MITES 7 Physics III First and Last Name: Physics III: Final Solutions (Individual and Group Instructor: Mobolaji Williams Teaching Assistant: Rene García (Tuesday
More informationControl of Manufacturing Processes
Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #19 Position Control and Root Locus Analysis" April 22, 2004 The Position Servo Problem, reference position NC Control Robots Injection
More informationRoot Locus Design Example #3
Root Locus Design Example #3 A. Introduction The system represents a linear model for vertical motion of an underwater vehicle at zero forward speed. The vehicle is assumed to have zero pitch and roll
More informationTransfer func+ons, block diagram algebra, and Bode plots. by Ania Ariadna Bae+ca CDS Caltech 11/05/15
Transfer func+ons, block diagram algebra, and Bode plots by Ania Ariadna Bae+ca CDS Caltech 11/05/15 Going back and forth between the +me and the frequency domain (1) Transfer func+ons exist only for
More informationSecond Order Linear ODEs, Part II
Craig J. Sutton craig.j.sutton@dartmouth.edu Department of Mathematics Dartmouth College Math 23 Differential Equations Winter 2013 Outline Nonhomogeneous Linear Equations 1 Nonhomogeneous Linear Equations
More informationSinusoids. Amplitude and Magnitude. Phase and Period. CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation
Sinusoids CMPT 889: Lecture Sinusoids, Complex Exponentials, Spectrum Representation Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University September 6, 005 Sinusoids are
More informationSolutions to the Homework Replaces Section 3.7, 3.8
Solutions to the Homework Replaces Section 3.7, 3.8. Show that the period of motion of an undamped vibration of a mass hanging from a vertical spring is 2π L/g SOLUTION: With no damping, mu + ku = 0 has
More information