School of Mechanical Engineering Purdue University. ME375 Dynamic Response - 1

Size: px
Start display at page:

Download "School of Mechanical Engineering Purdue University. ME375 Dynamic Response - 1"

Transcription

1 Dynamic Response of Linear Systems Linear System Response Superposition Principle Responses to Specific Inputs Dynamic Response of f1 1st to Order Systems Characteristic Equation - Free Response Stable 1st Order System Response Dynamic Response of 2nd Order Systems Characteristic Equation - Free Response Stable 2nd Order System Response Transient and Steady-StateState Response ME375 Dynamic Response - 1

2 Linear System Response ( n) ( n1) ( m) y a y a ya y a y b u bu b u n1 Superposition Principle i m 1 0 Input u 1 (t) u 2 (t) k 1 u 1 (t)+k k 2 u 2 (t) Linear System Output y 1 (t) y 2 (t) The response of a linear system to a complicated input can be obtained by studying how the system responds to simple inputs, such as zero input, unit impulse, unit step, and sinusoidal inputs. ME375 Dynamic Response - 2

3 Typical Responses Free (Natural) Response Response due to non-zero initial conditions (ICs) and zero input. Forced Response Response to non-zero input with zero ICs. Unit Impulse Response Response to unit impulse input. u(t) Unit Step Response Response to unit step input (u (t) = 1). u(t) Sinusoidal Response Response to sinusoidal inputs at different frequencies. The steady state sinusoidal response is call the Frequency Response. Time t Time t ME375 Dynamic Response - 3

4 Dynamic Response of 1st Order Systems Characteristic Equation: y ay bu s a 0 Free Response [ y H (t)]: (u u = 0) y () t Ae y H (t) H at a > 0 a = 0 a < 0 e.g. y ( t ) Ae H 4 t y H (t) 0 e.g. y t Ae t ( ) H y H (t) e.g. y ( t ) Ae H ( 4 ) t Time (t) Time (t) Time (t) Q: What determines whether the free response will converge to zero? Q: How does the coefficient, a, affect the converging rate? ME375 Dynamic Response - 4

5 Response of Stable 1st Order System Stable 1st Order System y ay bu y y Ku where : : Time Constant K : Static (Steady State, DC) Gain Unit Step Response ( u = 1 and zero ICs ) yt () y () t y () t H A e t P K IC : y(0) A K A yt () y(t) K y H (t) = K e -t/ y P (t) = K Time t ME375 Dynamic Response - 5

6 Response of Stable 1st Order System Normalized Unit Step Response (u= 1 & zero ICs) 1 y y Ku 0.9 yt () K( 1 e t 0.8 ) Normalized (such that as t, 1): y n y ( t ) yn ( t ) K t ( 1 e ) Normalized Response Time [ t ] Time t ( 1 e t/ ) ME375 Dynamic Response - 6

7 Response of Stable 1st Order System Effect of Time Constant yy y Ku 1 yt K e t () ( 1 ) Normalized: y() t y () t ( e t n 1 ) K Slope at t = 0: d () dt y t n d ( dt y n( 0) Q: What is your conclusion? Norma alized Respon nse Time [sec] ME375 Dynamic Response - 7

8 Example Vehicle Acceleration b m v F m 1 v v F v max b b 160 Standing-Start Acceleration; Dodge Viper SRT Standing-Start Acceleration; Lincoln Aviator SUV Speed (MPH) Speed (MPH) Time (sec) Time (sec) ME375 Dynamic Response - 8

9 Response of Stable 1st Order System Normalized Unit Step Response yy y Ku yt K e t () ( 1 ) Normalized (such that as t, 1): 0.6 y n yt () y ( ) ( t n t 1 e ) K Initial Slope 1 y ( 0 n ) K y( 0) Norm malized Respon nse Time [ t ] ME375 Dynamic Response - 9

10 Response of Stable 1st Order System Q: How would you calculate the response of a 1st order system to a unit pulse (not unit impulse)? Q: How would you calculate the unit impulse response of a 1st order system? u(t) t 1 (Hint: superposition principle?!) Time t Q: How would you calculate the sinusoidal response of a 1st order system? ME375 Dynamic Response - 10

11 Dynamic Response of 2nd Order Systems y a 1y a0y b1u b0u Characteristic Equation: 2 s a sa Free Response [ y H (t)]: (u u = 0) Determined by the roots of the characteristic equation: Real and Distinct [ s 1 & s 2 ]: H () s t y t Ae 1 A2e 1 s2t Real and Identical [ s 1 =s 2 ]: H () s t y t A1e A2te Complex [ s 1,2 = j 1 s1t t t y ( t) e ( A cos( t) A sin( t) ) Ae cos( t ) H 1 2 ME375 Dynamic Response - 11

12 Dynamic Response of 2nd Order Systems Free Response (Two distinct real roots) s1t s2t 1 2 s t yh () t Ae A e y t Ae A e H () H () y t Ae 1 A2e 1 2 s 0 & s 0 s 0 & s 0 s 0 & s s t s t 1 2 s t Img. Img. Img. Real Real Real y H (t) y H (t) y H (t) Time (t) Time (t) Time (t) ME375 Dynamic Response - 12

13 Dynamic Response of 2nd Order Systems Free Response (Two identical real roots ) s1t s1t 1 2 y H () t Ae A te yh () t Ae 1 A2te y H () t A 1 e A 2 te s s 0 s s 0 s s s t 1 2 s t s t 1 2 s t Img. Img. Img. Real Real Real y H (t) y H (t) y H (t) Time (t) Time (t) Time (t) ME375 Dynamic Response - 13

14 Dynamic Response of 2nd Order Systems Free Response (Two complex roots) t t y t Ae cos( t t Ae cos( t t Ae H () ) y H () ) y H () cos( t ) s j & 0 s j & 0 s j & 0 1,2 1,2 1,2 t Img. Img. Img. Real Real Real y H (t) y H (t) y H (t) Time (t) Time (t) Time (t) ME375 Dynamic Response - 14

15 Example Automotive Suspension m y g k b r my by ky br kr 0.02 Response to Initial Conditions for free response: my by ky 0 b k y y y 0 m m y28y 400y 0 Amplitude Time (sec) ME375 Dynamic Response - 15

16 Dynamic Response of 2nd Order Systems Q: What part of the characteristic roots determines whether the free response is bounded, converging to zero or blowing up? Q: For a second order system, what conditions will guarantee the system to be stable? (Hint: Check the characteristic roots ) Q: If the free response of the system converges to zero, what determines the convergence rate? ME375 Dynamic Response - 16

17 Response of Stable 2nd Order System Stable 2nd Order System y a y a y bu y y 2 y K n n n u where n > 0 : Natural Frequency [rad/s] > 0 : Damping Ratio K : Static (Steady State, DC) Gain Characteristic roots s 2 2 n s n 2 0 s ( 1) n n 2 Img. n 1: 1: 1: Real n ME375 Dynamic Response - 17

18 Response of Stable 2nd Order System Unit Step Response of Under-damped damped 2nd Order Systems ( u = 1 and zero ICs ) Characteristic equation: n n n y y y K u s 2 2 n s n 2 0 s n jn (1 ) d 2 y (t) = ME375 Dynamic Response - 18

19 Response of Stable 2nd Order System Unit Step Response of 2nd Order Systems 16K 1.6K y MAX 1.4K 12K 1.2K OS Unit Step Response K 0.8K 0.6K T d 0.4K 0.2K 0 t P Time [sec] t S ME375 Dynamic Response - 19

20 Response of Stable 2nd Order System Peak Time (t P ) Time when output y(t) ) reaches its maximum value y MAX. yt () n 1 t n K e cos( dt) sin( dt) d d y () t dt Find t such that y ( t ) 0 P t P P Percent Overshoot (%OS) At peak time t P the maximum output F y y( t ) K 1e MAX The overshoot (OS)) is: OS y y MAX P SS The percent overshoot is: %OS F HG y SS HG I K J OS J100% y( 0) 12 I KJ ME375 Dynamic Response - 20

21 Response of Stable 2nd Order System Settling Time (t S ) Time required for the response to be within a specific percent of the final (steady-state) state) value. Some typical specifications for settling time are: 5%, 2% and 1%. Look at the envelope of the response: % 1% 2% 5% t S Q: What parameters in a 2nd order system affect the peak time? Q: What parameters in a 2nd order system affect the % OS? Q: What parameters in a 2nd order system affect the settling time? Q: Can you obtain the formula for a 3% settling time? ME375 Dynamic Response - 21

22 In Class Exercise Mass-Spring-Damper System K x Q: What is the static (steady-state) state) )g gain of the system? B I/O Model: M f(t) Q: How would the physical parameters (M, B, K) affect the response of the system? M x Bx K x f ( t ) (This is equivalent to asking you for the ( This is equivalent to asking you for the relationship between the physical parameters and the damping ratio, natural frequency and the static gain.) ME375 Dynamic Response - 22

23 Transient and Steady State Response Ex: Let s find the total response of a stable first order system: y 5 y 10u to a ramp input: u(t) ) = 5t with IC: y(0) = 2 Total Response Y() s U() s y(0), where U() s L 5t Transfer Function Gs () Y( s) PFE: A1 A2 A3 Y() s yt () ME375 Dynamic Response - 23

24 Transient and Steady State Responses In general, the total response of a stable LTI system ( n) ( n1) ( m) ( m1) ay a y ayaybu b u bubu n n1 1 0 m m1 1 0 m m1 bms bm 1s bs 1 b0 Ns () bm( sz1)( sz2) ( szm) Gs () n n1 ans an 1s as 1 a0 D() s an( s p1)( s p2) ( s pn) to an input u(t) ( ) can be decomposed into two parts: where Transient Response (y T (t)) yt () y() () T t y SS t Transient Response Steady State Response Contains the free response y Free (t) of the system plus a portion of the forced response. Will decay to zero at a rate that is determined by the characteristic roots (poles) of the system. Steady State Response (y SS (t)) will take the same form as the forcing input. Specifically, for a sinusoidal input, the steady state response will be a sinusoidal signal with the same frequency as the input but with different magnitude and phase. ME375 Dynamic Response - 24

25 Transient and Steady State Response Ex: Let s find the total response of a stable second order system: y 4y 3y 6u to a step input: u(t) ) = 5 with IC: y( 0) 0 and y( 0) 2 Total Response PFE: ME375 Dynamic Response - 25

26 Steady State Response Final Value Theorem (FVT) Given a signal sltf(s) s F(s), )ifthe poles of sf(s) all lie in the LHP (stable region), then f(t) ) converges to a constant value f(). f() ) can be obtained without knowing f(t) ) by using the FVT: f ( ) lim f () t lim sf ( s) t s0 Ex: : A model of a linear system is determined to be: y 4 y 1 2 y 4 u 3 u (1) if a constant input u = 5 is applied at t = 0, determine whether the output y(t) ) will converge to a constant value? (2) If the output converges, what will be its steady state value? ME375 Dynamic Response - 26

27 Steady State Response Given a stable LTI system a y a y a ya ybu b u bubu () n ( n 1) ( m) ( m1) n n m m The corresponding transfer function is m m1 bms bm1s b1sb0 bm( s z1)( s z2) ( s zm) G( s) n n1 a s a s a s a a ( s p )( s p ) ( s p ) n n n 1 2 n Steady State Value of the Free Response Recall the free response of the system is: Y F( () s () s 1 as a s asa Free n n n n1 1 0 Apply FVT: ME375 Dynamic Response - 27

28 Steady State Response Steady State Value of the Unit Impulse Response Y () s G () s U () s Apply FVT: Steady State Value of the Unit Step Response Apply FVT: Ys () Gs () Us () 1st Order Systems: Gs () b0 asa 1 0 2nd Order Systems: Gs () bsb as as a G(0) G(0) ME375 Dynamic Response - 28

Dynamic Response of Linear Systems

Dynamic Response of Linear Systems Dyamic Respose of Liear Systems Liear System Respose Superpositio Priciple Resposes to Specific Iputs Dyamic Respose of st Order Systems Characteristic Equatio - Free Respose Stable st Order System Respose

More information

School of Mechanical Engineering Purdue University. ME375 Transfer Functions - 1

School of Mechanical Engineering Purdue University. ME375 Transfer Functions - 1 Trasfer Fuctio Aalysis Free & Forced Resposes Trasfer Fuctio Syste Stability ME375 Trasfer Fuctios - 1 Free & Forced Resposes Ex: Let s look at a stable first order syste: y y Ku Take LT of the I/O odel

More information

School of Mechanical Engineering Purdue University

School of Mechanical Engineering Purdue University Case Study ME375 Frequency Response - 1 Case Study SUPPORT POWER WIRE DROPPERS Electric train derives power through a pantograph, which contacts the power wire, which is suspended from a catenary. During

More information

Time Response of Systems

Time Response of Systems Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) s-plane Time response p =0 s p =0,p 2 =0 s 2 t p =

More information

Outline. Classical Control. Lecture 2

Outline. Classical Control. Lecture 2 Outline Outline Outline Review of Material from Lecture 2 New Stuff - Outline Review of Lecture System Performance Effect of Poles Review of Material from Lecture System Performance Effect of Poles 2 New

More information

EE/ME/AE324: Dynamical Systems. Chapter 7: Transform Solutions of Linear Models

EE/ME/AE324: Dynamical Systems. Chapter 7: Transform Solutions of Linear Models EE/ME/AE324: Dynamical Systems Chapter 7: Transform Solutions of Linear Models The Laplace Transform Converts systems or signals from the real time domain, e.g., functions of the real variable t, to the

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real

More information

School of Mechanical Engineering Purdue University. ME375 Frequency Response - 1

School of Mechanical Engineering Purdue University. ME375 Frequency Response - 1 Case Study ME375 Frequecy Respose - Case Study SUPPORT POWER WIRE DROPPERS Electric trai derives power through a patograph, which cotacts the power wire, which is suspeded from a cateary. Durig high-speed

More information

Course roadmap. ME451: Control Systems. Example of Laplace transform. Lecture 2 Laplace transform. Laplace transform

Course roadmap. ME451: Control Systems. Example of Laplace transform. Lecture 2 Laplace transform. Laplace transform ME45: Control Systems Lecture 2 Prof. Jongeun Choi Department of Mechanical Engineering Michigan State University Modeling Transfer function Models for systems electrical mechanical electromechanical Block

More information

School of Mechanical Engineering Purdue University. ME375 Feedback Control - 1

School of Mechanical Engineering Purdue University. ME375 Feedback Control - 1 Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

More information

Chapter 6: The Laplace Transform. Chih-Wei Liu

Chapter 6: The Laplace Transform. Chih-Wei Liu Chapter 6: The Laplace Transform Chih-Wei Liu Outline Introduction The Laplace Transform The Unilateral Laplace Transform Properties of the Unilateral Laplace Transform Inversion of the Unilateral Laplace

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real Poles

More information

Introduction to Feedback Control

Introduction to Feedback Control Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

More information

Basic Procedures for Common Problems

Basic Procedures for Common Problems Basic Procedures for Common Problems ECHE 550, Fall 2002 Steady State Multivariable Modeling and Control 1 Determine what variables are available to manipulate (inputs, u) and what variables are available

More information

Dr. Ian R. Manchester

Dr. Ian R. Manchester Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus

More information

Time Response Analysis (Part II)

Time Response Analysis (Part II) Time Response Analysis (Part II). A critically damped, continuous-time, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary

More information

Discrete Systems. Step response and pole locations. Mark Cannon. Hilary Term Lecture

Discrete Systems. Step response and pole locations. Mark Cannon. Hilary Term Lecture Discrete Systems Mark Cannon Hilary Term 22 - Lecture 4 Step response and pole locations 4 - Review Definition of -transform: U() = Z{u k } = u k k k= Discrete transfer function: Y () U() = G() = Z{g k},

More information

Second Order and Higher Order Systems

Second Order and Higher Order Systems Second Order and Higher Order Systems 1. Second Order System In this section, we shall obtain the response of a typical second-order control system to a step input. In terms of damping ratio and natural

More information

Frequency Response of Linear Time Invariant Systems

Frequency Response of Linear Time Invariant Systems ME 328, Spring 203, Prof. Rajamani, University of Minnesota Frequency Response of Linear Time Invariant Systems Complex Numbers: Recall that every complex number has a magnitude and a phase. Example: z

More information

Laplace Transforms Chapter 3

Laplace Transforms Chapter 3 Laplace Transforms Important analytical method for solving linear ordinary differential equations. - Application to nonlinear ODEs? Must linearize first. Laplace transforms play a key role in important

More information

Lecture 9 Time-domain properties of convolution systems

Lecture 9 Time-domain properties of convolution systems EE 12 spring 21-22 Handout #18 Lecture 9 Time-domain properties of convolution systems impulse response step response fading memory DC gain peak gain stability 9 1 Impulse response if u = δ we have y(t)

More information

Dynamic Response. Assoc. Prof. Enver Tatlicioglu. Department of Electrical & Electronics Engineering Izmir Institute of Technology.

Dynamic Response. Assoc. Prof. Enver Tatlicioglu. Department of Electrical & Electronics Engineering Izmir Institute of Technology. Dynamic Response Assoc. Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 3 Assoc. Prof. Enver Tatlicioglu (EEE@IYTE) EE362 Feedback Control

More information

CHAPTER 7 STEADY-STATE RESPONSE ANALYSES

CHAPTER 7 STEADY-STATE RESPONSE ANALYSES CHAPTER 7 STEADY-STATE RESPONSE ANALYSES 1. Introduction The steady state error is a measure of system accuracy. These errors arise from the nature of the inputs, system type and from nonlinearities of

More information

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Dynamic Response

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Dynamic Response .. AERO 422: Active Controls for Aerospace Vehicles Dynamic Response Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. . Previous Class...........

More information

Laplace Transform Part 1: Introduction (I&N Chap 13)

Laplace Transform Part 1: Introduction (I&N Chap 13) Laplace Transform Part 1: Introduction (I&N Chap 13) Definition of the L.T. L.T. of Singularity Functions L.T. Pairs Properties of the L.T. Inverse L.T. Convolution IVT(initial value theorem) & FVT (final

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

Dr Ian R. Manchester

Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign

More information

Transfer Function Analysis

Transfer Function Analysis Trasfer Fuctio Aalysis Free & Forced Resposes Trasfer Fuctio Syste Stability ME375 Trasfer Fuctios - Free & Forced Resposes Ex: Let s s look at a stable first order syste: τ y + y = Ku Take LT of the I/O

More information

STABILITY. Have looked at modeling dynamic systems using differential equations. and used the Laplace transform to help find step and impulse

STABILITY. Have looked at modeling dynamic systems using differential equations. and used the Laplace transform to help find step and impulse SIGNALS AND SYSTEMS: PAPER 3C1 HANDOUT 4. Dr David Corrigan 1. Electronic and Electrical Engineering Dept. corrigad@tcd.ie www.sigmedia.tv STABILITY Have looked at modeling dynamic systems using differential

More information

EE102 Homework 2, 3, and 4 Solutions

EE102 Homework 2, 3, and 4 Solutions EE12 Prof. S. Boyd EE12 Homework 2, 3, and 4 Solutions 7. Some convolution systems. Consider a convolution system, y(t) = + u(t τ)h(τ) dτ, where h is a function called the kernel or impulse response of

More information

ECE317 : Feedback and Control

ECE317 : Feedback and Control ECE317 : Feedback and Control Lecture : Steady-state error Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling Analysis Design Laplace

More information

Lecture 7:Time Response Pole-Zero Maps Influence of Poles and Zeros Higher Order Systems and Pole Dominance Criterion

Lecture 7:Time Response Pole-Zero Maps Influence of Poles and Zeros Higher Order Systems and Pole Dominance Criterion Cleveland State University MCE441: Intr. Linear Control Lecture 7:Time Influence of Poles and Zeros Higher Order and Pole Criterion Prof. Richter 1 / 26 First-Order Specs: Step : Pole Real inputs contain

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture : Different Types of Control Overview In this Lecture, you will learn: Limits of Proportional Feedback Performance

More information

C(s) R(s) 1 C(s) C(s) C(s) = s - T. Ts + 1 = 1 s - 1. s + (1 T) Taking the inverse Laplace transform of Equation (5 2), we obtain

C(s) R(s) 1 C(s) C(s) C(s) = s - T. Ts + 1 = 1 s - 1. s + (1 T) Taking the inverse Laplace transform of Equation (5 2), we obtain analyses of the step response, ramp response, and impulse response of the second-order systems are presented. Section 5 4 discusses the transient-response analysis of higherorder systems. Section 5 5 gives

More information

EE451/551: Digital Control. Chapter 3: Modeling of Digital Control Systems

EE451/551: Digital Control. Chapter 3: Modeling of Digital Control Systems EE451/551: Digital Control Chapter 3: Modeling of Digital Control Systems Common Digital Control Configurations AsnotedinCh1 commondigitalcontrolconfigurations As noted in Ch 1, common digital control

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52 1/52 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 2 Laplace Transform I Linear Time Invariant Systems A general LTI system may be described by the linear constant coefficient differential equation: a n d n

More information

Introduction to Modern Control MT 2016

Introduction to Modern Control MT 2016 CDT Autonomous and Intelligent Machines & Systems Introduction to Modern Control MT 2016 Alessandro Abate Lecture 2 First-order ordinary differential equations (ODE) Solution of a linear ODE Hints to nonlinear

More information

ME 375 EXAM #1 Friday, March 13, 2015 SOLUTION

ME 375 EXAM #1 Friday, March 13, 2015 SOLUTION ME 375 EXAM #1 Friday, March 13, 2015 SOLUTION PROBLEM 1 A system is made up of a homogeneous disk (of mass m and outer radius R), particle A (of mass m) and particle B (of mass m). The disk is pinned

More information

( ) ( = ) = ( ) ( ) ( )

( ) ( = ) = ( ) ( ) ( ) ( ) Vρ C st s T t 0 wc Ti s T s Q s (8) K T ( s) Q ( s) + Ti ( s) (0) τs+ τs+ V ρ K and τ wc w T (s)g (s)q (s) + G (s)t(s) i G and G are transfer functions and independent of the inputs, Q and T i. Note

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect

More information

Lab # 4 Time Response Analysis

Lab # 4 Time Response Analysis Islamic University of Gaza Faculty of Engineering Computer Engineering Dep. Feedback Control Systems Lab Eng. Tareq Abu Aisha Lab # 4 Lab # 4 Time Response Analysis What is the Time Response? It is an

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67 1/67 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 6 Mathematical Representation of Physical Systems II State Variable Models for Dynamic Systems u 1 u 2 u ṙ. Internal Variables x 1, x 2 x n y 1 y 2. y m Figure

More information

Process Control & Instrumentation (CH 3040)

Process Control & Instrumentation (CH 3040) First-order systems Process Control & Instrumentation (CH 3040) Arun K. Tangirala Department of Chemical Engineering, IIT Madras January - April 010 Lectures: Mon, Tue, Wed, Fri Extra class: Thu A first-order

More information

Problem Value Score Total 100/105

Problem Value Score Total 100/105 RULES This is a closed book, closed notes test. You are, however, allowed one piece of paper (front side only) for notes and definitions, but no sample problems. The top half is the same as from the first

More information

Control Systems, Lecture04

Control Systems, Lecture04 Control Systems, Lecture04 İbrahim Beklan Küçükdemiral Yıldız Teknik Üniversitesi 2015 1 / 53 Transfer Functions The output response of a system is the sum of two responses: the forced response and the

More information

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace Unit : Modeling in the Frequency Domain Part : Engineering 81: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 1, 010 1 Pair Table Unit, Part : Unit,

More information

Control of Manufacturing Processes

Control of Manufacturing Processes Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #18 Basic Control Loop Analysis" April 15, 2004 Revisit Temperature Control Problem τ dy dt + y = u τ = time constant = gain y ss =

More information

Course Background. Loosely speaking, control is the process of getting something to do what you want it to do (or not do, as the case may be).

Course Background. Loosely speaking, control is the process of getting something to do what you want it to do (or not do, as the case may be). ECE4520/5520: Multivariable Control Systems I. 1 1 Course Background 1.1: From time to frequency domain Loosely speaking, control is the process of getting something to do what you want it to do (or not

More information

Lecture 25: Tue Nov 27, 2018

Lecture 25: Tue Nov 27, 2018 Lecture 25: Tue Nov 27, 2018 Reminder: Lab 3 moved to Tuesday Dec 4 Lecture: review time-domain characteristics of 2nd-order systems intro to control: feedback open-loop vs closed-loop control intro to

More information

Control of Manufacturing Processes

Control of Manufacturing Processes Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #19 Position Control and Root Locus Analysis" April 22, 2004 The Position Servo Problem, reference position NC Control Robots Injection

More information

Laplace Transforms. Chapter 3. Pierre Simon Laplace Born: 23 March 1749 in Beaumont-en-Auge, Normandy, France Died: 5 March 1827 in Paris, France

Laplace Transforms. Chapter 3. Pierre Simon Laplace Born: 23 March 1749 in Beaumont-en-Auge, Normandy, France Died: 5 March 1827 in Paris, France Pierre Simon Laplace Born: 23 March 1749 in Beaumont-en-Auge, Normandy, France Died: 5 March 1827 in Paris, France Laplace Transforms Dr. M. A. A. Shoukat Choudhury 1 Laplace Transforms Important analytical

More information

Math 308 Exam II Practice Problems

Math 308 Exam II Practice Problems Math 38 Exam II Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture and all suggested homework problems..

More information

EE C128 / ME C134 Fall 2014 HW 8 - Solutions. HW 8 - Solutions

EE C128 / ME C134 Fall 2014 HW 8 - Solutions. HW 8 - Solutions EE C28 / ME C34 Fall 24 HW 8 - Solutions HW 8 - Solutions. Transient Response Design via Gain Adjustment For a transfer function G(s) = in negative feedback, find the gain to yield a 5% s(s+2)(s+85) overshoot

More information

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications: 1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.

More information

Lab Experiment 2: Performance of First order and second order systems

Lab Experiment 2: Performance of First order and second order systems Lab Experiment 2: Performance of First order and second order systems Objective: The objective of this exercise will be to study the performance characteristics of first and second order systems using

More information

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics

More information

Step Response Analysis. Frequency Response, Relation Between Model Descriptions

Step Response Analysis. Frequency Response, Relation Between Model Descriptions Step Response Analysis. Frequency Response, Relation Between Model Descriptions Automatic Control, Basic Course, Lecture 3 November 9, 27 Lund University, Department of Automatic Control Content. Step

More information

Control System. Contents

Control System. Contents Contents Chapter Topic Page Chapter- Chapter- Chapter-3 Chapter-4 Introduction Transfer Function, Block Diagrams and Signal Flow Graphs Mathematical Modeling Control System 35 Time Response Analysis of

More information

EEE 184: Introduction to feedback systems

EEE 184: Introduction to feedback systems EEE 84: Introduction to feedback systems Summary 6 8 8 x 7 7 6 Level() 6 5 4 4 5 5 time(s) 4 6 8 Time (seconds) Fig.. Illustration of BIBO stability: stable system (the input is a unit step) Fig.. step)

More information

Raktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries

Raktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries . AERO 632: of Advance Flight Control System. Preliminaries Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. Preliminaries Signals & Systems Laplace

More information

Laplace Transforms and use in Automatic Control

Laplace Transforms and use in Automatic Control Laplace Transforms and use in Automatic Control P.S. Gandhi Mechanical Engineering IIT Bombay Acknowledgements: P.Santosh Krishna, SYSCON Recap Fourier series Fourier transform: aperiodic Convolution integral

More information

Linear Systems Theory

Linear Systems Theory ME 3253 Linear Systems Theory Review Class Overview and Introduction 1. How to build dynamic system model for physical system? 2. How to analyze the dynamic system? -- Time domain -- Frequency domain (Laplace

More information

(a) Find the transfer function of the amplifier. Ans.: G(s) =

(a) Find the transfer function of the amplifier. Ans.: G(s) = 126 INTRDUCTIN T CNTR ENGINEERING 10( s 1) (a) Find the transfer function of the amplifier. Ans.: (. 02s 1)(. 001s 1) (b) Find the expected percent overshoot for a step input for the closed-loop system

More information

BASIC PROPERTIES OF FEEDBACK

BASIC PROPERTIES OF FEEDBACK ECE450/550: Feedback Control Systems. 4 BASIC PROPERTIES OF FEEDBACK 4.: Setting up an example to benchmark controllers There are two basic types/categories of control systems: OPEN LOOP: Disturbance r(t)

More information

CHAPTER 5: LAPLACE TRANSFORMS

CHAPTER 5: LAPLACE TRANSFORMS CHAPTER 5: LAPLACE TRANSFORMS SAMANTHA RAMIREZ PREVIEW QUESTIONS What are some commonly recurring functions in dynamic systems and their Laplace transforms? How can Laplace transforms be used to solve

More information

1 Differential Equations

1 Differential Equations Reading [Simon], Chapter 24, p. 633-657. 1 Differential Equations 1.1 Definition and Examples A differential equation is an equation involving an unknown function (say y = y(t)) and one or more of its

More information

EE C128 / ME C134 Midterm Fall 2014

EE C128 / ME C134 Midterm Fall 2014 EE C128 / ME C134 Midterm Fall 2014 October 16, 2014 Your PRINTED FULL NAME Your STUDENT ID NUMBER Number of additional sheets 1. No computers, no tablets, no connected device (phone etc.) 2. Pocket calculator

More information

Math 333 Qualitative Results: Forced Harmonic Oscillators

Math 333 Qualitative Results: Forced Harmonic Oscillators Math 333 Qualitative Results: Forced Harmonic Oscillators Forced Harmonic Oscillators. Recall our derivation of the second-order linear homogeneous differential equation with constant coefficients: my

More information

Outline. Classical Control. Lecture 5

Outline. Classical Control. Lecture 5 Outline Outline Outline 1 What is 2 Outline What is Why use? Sketching a 1 What is Why use? Sketching a 2 Gain Controller Lead Compensation Lag Compensation What is Properties of a General System Why use?

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chapter 1 Fundamental Concepts Signals A signal is a pattern of variation of a physical quantity as a function of time, space, distance, position, temperature, pressure, etc. These quantities are usually

More information

The requirements of a plant may be expressed in terms of (a) settling time (b) damping ratio (c) peak overshoot --- in time domain

The requirements of a plant may be expressed in terms of (a) settling time (b) damping ratio (c) peak overshoot --- in time domain Compensators To improve the performance of a given plant or system G f(s) it may be necessary to use a compensator or controller G c(s). Compensator Plant G c (s) G f (s) The requirements of a plant may

More information

MODELING OF CONTROL SYSTEMS

MODELING OF CONTROL SYSTEMS 1 MODELING OF CONTROL SYSTEMS Feb-15 Dr. Mohammed Morsy Outline Introduction Differential equations and Linearization of nonlinear mathematical models Transfer function and impulse response function Laplace

More information

Laplace Transform Problems

Laplace Transform Problems AP Calculus BC Name: Laplace Transformation Day 3 2 January 206 Laplace Transform Problems Example problems using the Laplace Transform.. Solve the differential equation y! y = e t, with the initial value

More information

Today s goals So far Today 2.004

Today s goals So far Today 2.004 Today s goals So far Feedback as a means for specifying the dynamic response of a system Root Locus: from the open-loop poles/zeros to the closed-loop poles Moving the closed-loop poles around Today Proportional

More information

Transient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n

Transient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n Design via frequency response Transient response via gain adjustment Consider a unity feedback system, where G(s) = ωn 2. The closed loop transfer function is s(s+2ζω n ) T(s) = ω 2 n s 2 + 2ζωs + ω 2

More information

Dynamic Compensation using root locus method

Dynamic Compensation using root locus method CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 9 Dynamic Compensation using root locus method [] (Final00)For the system shown in the

More information

Power System Control

Power System Control Power System Control Basic Control Engineering Prof. Wonhee Kim School of Energy Systems Engineering, Chung-Ang University 2 Contents Why feedback? System Modeling in Frequency Domain System Modeling in

More information

Due Wednesday, February 6th EE/MFS 599 HW #5

Due Wednesday, February 6th EE/MFS 599 HW #5 Due Wednesday, February 6th EE/MFS 599 HW #5 You may use Matlab/Simulink wherever applicable. Consider the standard, unity-feedback closed loop control system shown below where G(s) = /[s q (s+)(s+9)]

More information

Bode Diagrams School of Mechanical Engineering ME375 Frequency Response - 29 Purdue University Example Ex:

Bode Diagrams School of Mechanical Engineering ME375 Frequency Response - 29 Purdue University Example Ex: ME375 Hadouts Bode Diagrams Recall that if m m bs m + bm s + + bs+ b Gs () as + a s + + as+ a The bm( j z)( j z) ( j zm) G( j ) a ( j p )( j p ) ( j p ) bm( s z)( s z) ( s zm) a ( s p )( s p ) ( s p )

More information

MA 266 Review Topics - Exam # 2 (updated)

MA 266 Review Topics - Exam # 2 (updated) MA 66 Reiew Topics - Exam # updated Spring First Order Differential Equations Separable, st Order Linear, Homogeneous, Exact Second Order Linear Homogeneous with Equations Constant Coefficients The differential

More information

Performance of Feedback Control Systems

Performance of Feedback Control Systems Performance of Feedback Control Systems Design of a PID Controller Transient Response of a Closed Loop System Damping Coefficient, Natural frequency, Settling time and Steady-state Error and Type 0, Type

More information

EE Experiment 11 The Laplace Transform and Control System Characteristics

EE Experiment 11 The Laplace Transform and Control System Characteristics EE216:11 1 EE 216 - Experiment 11 The Laplace Transform and Control System Characteristics Objectives: To illustrate computer usage in determining inverse Laplace transforms. Also to determine useful signal

More information

Step input, ramp input, parabolic input and impulse input signals. 2. What is the initial slope of a step response of a first order system?

Step input, ramp input, parabolic input and impulse input signals. 2. What is the initial slope of a step response of a first order system? IC6501 CONTROL SYSTEM UNIT-II TIME RESPONSE PART-A 1. What are the standard test signals employed for time domain studies?(or) List the standard test signals used in analysis of control systems? (April

More information

Notes for ECE-320. Winter by R. Throne

Notes for ECE-320. Winter by R. Throne Notes for ECE-3 Winter 4-5 by R. Throne Contents Table of Laplace Transforms 5 Laplace Transform Review 6. Poles and Zeros.................................... 6. Proper and Strictly Proper Transfer Functions...................

More information

Dynamic System Response. Dynamic System Response K. Craig 1

Dynamic System Response. Dynamic System Response K. Craig 1 Dynamic System Response Dynamic System Response K. Craig 1 Dynamic System Response LTI Behavior vs. Non-LTI Behavior Solution of Linear, Constant-Coefficient, Ordinary Differential Equations Classical

More information

EE C128 / ME C134 Fall 2014 HW 6.2 Solutions. HW 6.2 Solutions

EE C128 / ME C134 Fall 2014 HW 6.2 Solutions. HW 6.2 Solutions EE C28 / ME C34 Fall 24 HW 6.2 Solutions. PI Controller For the system G = K (s+)(s+3)(s+8) HW 6.2 Solutions in negative feedback operating at a damping ratio of., we are going to design a PI controller

More information

Dynamic Behavior. Chapter 5

Dynamic Behavior. Chapter 5 1 Dynamic Behavior In analyzing process dynamic and process control systems, it is important to know how the process responds to changes in the process inputs. A number of standard types of input changes

More information

8. Introduction and Chapter Objectives

8. Introduction and Chapter Objectives Real Analog - Circuits Chapter 8: Second Order Circuits 8. Introduction and Chapter Objectives Second order systems are, by definition, systems whose input-output relationship is a second order differential

More information

Second order linear equations

Second order linear equations Second order linear equations Samy Tindel Purdue University Differential equations - MA 266 Taken from Elementary differential equations by Boyce and DiPrima Samy T. Second order equations Differential

More information

Problem Set 3: Solution Due on Mon. 7 th Oct. in class. Fall 2013

Problem Set 3: Solution Due on Mon. 7 th Oct. in class. Fall 2013 EE 56: Digital Control Systems Problem Set 3: Solution Due on Mon 7 th Oct in class Fall 23 Problem For the causal LTI system described by the difference equation y k + 2 y k = x k, () (a) By first finding

More information

3.2 Complex Sinusoids and Frequency Response of LTI Systems

3.2 Complex Sinusoids and Frequency Response of LTI Systems 3. Introduction. A signal can be represented as a weighted superposition of complex sinusoids. x(t) or x[n]. LTI system: LTI System Output = A weighted superposition of the system response to each complex

More information

AN INTRODUCTION TO THE CONTROL THEORY

AN INTRODUCTION TO THE CONTROL THEORY Open-Loop controller An Open-Loop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, non-linear dynamics and parameter

More information

Course roadmap. Step response for 2nd-order system. Step response for 2nd-order system

Course roadmap. Step response for 2nd-order system. Step response for 2nd-order system ME45: Control Systems Lecture Time response of nd-order systems Prof. Clar Radcliffe and Prof. Jongeun Choi Department of Mechanical Engineering Michigan State University Modeling Laplace transform Transfer

More information

CDS 101/110: Lecture 3.1 Linear Systems

CDS 101/110: Lecture 3.1 Linear Systems CDS /: Lecture 3. Linear Systems Goals for Today: Revist and motivate linear time-invariant system models: Summarize properties, examples, and tools Convolution equation describing solution in response

More information

Frequency Response Techniques

Frequency Response Techniques 4th Edition T E N Frequency Response Techniques SOLUTION TO CASE STUDY CHALLENGE Antenna Control: Stability Design and Transient Performance First find the forward transfer function, G(s). Pot: K 1 = 10

More information

9.5 The Transfer Function

9.5 The Transfer Function Lecture Notes on Control Systems/D. Ghose/2012 0 9.5 The Transfer Function Consider the n-th order linear, time-invariant dynamical system. dy a 0 y + a 1 dt + a d 2 y 2 dt + + a d n y 2 n dt b du 0u +

More information

Topic # Feedback Control Systems

Topic # Feedback Control Systems Topic #1 16.31 Feedback Control Systems Motivation Basic Linear System Response Fall 2007 16.31 1 1 16.31: Introduction r(t) e(t) d(t) y(t) G c (s) G(s) u(t) Goal: Design a controller G c (s) so that the

More information

Topic # Feedback Control

Topic # Feedback Control Topic #5 6.3 Feedback Control State-Space Systems Full-state Feedback Control How do we change the poles of the state-space system? Or,evenifwecanchangethepolelocations. Where do we put the poles? Linear

More information

CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang

CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dept. of Chemical and Biological Engineering 5-1 Road Map of the Lecture V Laplace Transform and Transfer

More information

Frequency-Domain C/S of LTI Systems

Frequency-Domain C/S of LTI Systems Frequency-Domain C/S of LTI Systems x(n) LTI y(n) LTI: Linear Time-Invariant system h(n), the impulse response of an LTI systems describes the time domain c/s. H(ω), the frequency response describes the

More information